// SPDX-License-Identifier: GPL-2.0-only /* * DesignWare MIPI DSI Host Controller v1.02 driver * * Copyright (c) 2016 Linaro Limited. * Copyright (c) 2014-2016 HiSilicon Limited. * * Author: * Xinliang Liu <z.liuxinliang@hisilicon.com> * Xinliang Liu <xinliang.liu@linaro.org> * Xinwei Kong <kong.kongxinwei@hisilicon.com> */ #include <linux/clk.h> #include <linux/component.h> #include <linux/delay.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <drm/drm_atomic_helper.h> #include <drm/drm_bridge.h> #include <drm/drm_device.h> #include <drm/drm_mipi_dsi.h> #include <drm/drm_of.h> #include <drm/drm_print.h> #include <drm/drm_probe_helper.h> #include <drm/drm_simple_kms_helper.h> #include "dw_dsi_reg.h" #define MAX_TX_ESC_CLK 10 #define ROUND(x, y) ((x) / (y) + \ ((x) % (y) * 10 / (y) >= 5 ? 1 : 0)) #define PHY_REF_CLK_RATE 19200000 #define PHY_REF_CLK_PERIOD_PS (1000000000 / (PHY_REF_CLK_RATE / 1000)) #define encoder_to_dsi(encoder) \ container_of(encoder, struct dw_dsi, encoder) #define host_to_dsi(host) \ container_of(host, struct dw_dsi, host) struct mipi_phy_params { u32 clk_t_lpx; u32 clk_t_hs_prepare; u32 clk_t_hs_zero; u32 clk_t_hs_trial; u32 clk_t_wakeup; u32 data_t_lpx; u32 data_t_hs_prepare; u32 data_t_hs_zero; u32 data_t_hs_trial; u32 data_t_ta_go; u32 data_t_ta_get; u32 data_t_wakeup; u32 hstx_ckg_sel; u32 pll_fbd_div5f; u32 pll_fbd_div1f; u32 pll_fbd_2p; u32 pll_enbwt; u32 pll_fbd_p; u32 pll_fbd_s; u32 pll_pre_div1p; u32 pll_pre_p; u32 pll_vco_750M; u32 pll_lpf_rs; u32 pll_lpf_cs; u32 clklp2hs_time; u32 clkhs2lp_time; u32 lp2hs_time; u32 hs2lp_time; u32 clk_to_data_delay; u32 data_to_clk_delay; u32 lane_byte_clk_kHz; u32 clk_division; }; struct dsi_hw_ctx { void __iomem *base; struct clk *pclk; }; struct dw_dsi { struct drm_encoder encoder; struct device *dev; struct mipi_dsi_host host; struct drm_display_mode cur_mode; struct dsi_hw_ctx *ctx; struct mipi_phy_params phy; u32 lanes; enum mipi_dsi_pixel_format format; unsigned long mode_flags; bool enable; }; struct dsi_data { struct dw_dsi dsi; struct dsi_hw_ctx ctx; }; struct dsi_phy_range { u32 min_range_kHz; u32 max_range_kHz; u32 pll_vco_750M; u32 hstx_ckg_sel; }; static const struct dsi_phy_range dphy_range_info[] = { { 46875, 62500, 1, 7 }, { 62500, 93750, 0, 7 }, { 93750, 125000, 1, 6 }, { 125000, 187500, 0, 6 }, { 187500, 250000, 1, 5 }, { 250000, 375000, 0, 5 }, { 375000, 500000, 1, 4 }, { 500000, 750000, 0, 4 }, { 750000, 1000000, 1, 0 }, { 1000000, 1500000, 0, 0 } }; static u32 dsi_calc_phy_rate(u32 req_kHz, struct mipi_phy_params *phy) { u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; u32 tmp_kHz = req_kHz; u32 i = 0; u32 q_pll = 1; u32 m_pll = 0; u32 n_pll = 0; u32 r_pll = 1; u32 m_n = 0; u32 m_n_int = 0; u32 f_kHz = 0; u64 temp; /* * Find a rate >= req_kHz. */ do { f_kHz = tmp_kHz; for (i = 0; i < ARRAY_SIZE(dphy_range_info); i++) if (f_kHz >= dphy_range_info[i].min_range_kHz && f_kHz <= dphy_range_info[i].max_range_kHz) break; if (i == ARRAY_SIZE(dphy_range_info)) { DRM_ERROR("%dkHz