// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2016 Broadcom */ #include <linux/debugfs.h> #include "cipher.h" #include "util.h" /* offset of SPU_OFIFO_CTRL register */ #define SPU_OFIFO_CTRL 0x40 #define SPU_FIFO_WATERMARK 0x1FF /** * spu_sg_at_offset() - Find the scatterlist entry at a given distance from the * start of a scatterlist. * @sg: [in] Start of a scatterlist * @skip: [in] Distance from the start of the scatterlist, in bytes * @sge: [out] Scatterlist entry at skip bytes from start * @sge_offset: [out] Number of bytes from start of sge buffer to get to * requested distance. * * Return: 0 if entry found at requested distance * < 0 otherwise */ int spu_sg_at_offset(struct scatterlist *sg, unsigned int skip, struct scatterlist **sge, unsigned int *sge_offset) { /* byte index from start of sg to the end of the previous entry */ unsigned int index = 0; /* byte index from start of sg to the end of the current entry */ unsigned int next_index; next_index = sg->length; while (next_index <= skip) { sg = sg_next(sg); index = next_index; if (!sg) return -EINVAL; next_index += sg->length; } *sge_offset = skip - index; *sge = sg; return 0; } /* Copy len bytes of sg data, starting at offset skip, to a dest buffer */ void sg_copy_part_to_buf(struct scatterlist *src, u8 *dest, unsigned int len, unsigned int skip) { size_t copied; unsigned int nents = sg_nents(src); copied = sg_pcopy_to_buffer(src, nents, dest, len, skip); if (copied != len) { flow_log("%s copied %u bytes of %u requested. ", __func__, (u32)copied, len); flow_log("sg with %u entries and skip %u\n", nents, skip); } } /* * Copy data into a scatterlist starting at a specified offset in the * scatterlist. Specifically, copy len bytes of data in the buffer src * into the scatterlist dest, starting skip bytes into the scatterlist. */ void sg_copy_part_from_buf(struct scatterlist *dest, u8 *src, unsigned int len, unsigned int skip) { size_t copied; unsigned int nents = sg_nents(dest); copied = sg_pcopy_from_buffer(dest, nents, src, len, skip); if (copied != len) { flow_log("%s copied %u bytes of %u requested. ", __func__, (u32)copied, len); flow_log("sg with %u entries and skip %u\n", nents, skip); } } /** * spu_sg_count() - Determine number of elements in scatterlist to provide a * specified number of bytes. * @sg_list: scatterlist to examine * @skip: index of starting point * @nbytes: consider elements of scatterlist until reaching this number of * bytes * * Return: the number of sg entries contributing to nbytes of data */ int spu_sg_count(struct scatterlist *sg_list, unsigned int skip, int nbytes) { struct scatterlist *sg; int sg_nents = 0; unsigned int offset; if (!sg_list) return 0; if (spu_sg_at_offset(sg_list, skip, &sg, &offset) < 0) return 0; while (sg && (nbytes > 0)) { sg_nents++; nbytes -= (sg->length - offset); offset = 0; sg = sg_next(sg); } return sg_nents; } /** * spu_msg_sg_add() - Copy scatterlist entries from one sg to another, up to a * given length. * @to_sg: scatterlist to copy to * @from_sg: scatterlist to copy from * @from_skip: number of bytes to skip in from_sg. Non-zero when previous * request included part of the buffer in entry in from_sg. * Assumes from_skip < from_sg->length. * @from_nents: number of entries in from_sg * @length: number of bytes to copy. may reach this limit before exhausting * from_sg. * * Copies the entries themselves, not the data in the entries. Assumes to_sg has * enough entries. Does not limit the size of an individual buffer in to_sg. * * to_sg, from_sg, skip are all updated to end of copy * * Return: Number of bytes copied */ u32 spu_msg_sg_add(struct scatterlist **to_sg, struct scatterlist **from_sg, u32 *from_skip, u8 from_nents, u32 length) { struct scatterlist *sg; /* an entry in from_sg */ struct scatterlist *to = *to_sg; struct scatterlist *from = *from_sg; u32 skip = *from_skip; u32 offset; int i; u32 entry_len = 0; u32 frag_len = 0; /* length of entry added to to_sg */ u32 copied = 0; /* number of bytes