// SPDX-License-Identifier: GPL-2.0 #include <sys/mman.h> #include <inttypes.h> #include <asm/bug.h> #include <errno.h> #include <string.h> #include <linux/ring_buffer.h> #include <linux/perf_event.h> #include <perf/mmap.h> #include <perf/event.h> #include <perf/evsel.h> #include <internal/mmap.h> #include <internal/lib.h> #include <linux/kernel.h> #include <linux/math64.h> #include <linux/stringify.h> #include "internal.h" void perf_mmap__init(struct perf_mmap *map, struct perf_mmap *prev, bool overwrite, libperf_unmap_cb_t unmap_cb) { map->fd = -1; map->overwrite = overwrite; map->unmap_cb = unmap_cb; refcount_set(&map->refcnt, 0); if (prev) prev->next = map; } size_t perf_mmap__mmap_len(struct perf_mmap *map) { return map->mask + 1 + page_size; } int perf_mmap__mmap(struct perf_mmap *map, struct perf_mmap_param *mp, int fd, struct perf_cpu cpu) { map->prev = 0; map->mask = mp->mask; map->base = mmap(NULL, perf_mmap__mmap_len(map), mp->prot, MAP_SHARED, fd, 0); if (map->base == MAP_FAILED) { map->base = NULL; return -1; } map->fd = fd; map->cpu = cpu; return 0; } void perf_mmap__munmap(struct perf_mmap *map) { if (map && map->base != NULL) { munmap(map->base, perf_mmap__mmap_len(map)); map->base = NULL; map->fd = -1; refcount_set(&map->refcnt, 0); } if (map && map->unmap_cb) map->unmap_cb(map); } void perf_mmap__get(struct perf_mmap *map) { refcount_inc(&map->refcnt); } void perf_mmap__put(struct perf_mmap *map) { BUG_ON(map->base && refcount_read(&map->refcnt) == 0); if (refcount_dec_and_test(&map->refcnt)) perf_mmap__munmap(map); } static inline void perf_mmap__write_tail(struct perf_mmap *md, u64 tail) { ring_buffer_write_tail(md->base, tail); } u64 perf_mmap__read_head(struct perf_mmap *map) { return ring_buffer_read_head(map->base); } static bool perf_mmap__empty(struct perf_mmap *map) { struct perf_event_mmap_page *pc = map->base; return perf_mmap__read_head(map) == map->prev && !pc->aux_size; } void perf_mmap__consume(struct perf_mmap *map) { if (!map->overwrite) { u64 old = map->prev; perf_mmap__write_tail(map, old); } if (refcount_read(&map->refcnt) == 1 && perf_mmap__empty(map)) perf_mmap__put(map); } static int overwrite_rb_find_range(void *buf, int mask, u64 *start, u64 *end) { struct perf_event_header *pheader; u64 evt_head = *start; int size = mask + 1; pr_debug2("%s: buf=%p, start=%"PRIx64"\n", __func__, buf, *start); pheader = (struct perf_event_header *)(buf + (*start & mask)); while (true) { if (evt_head - *start >= (unsigned int)size) { pr_debug("Finished reading overwrite ring buffer: rewind\n"); if (evt_head - *start > (unsigned int)size) evt_head -= pheader->size; *end = evt_head; return 0; } pheader = (struct perf_event_header *)(buf + (evt_head & mask)); if (pheader->size == 0) { pr_debug("Finished reading overwrite ring buffer: get start\n"); *end = evt_head; return 0; } evt_head += pheader->size; pr_debug3("move evt_head: %"PRIx64"\n", evt_head); } WARN_ONCE(1, "Shouldn't get here\n"); return -1; } /* * Report the start and end of the available data in ringbuffer */ static int __perf_mmap__read_init(struct perf_mmap *md) { u64 head = perf_mmap__read_head(md); u64 old = md->prev; unsigned char *data = md->base + page_size; unsigned long size; md->start = md->overwrite ? head : old; md->end = md->overwrite ? old : head; if ((md->end - md->start) < md->flush) return -EAGAIN; size = md->end - md->start; if (size > (unsigned long)(md->mask) + 1) { if (!md->overwrite) { WARN_ONCE(1, "failed to keep up with mmap data. (warn only once)\n"); md->prev = head; perf_mmap__consume(md); return -EAGAIN; } /* * Backward ring buffer is full. We still have a chance to read * most of data from it. */ if (overwrite_rb_find_range(data, md->mask, &md->start, &md->end)) return -EINVAL; } return 0; } int perf_mmap__read_init(struct perf_mmap *map) { /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!refcount_read(&map->refcnt)) return -ENOENT; return __perf_mmap__read_init(map); } /* * Mandatory for overwrite mode * The direction of overwrite mode is backward. * The last perf_mmap__read() will set tail to map->core.prev. * Need to correct the map->core.prev to head which is the end of next read. */ void perf_mmap__read_done(struct perf_mmap *map) { /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!refcount_read(&map->refcnt)) return; map->prev = perf_mmap__read_head(map); } /* When check_messup is true, 'end' must points to a good entry */ static union perf_event *perf_mmap__read(struct perf_mmap *map, u64 *startp, u64 end) { unsigned char *data = map->base + page_size; union perf_event *event = NULL; int diff = end - *startp; if (diff >= (int)sizeof(event->header)) { size_t size; event = (union perf_event *)&data[*startp & map->mask]; size = event->header.size; if (size < sizeof(event->header) || diff < (int)size) return NULL; /* * Event straddles the mmap boundary -- header should always * be inside due to u64 alignment of output. */ if ((*startp & map->mask) + size != ((*startp + size) & map->mask)) { unsigned int offset = *startp; unsigned int len = min(sizeof(*event), size), cpy; void *dst = map->event_copy; do { cpy = min(map->mask + 1 - (offset & map->mask), len); memcpy(dst, &data[offset & map->mask], cpy); offset += cpy; dst += cpy; len -= cpy; } while (len); event = (union perf_event *)map->event_copy; } *startp += size; } return event; } /* * Read event from ring buffer one by one. * Return one event for each call. * * Usage: * perf_mmap__read_init() * while(event = perf_mmap__read_event()) { * //process the event * perf_mmap__consume() * } * perf_mmap__read_done() */ union perf_event *perf_mmap__read_event(struct perf_mmap *map) { union perf_event *event; /* * Check if event was unmapped due to a POLLHUP/POLLERR. */ if (!refcount_read(&map->refcnt)) return NULL; /* non-overwirte doesn't pause the ringbuffer */ if (!map->overwrite) map->end = perf_mmap__read_head(map); event = perf_mmap__read(map, &map->start, map->end); if (!map->overwrite) map->prev = map->start; return event; } #if defined(__i386__) || defined(__x86_64__) static u64 read_perf_counter(unsigned int counter) { unsigned int low, high; asm volatile("rdpmc" : "=a" (low), "=d" (high) : "c" (counter)); return low | ((u64)high) << 32; } static u64 read_timestamp(void) { unsigned int low, high; asm volatile("rdtsc" : "=a" (low), "=d" (high)); return low | ((u64)high) << 32; } #elif defined(__aarch64__) #define read_sysreg(r) ({ \ u64 __val; \ asm volatile("mrs %0, " __stringify(r) : "=r" (__val)); \ __val; \ }) static u64 read_pmccntr(void) { return read_sysreg(pmccntr_el0); } #define PMEVCNTR_READ(idx) \ static u64 read_pmevcntr_##idx(void) { \ return read_sysreg(pmevcntr##idx##_el0); \ } PMEVCNTR_READ(0); PMEVCNTR_READ(1); PMEVCNTR_READ(2); PMEVCNTR_READ(3); PMEVCNTR_READ(4); PMEVCNTR_READ(5); PMEVCNTR_READ(6); PMEVCNTR_READ(7); PMEVCNTR_READ(8); PMEVCNTR_READ(9); PMEVCNTR_READ(10); PMEVCNTR_READ(11); PMEVCNTR_READ(12); PMEVCNTR_READ(13); PMEVCNTR_READ(14); PMEVCNTR_READ(15); PMEVCNTR_READ(16); PMEVCNTR_READ(17); PMEVCNTR_READ(18); PMEVCNTR_READ(19); PMEVCNTR_READ(20); PMEVCNTR_READ(21); PMEVCNTR_READ(22); PMEVCNTR_READ(23); PMEVCNTR_READ(24); PMEVCNTR_READ(25); PMEVCNTR_READ(26); PMEVCNTR_READ(27); PMEVCNTR_READ(28); PMEVCNTR_READ(29); PMEVCNTR_READ(30); /* * Read a value direct from PMEVCNTR<idx> */ static u64 read_perf_counter(unsigned int counter) { static u64 (* const