out of range\n", f_kHz); return 0; } phy->pll_vco_750M = dphy_range_info[i].pll_vco_750M; phy->hstx_ckg_sel = dphy_range_info[i].hstx_ckg_sel; if (phy->hstx_ckg_sel <= 7 && phy->hstx_ckg_sel >= 4) q_pll = 0x10 >> (7 - phy->hstx_ckg_sel); temp = f_kHz * (u64)q_pll * (u64)ref_clk_ps; m_n_int = temp / (u64)1000000000; m_n = (temp % (u64)1000000000) / (u64)100000000; if (m_n_int % 2 == 0) { if (m_n * 6 >= 50) { n_pll = 2; m_pll = (m_n_int + 1) * n_pll; } else if (m_n * 6 >= 30) { n_pll = 3; m_pll = m_n_int * n_pll + 2; } else { n_pll = 1; m_pll = m_n_int * n_pll; } } else { if (m_n * 6 >= 50) { n_pll = 1; m_pll = (m_n_int + 1) * n_pll; } else if (m_n * 6 >= 30) { n_pll = 1; m_pll = (m_n_int + 1) * n_pll; } else if (m_n * 6 >= 10) { n_pll = 3; m_pll = m_n_int * n_pll + 1; } else { n_pll = 2; m_pll = m_n_int * n_pll; } } if (n_pll == 1) { phy->pll_fbd_p = 0; phy->pll_pre_div1p = 1; } else { phy->pll_fbd_p = n_pll; phy->pll_pre_div1p = 0; } if (phy->pll_fbd_2p <= 7 && phy->pll_fbd_2p >= 4) r_pll = 0x10 >> (7 - phy->pll_fbd_2p); if (m_pll == 2) { phy->pll_pre_p = 0; phy->pll_fbd_s = 0; phy->pll_fbd_div1f = 0; phy->pll_fbd_div5f = 1; } else if (m_pll >= 2 * 2 * r_pll && m_pll <= 2 * 4 * r_pll) { phy->pll_pre_p = m_pll / (2 * r_pll); phy->pll_fbd_s = 0; phy->pll_fbd_div1f = 1; phy->pll_fbd_div5f = 0; } else if (m_pll >= 2 * 5 * r_pll && m_pll <= 2 * 150 * r_pll) { if (((m_pll / (2 * r_pll)) % 2) == 0) { phy->pll_pre_p = (m_pll / (2 * r_pll)) / 2 - 1; phy->pll_fbd_s = (m_pll / (2 * r_pll)) % 2 + 2; } else { phy->pll_pre_p = (m_pll / (2 * r_pll)) / 2; phy->pll_fbd_s = (m_pll / (2 * r_pll)) % 2; } phy->pll_fbd_div1f = 0; phy->pll_fbd_div5f = 0; } else { phy->pll_pre_p = 0; phy->pll_fbd_s = 0; phy->pll_fbd_div1f = 0; phy->pll_fbd_div5f = 1; } f_kHz = (u64)1000000000 * (u64)m_pll / ((u64)ref_clk_ps * (u64)n_pll * (u64)q_pll); if (f_kHz >= req_kHz) break; tmp_kHz += 10; } while (true); return f_kHz; } static void dsi_get_phy_params(u32 phy_req_kHz, struct mipi_phy_params *phy) { u32 ref_clk_ps = PHY_REF_CLK_PERIOD_PS; u32 phy_rate_kHz; u32 ui; memset(phy, 0, sizeof(*phy)); phy_rate_kHz = dsi_calc_phy_rate(phy_req_kHz, phy); if (!phy_rate_kHz) return; ui = 1000000 / phy_rate_kHz; phy->clk_t_lpx = ROUND(50, 8 * ui); phy->clk_t_hs_prepare = ROUND(133, 16 * ui) - 1; phy->clk_t_hs_zero = ROUND(262, 8 * ui); phy->clk_t_hs_trial = 2 * (ROUND(60, 8 * ui) - 1); phy->clk_t_wakeup = ROUND(1000000, (ref_clk_ps / 1000) - 1); if (phy->clk_t_wakeup > 0xff) phy->clk_t_wakeup = 0xff; phy->data_t_wakeup = phy->clk_t_wakeup; phy->data_t_lpx = phy->clk_t_lpx; phy->data_t_hs_prepare = ROUND(125 + 10 * ui, 16 * ui) - 1; phy->data_t_hs_zero = ROUND(105 + 6 * ui, 8 * ui); phy->data_t_hs_trial = 2 * (ROUND(60 + 4 * ui, 8 * ui) - 1); phy->data_t_ta_go = 3; phy->data_t_ta_get = 4; phy->pll_enbwt = 1; phy->clklp2hs_time = ROUND(407, 8 * ui) + 12; phy->clkhs2lp_time = ROUND(105 + 12 * ui, 8 * ui); phy->lp2hs_time = ROUND(240 + 12 * ui, 8 * ui) + 1; phy->hs2lp_time = phy->clkhs2lp_time; phy->clk_to_data_delay = 1 + phy->clklp2hs_time; phy->data_to_clk_delay = ROUND(60 + 52 * ui, 8 * ui) + phy->clkhs2lp_time; phy->lane_byte_clk_kHz = phy_rate_kHz / 8; phy->clk_division = DIV_ROUND_UP(phy->lane_byte_clk_kHz, MAX_TX_ESC_CLK); } static u32 dsi_get_dpi_color_coding(enum mipi_dsi_pixel_format format) { u32 val; /* * TODO: only support RGB888 now, to support more */ switch (format) { case MIPI_DSI_FMT_RGB888: val = DSI_24BITS_1; break; default: val = DSI_24BITS_1; break; } return val; } /* * dsi phy reg write function */ static void dsi_phy_tst_set(void __iomem *base, u32 reg, u32 val) { u32 reg_write = 0x10000 + reg; /* * latch reg first */ writel(reg_write, base + PHY_TST_CTRL1); writel(0x02, base + PHY_TST_CTRL0); writel(0x00, base + PHY_TST_CTRL0); /* * then latch value */ writel(val, base + PHY_TST_CTRL1); writel(0x02, base + PHY_TST_CTRL0); writel(0x00, base + PHY_TST_CTRL0); } static void dsi_set_phy_timer(void __iomem *base, struct mipi_phy_params *phy, u32 lanes) { u32 val; /* * Set lane value and phy stop wait time. */ val = (lanes - 1) | (PHY_STOP_WAIT_TIME << 8); writel(val, base + PHY_IF_CFG); /* * Set phy clk division. */ val = readl(base + CLKMGR_CFG) | phy->clk_division; writel(val, base + CLKMGR_CFG); /* * Set lp and hs switching params. */ dw_update_bits(base + PHY_TMR_CFG, 24, MASK(8), phy->hs2lp_time); dw_update_bits(base + PHY_TMR_CFG, 16, MASK(8), phy->lp2hs_time); dw_update_bits(base + PHY_TMR_LPCLK_CFG, 16, MASK(10), phy->clkhs2lp_time); dw_update_bits(base + PHY_TMR_LPCLK_CFG, 0, MASK(10), phy->clklp2hs_time); dw_update_bits(base + CLK_DATA_TMR_CFG, 8, MASK(8), phy->data_to_clk_delay); dw_update_bits(base + CLK_DATA_TMR_CFG, 0, MASK(8), phy->clk_to_data_delay); } static void dsi_set_mipi_phy(void __iomem *base, struct mipi_phy_params *phy, u32 lanes) { u32 delay_count; u32 val; u32 i; /* phy timer setting */ dsi_set_phy_timer(base, phy, lanes); /* * Reset to clean up phy tst params. */ writel(0, base + PHY_RSTZ); writel(0, base + PHY_TST_CTRL0); writel(1, base + PHY_TST_CTRL0); writel(0, base + PHY_TST_CTRL0); /* * Clock lane timing control setting: TLPX, THS-PREPARE, * THS-ZERO, THS-TRAIL, TWAKEUP. */ dsi_phy_tst_set(base, CLK_TLPX, phy->clk_t_lpx); dsi_phy_tst_set(base, CLK_THS_PREPARE, phy->clk_t_hs_prepare); dsi_phy_tst_set(base, CLK_THS_ZERO, phy->clk_t_hs_zero); dsi_phy_tst_set(base, CLK_THS_TRAIL, phy->clk_t_hs_trial); dsi_phy_tst_set(base, CLK_TWAKEUP, phy->clk_t_wakeup); /* * Data lane timing control setting: TLPX, THS-PREPARE, * THS-ZERO, THS-TRAIL, TTA-GO, TTA-GET, TWAKEUP. */ for (i = 0; i < lanes; i++) { dsi_phy_tst_set(base, DATA_TLPX(i), phy->data_t_lpx); dsi_phy_tst_set(base, DATA_THS_PREPARE(i), phy->data_t_hs_prepare); dsi_phy_tst_set(base, DATA_THS_ZERO(i), phy->data_t_hs_zero); dsi_phy_tst_set(base, DATA_THS_TRAIL(i), phy->data_t_hs_trial); dsi_phy_tst_set(base, DATA_TTA_GO(i), phy->data_t_ta_go); dsi_phy_tst_set(base, DATA_TTA_GET(i), phy->data_t_ta_get); dsi_phy_tst_set(base, DATA_TWAKEUP(i), phy->data_t_wakeup); } /* * physical