read_f[])(void) = { read_pmevcntr_0, read_pmevcntr_1, read_pmevcntr_2, read_pmevcntr_3, read_pmevcntr_4, read_pmevcntr_5, read_pmevcntr_6, read_pmevcntr_7, read_pmevcntr_8, read_pmevcntr_9, read_pmevcntr_10, read_pmevcntr_11, read_pmevcntr_13, read_pmevcntr_12, read_pmevcntr_14, read_pmevcntr_15, read_pmevcntr_16, read_pmevcntr_17, read_pmevcntr_18, read_pmevcntr_19, read_pmevcntr_20, read_pmevcntr_21, read_pmevcntr_22, read_pmevcntr_23, read_pmevcntr_24, read_pmevcntr_25, read_pmevcntr_26, read_pmevcntr_27, read_pmevcntr_28, read_pmevcntr_29, read_pmevcntr_30, read_pmccntr }; if (counter < ARRAY_SIZE(read_f)) return (read_f[counter])(); return 0; } static u64 read_timestamp(void) { return read_sysreg(cntvct_el0); } /* __riscv_xlen contains the witdh of the native base integer, here 64-bit */ #elif defined(__riscv) && __riscv_xlen == 64 /* TODO: implement rv32 support */ #define CSR_CYCLE 0xc00 #define CSR_TIME 0xc01 #define csr_read(csr) \ ({ \ register unsigned long __v; \ __asm__ __volatile__ ("csrr %0, %1" \ : "=r" (__v) \ : "i" (csr) : ); \ __v; \ }) static unsigned long csr_read_num(int csr_num) { #define switchcase_csr_read(__csr_num, __val) {\ case __csr_num: \ __val = csr_read(__csr_num); \ break; } #define switchcase_csr_read_2(__csr_num, __val) {\ switchcase_csr_read(__csr_num + 0, __val) \ switchcase_csr_read(__csr_num + 1, __val)} #define switchcase_csr_read_4(__csr_num, __val) {\ switchcase_csr_read_2(__csr_num + 0, __val) \ switchcase_csr_read_2(__csr_num + 2, __val)} #define switchcase_csr_read_8(__csr_num, __val) {\ switchcase_csr_read_4(__csr_num + 0, __val) \ switchcase_csr_read_4(__csr_num + 4, __val)} #define switchcase_csr_read_16(__csr_num, __val) {\ switchcase_csr_read_8(__csr_num + 0, __val) \ switchcase_csr_read_8(__csr_num + 8, __val)} #define switchcase_csr_read_32(__csr_num, __val) {\ switchcase_csr_read_16(__csr_num + 0, __val) \ switchcase_csr_read_16(__csr_num + 16, __val)} unsigned long ret = 0; switch (csr_num) { switchcase_csr_read_32(CSR_CYCLE, ret) default: break; } return ret; #undef switchcase_csr_read_32 #undef switchcase_csr_read_16 #undef switchcase_csr_read_8 #undef switchcase_csr_read_4 #undef switchcase_csr_read_2 #undef switchcase_csr_read } static u64 read_perf_counter(unsigned int counter) { return csr_read_num(CSR_CYCLE + counter); } static u64 read_timestamp(void) { return csr_read_num(CSR_TIME); } #else static u64 read_perf_counter(unsigned int counter __maybe_unused) { return 0; } static u64 read_timestamp(void) { return 0; } #endif int perf_mmap__read_self(struct perf_mmap *map, struct perf_counts_values *count) { struct perf_event_mmap_page *pc = map->base; u32 seq, idx, time_mult = 0, time_shift = 0; u64 cnt, cyc = 0, time_offset = 0, time_cycles = 0, time_mask = ~0ULL; if (!pc || !pc->cap_user_rdpmc) return -1; do { seq = READ_ONCE(pc->lock); barrier(); count->ena = READ_ONCE(pc->time_enabled); count->run = READ_ONCE(pc->time_running); if (pc->cap_user_time && count->ena != count->run) { cyc = read_timestamp(); time_mult = READ_ONCE(pc->time_mult); time_shift = READ_ONCE(pc->time_shift); time_offset = READ_ONCE(pc->time_offset); if (pc->cap_user_time_short) { time_cycles = READ_ONCE(pc->time_cycles); time_mask = READ_ONCE(pc->time_mask); } } idx = READ_ONCE(pc->index); cnt = READ_ONCE(pc->offset); if (pc->cap_user_rdpmc && idx) { s64 evcnt = read_perf_counter(idx - 1); u16 width = READ_ONCE(pc->pmc_width); evcnt <<= 64 - width; evcnt >>= 64 - width; cnt += evcnt; } else return -1; barrier(); } while (READ_ONCE(pc->lock) != seq); if (count->ena != count->run) { u64 delta; /* Adjust for cap_usr_time_short, a nop if not */ cyc = time_cycles + ((cyc - time_cycles) & time_mask); delta = time_offset + mul_u64_u32_shr(cyc, time_mult, time_shift); count->ena += delta; if (idx) count->run += delta; } count->val = cnt; return 0; }