configuration: I, pll I, pll II, pll III, * pll IV, pll V. */ dsi_phy_tst_set(base, PHY_CFG_I, phy->hstx_ckg_sel); val = (phy->pll_fbd_div5f << 5) + (phy->pll_fbd_div1f << 4) + (phy->pll_fbd_2p << 1) + phy->pll_enbwt; dsi_phy_tst_set(base, PHY_CFG_PLL_I, val); dsi_phy_tst_set(base, PHY_CFG_PLL_II, phy->pll_fbd_p); dsi_phy_tst_set(base, PHY_CFG_PLL_III, phy->pll_fbd_s); val = (phy->pll_pre_div1p << 7) + phy->pll_pre_p; dsi_phy_tst_set(base, PHY_CFG_PLL_IV, val); val = (5 << 5) + (phy->pll_vco_750M << 4) + (phy->pll_lpf_rs << 2) + phy->pll_lpf_cs; dsi_phy_tst_set(base, PHY_CFG_PLL_V, val); writel(PHY_ENABLECLK, base + PHY_RSTZ); udelay(1); writel(PHY_ENABLECLK | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); udelay(1); writel(PHY_ENABLECLK | PHY_UNRSTZ | PHY_UNSHUTDOWNZ, base + PHY_RSTZ); usleep_range(1000, 1500); /* * wait for phy's clock ready */ delay_count = 100; while (delay_count) { val = readl(base + PHY_STATUS); if ((BIT(0) | BIT(2)) & val) break; udelay(1); delay_count--; } if (!delay_count) DRM_INFO("phylock and phystopstateclklane is not ready.\n"); } static void dsi_set_mode_timing(void __iomem *base, u32 lane_byte_clk_kHz, struct drm_display_mode *mode, enum mipi_dsi_pixel_format format) { u32 hfp, hbp, hsw, vfp, vbp, vsw; u32 hline_time; u32 hsa_time; u32 hbp_time; u32 pixel_clk_kHz; int htot, vtot; u32 val; u64 tmp; val = dsi_get_dpi_color_coding(format); writel(val, base + DPI_COLOR_CODING); val = (mode->flags & DRM_MODE_FLAG_NHSYNC ? 1 : 0) << 2; val |= (mode->flags & DRM_MODE_FLAG_NVSYNC ? 1 : 0) << 1; writel(val, base + DPI_CFG_POL); /* * The DSI IP accepts vertical timing using lines as normal, * but horizontal timing is a mixture of pixel-clocks for the * active region and byte-lane clocks for the blanking-related * timings. hfp is specified as the total hline_time in byte- * lane clocks minus hsa, hbp and active. */ pixel_clk_kHz = mode->clock; htot = mode->htotal; vtot = mode->vtotal; hfp = mode->hsync_start - mode->hdisplay; hbp = mode->htotal - mode->hsync_end; hsw = mode->hsync_end - mode->hsync_start; vfp = mode->vsync_start - mode->vdisplay; vbp = mode->vtotal - mode->vsync_end; vsw = mode->vsync_end - mode->vsync_start; if (vsw > 15) { DRM_DEBUG_DRIVER("vsw exceeded 15\n"); vsw = 15; } hsa_time = (hsw * lane_byte_clk_kHz) / pixel_clk_kHz; hbp_time = (hbp * lane_byte_clk_kHz) / pixel_clk_kHz; tmp = (u64)htot * (u64)lane_byte_clk_kHz; hline_time = DIV_ROUND_UP(tmp, pixel_clk_kHz); /* all specified in byte-lane clocks */ writel(hsa_time, base + VID_HSA_TIME); writel(hbp_time, base + VID_HBP_TIME); writel(hline_time, base + VID_HLINE_TIME); writel(vsw, base + VID_VSA_LINES); writel(vbp, base + VID_VBP_LINES); writel(vfp, base + VID_VFP_LINES); writel(mode->vdisplay, base + VID_VACTIVE_LINES); writel(mode->hdisplay, base + VID_PKT_SIZE); DRM_DEBUG_DRIVER("htot=%d, hfp=%d, hbp=%d, hsw=%d\n", htot, hfp, hbp, hsw); DRM_DEBUG_DRIVER("vtol=%d, vfp=%d, vbp=%d, vsw=%d\n", vtot, vfp, vbp, vsw); DRM_DEBUG_DRIVER("hsa_time=%d, hbp_time=%d, hline_time=%d\n", hsa_time, hbp_time, hline_time); } static void dsi_set_video_mode(void __iomem *base, unsigned long flags) { u32 val; u32 mode_mask = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_BURST | MIPI_DSI_MODE_VIDEO_SYNC_PULSE; u32 non_burst_sync_pulse = MIPI_DSI_MODE_VIDEO | MIPI_DSI_MODE_VIDEO_SYNC_PULSE; u32 non_burst_sync_event = MIPI_DSI_MODE_VIDEO; /* * choose video mode type */ if ((flags & mode_mask) == non_burst_sync_pulse) val = DSI_NON_BURST_SYNC_PULSES; else if ((flags & mode_mask) == non_burst_sync_event) val = DSI_NON_BURST_SYNC_EVENTS; else val = DSI_BURST_SYNC_PULSES_1; writel(val, base + VID_MODE_CFG); writel(PHY_TXREQUESTCLKHS, base + LPCLK_CTRL); writel(DSI_VIDEO_MODE, base + MODE_CFG); } static void dsi_mipi_init(struct dw_dsi *dsi) { struct dsi_hw_ctx *ctx = dsi->ctx; struct mipi_phy_params *phy = &dsi->phy; struct drm_display_mode *mode = &dsi->cur_mode; u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); void __iomem *base = ctx->base; u32 dphy_req_kHz; /* * count phy params */ dphy_req_kHz = mode->clock * bpp / dsi->lanes; dsi_get_phy_params(dphy_req_kHz, phy); /* reset Core */ writel(RESET, base + PWR_UP); /* set dsi phy params */ dsi_set_mipi_phy(base, phy, dsi->lanes); /* set dsi mode timing */ dsi_set_mode_timing(base, phy->lane_byte_clk_kHz, mode, dsi->format); /* set dsi video mode */ dsi_set_video_mode(base, dsi->mode_flags); /* dsi wake up */ writel(POWERUP, base + PWR_UP); DRM_DEBUG_DRIVER("lanes=%d, pixel_clk=%d kHz, bytes_freq=%d kHz\n", dsi->lanes, mode->clock, phy->lane_byte_clk_kHz); } static void dsi_encoder_disable(struct drm_encoder *encoder) { struct dw_dsi *dsi = encoder_to_dsi(encoder); struct dsi_hw_ctx *ctx = dsi->ctx; void __iomem *base = ctx->base; if (!dsi->enable) return; writel(0, base + PWR_UP); writel(0, base + LPCLK_CTRL); writel(0, base + PHY_RSTZ); clk_disable_unprepare(ctx->pclk); dsi->enable = false; } static void dsi_encoder_enable(struct drm_encoder *encoder) { struct dw_dsi *dsi = encoder_to_dsi(encoder); struct dsi_hw_ctx *ctx = dsi->ctx; int ret; if (dsi->enable) return; ret = clk_prepare_enable(ctx->pclk); if (ret) { DRM_ERROR("fail to enable pclk: %d\n", ret); return; } dsi_mipi_init(dsi); dsi->enable = true; } static enum drm_mode_status dsi_encoder_phy_mode_valid( struct drm_encoder *encoder, const struct drm_display_mode *mode) { struct dw_dsi *dsi = encoder_to_dsi(encoder); struct mipi_phy_params phy; u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format); u32 req_kHz, act_kHz, lane_byte_clk_kHz; /* Calculate the lane byte clk using the adjusted mode clk */ memset(&phy, 0, sizeof(phy)); req_kHz = mode->clock * bpp / dsi->lanes; act_kHz = dsi_calc_phy_rate(req_kHz, &phy); lane_byte_clk_kHz = act_kHz / 8; DRM_DEBUG_DRIVER("Checking mode %ix%i-%i@%i clock: %i...", mode->hdisplay, mode->vdisplay, bpp, drm_mode_vrefresh(mode), mode->clock); /* * Make sure the adjusted mode clock and the lane byte clk * have a common denominator base frequency */ if (mode->clock/dsi->lanes == lane_byte_clk_kHz/3) { DRM_DEBUG_DRIVER("OK!\n"); return MODE_OK; } DRM_DEBUG_DRIVER("BAD!\n"); return MODE_BAD; } static enum drm_mode_status dsi_encoder_mode_valid(struct drm_encoder *encoder, const struct drm_display_mode *mode) { const struct drm_crtc_helper_funcs *crtc_funcs = NULL; struct drm_crtc *crtc = NULL; struct drm_display_mode adj_mode; enum drm_mode_status ret; /* * The crtc might adjust the mode, so go through the * possible crtcs (technically just one) and call * mode_fixup to figure out the adjusted mode before we * validate it. */ drm_for_each_crtc(crtc, encoder->dev) { /* * reset adj_mode to the mode value each time, * so we don't adjust the mode twice */ drm_mode_init(&adj_mode, mode); crtc_funcs = crtc->helper_private; if (crtc_funcs && crtc_funcs->mode_fixup) if (!crtc_funcs->mode_fixup(crtc, mode, &adj_mode)) return MODE_BAD; ret = dsi_encoder_phy_mode_valid(encoder, &adj_mode); if (ret != MODE_OK) return ret; } return MODE_OK; } static void dsi_encoder_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adj_mode) { struct dw_dsi *dsi = encoder_to_dsi(encoder); drm_mode_copy(&dsi->cur_mode, adj_mode); } static int dsi_encoder_atomic_check(struct drm_encoder *encoder, struct drm_crtc_state *crtc_state, struct drm_connector_state *conn_state) { /* do nothing */ return 0; } static const struct drm_encoder_helper_funcs dw_encoder_helper_funcs = { .atomic_check = dsi_encoder_atomic_check, .mode_valid = dsi_encoder_mode_valid, .mode_set = dsi_encoder_mode_set, .enable = dsi_encoder_enable, .disable = dsi_encoder_disable }; static int dw_drm_encoder_init(struct device *dev, struct drm_device *drm_dev, struct drm_encoder *encoder) { int ret; u32 crtc_mask = drm_of_find_possible_crtcs(drm_dev, dev->of_node); if (!crtc_mask) { DRM_ERROR("failed to find crtc mask\n"); return -EINVAL; } encoder->possible_crtcs = crtc_mask; ret = drm_simple_encoder_init(drm_dev, encoder, DRM_MODE_ENCODER_DSI); if (ret) { DRM_ERROR("failed to init dsi encoder\n"); return ret; } drm_encoder_helper_add(encoder, &dw_encoder_helper_funcs); return 0; } static const struct component_ops dsi_ops; static int dsi_host_attach(struct mipi_dsi_host *host, struct mipi_dsi_device *mdsi) { struct dw_dsi *dsi = host_to_dsi(host); struct device *dev = host->dev; int ret; if (mdsi->lanes < 1 || mdsi->lanes > 4) { DRM_ERROR("dsi device params invalid\n"); return -EINVAL; } dsi->lanes = mdsi->lanes; dsi->format = mdsi->format; dsi->mode_flags = mdsi->mode_flags; ret = component_add(dev, &dsi_ops); if (ret) return ret; return 0; } static int dsi_host_detach(struct mipi_dsi_host *host, struct mipi_dsi_device *mdsi) { struct device *dev = host->dev; component_del(dev, &dsi_ops); return 0; } static const struct mipi_dsi_host_ops dsi_host_ops = { .attach = dsi_host_attach, .detach = dsi_host_detach, }; static int dsi_host_init(struct device *dev, struct dw_dsi *dsi) { struct mipi_dsi_host *host = &dsi->host; int ret; host->dev = dev; host->ops = &dsi_host_ops; ret = mipi_dsi_host_register(host); if (ret) { DRM_ERROR("failed to register dsi host\n"); return ret; } return 0; } static int dsi_bridge_init(struct drm_device *dev, struct dw_dsi *dsi) { struct drm_encoder *encoder = &dsi->encoder; struct drm_bridge *bridge; struct device_node *np = dsi->dev->of_node; int ret; /* * Get the endpoint node. In our case, dsi has one output port1 * to which the external HDMI bridge is connected. */ ret = drm_of_find_panel_or_bridge(np, 1, 0, NULL, &bridge); if (ret) return ret; /* associate the bridge to dsi encoder */ return drm_bridge_attach(encoder, bridge, NULL, 0); } static int dsi_bind(struct device *dev, struct device *master, void *data) { struct dsi_data *ddata = dev_get_drvdata(dev); struct dw_dsi *dsi = &ddata->dsi; struct drm_device *drm_dev = data; int ret; ret = dw_drm_encoder_init(dev, drm_dev, &dsi->encoder); if (ret) return ret; ret = dsi_bridge_init(drm_dev, dsi); if (ret) return ret; return 0; } static void dsi_unbind(struct device *dev, struct device *master, void *data) { /* do nothing */ } static const struct component_ops dsi_ops = { .bind = dsi_bind, .unbind = dsi_unbind, }; static int dsi_parse_dt(struct platform_device *pdev, struct dw_dsi *dsi) { struct dsi_hw_ctx *ctx = dsi->ctx; struct resource *res; ctx->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(ctx->pclk)) { DRM_ERROR("failed to get pclk clock\n"); return PTR_ERR(ctx->pclk); } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctx->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(ctx->base)) { DRM_ERROR("failed to remap dsi io region\n"); return PTR_ERR(ctx->base); } return 0; } static int dsi_probe(struct platform_device *pdev) { struct dsi_data *data; struct dw_dsi *dsi; struct dsi_hw_ctx *ctx; int ret; data = devm_kzalloc(&pdev->dev, sizeof(*data), GFP_KERNEL); if (!data) { DRM_ERROR("failed to allocate dsi data.\n"); return -ENOMEM; } dsi = &data->dsi; ctx = &data->ctx; dsi->ctx = ctx; dsi->dev = &pdev->dev; ret = dsi_parse_dt(pdev, dsi); if (ret) return ret; platform_set_drvdata(pdev, data); ret = dsi_host_init(&pdev->dev, dsi); if (ret) return ret; return 0; } static void dsi_remove(struct platform_device *pdev) { struct dsi_data *data = platform_get_drvdata(pdev); struct dw_dsi *dsi = &data->dsi; mipi_dsi_host_unregister(&dsi->host); } static const struct of_device_id dsi_of_match[] = { {.compatible = "hisilicon,hi6220-dsi"}, { } }; MODULE_DEVICE_TABLE(of, dsi_of_match); static struct platform_driver dsi_driver = { .probe = dsi_probe, .remove_new = dsi_remove, .driver = { .name = "dw-dsi", .of_match_table = dsi_of_match, }, }; module_platform_driver(dsi_driver); MODULE_AUTHOR("Xinliang Liu <xinliang.liu@linaro.org>"); MODULE_AUTHOR("Xinliang Liu <z.liuxinliang@hisilicon.com>"); MODULE_AUTHOR("Xinwei Kong <kong.kongxinwei@hisilicon.com>"); MODULE_DESCRIPTION("DesignWare MIPI DSI Host Controller v1.02 driver"); MODULE_LICENSE("GPL v2");