copied so far */ if (length == 0) return 0; for_each_sg(from, sg, from_nents, i) { /* number of bytes in this from entry not yet used */ entry_len = sg->length - skip; frag_len = min(entry_len, length - copied); offset = sg->offset + skip; if (frag_len) sg_set_page(to++, sg_page(sg), frag_len, offset); copied += frag_len; if (copied == entry_len) { /* used up all of from entry */ skip = 0; /* start at beginning of next entry */ } if (copied == length) break; } *to_sg = to; *from_sg = sg; if (frag_len < entry_len) *from_skip = skip + frag_len; else *from_skip = 0; return copied; } void add_to_ctr(u8 *ctr_pos, unsigned int increment) { __be64 *high_be = (__be64 *)ctr_pos; __be64 *low_be = high_be + 1; u64 orig_low = __be64_to_cpu(*low_be); u64 new_low = orig_low + (u64)increment; *low_be = __cpu_to_be64(new_low); if (new_low < orig_low) /* there was a carry from the low 8 bytes */ *high_be = __cpu_to_be64(__be64_to_cpu(*high_be) + 1); } struct sdesc { struct shash_desc shash; char ctx[]; }; /** * do_shash() - Do a synchronous hash operation in software * @name: The name of the hash algorithm * @result: Buffer where digest is to be written * @data1: First part of data to hash. May be NULL. * @data1_len: Length of data1, in bytes * @data2: Second part of data to hash. May be NULL. * @data2_len: Length of data2, in bytes * @key: Key (if keyed hash) * @key_len: Length of key, in bytes (or 0 if non-keyed hash) * * Note that the crypto API will not select this driver's own transform because * this driver only registers asynchronous algos. * * Return: 0 if hash successfully stored in result * < 0 otherwise */ int do_shash(unsigned char *name, unsigned char *result, const u8 *data1, unsigned int data1_len, const u8 *data2, unsigned int data2_len, const u8 *key, unsigned int key_len) { int rc; unsigned int size; struct crypto_shash *hash; struct sdesc *sdesc; hash = crypto_alloc_shash(name, 0, 0); if (IS_ERR(hash)) { rc = PTR_ERR(hash); pr_err("%s: Crypto %s allocation error %d\n", __func__, name, rc); return rc; } size = sizeof(struct shash_desc) + crypto_shash_descsize(hash); sdesc = kmalloc(size, GFP_KERNEL); if (!sdesc) { rc = -ENOMEM; goto do_shash_err; } sdesc->shash.tfm = hash; if (key_len > 0) { rc = crypto_shash_setkey(hash, key, key_len); if (rc) { pr_err("%s: Could not setkey %s shash\n", __func__, name); goto do_shash_err; } } rc = crypto_shash_init(&sdesc->shash); if (rc) { pr_err("%s: Could not init %s shash\n", __func__, name); goto do_shash_err; } rc = crypto_shash_update(&sdesc->shash, data1, data1_len); if (rc) { pr_err("%s: Could not update1\n", __func__); goto do_shash_err; } if (data2 && data2_len) { rc = crypto_shash_update(&sdesc->shash, data2, data2_len); if (rc) { pr_err("%s: Could not update2\n", __func__); goto do_shash_err; } } rc = crypto_shash_final(&sdesc->shash, result); if (rc) pr_err("%s: Could not generate %s hash\n", __func__, name); do_shash_err: crypto_free_shash(hash); kfree(sdesc); return rc; } #ifdef DEBUG /* Dump len bytes of a scatterlist starting at skip bytes into the sg */ void __dump_sg(struct scatterlist *sg, unsigned int skip, unsigned int len) { u8 dbuf[16]; unsigned int idx = skip; unsigned int num_out = 0; /* number of bytes dumped so far */ unsigned int count; if (packet_debug_logging) { while (num_out < len) { count = (len - num_out > 16) ? 16 : len - num_out; sg_copy_part_to_buf(sg, dbuf, count, idx); num_out += count; print_hex_dump(KERN_ALERT, " sg: ", DUMP_PREFIX_NONE, 4, 1, dbuf, count, false); idx += 16; } } if (debug_logging_sleep) msleep(debug_logging_sleep); } #endif /* Returns the name for a given cipher alg/mode */ char *spu_alg_name(enum spu_cipher_alg alg, enum spu_cipher_mode mode) { switch (alg) { case CIPHER_ALG_RC4: return "rc4"; case CIPHER_ALG_AES: switch (mode) { case CIPHER_MODE_CBC: return "cbc(aes)"; case CIPHER_MODE_ECB: return "ecb(aes)"; case CIPHER_MODE_OFB: return "ofb(aes)"; case CIPHER_MODE_CFB: return "cfb(aes)"; case CIPHER_MODE_CTR: return "ctr(aes)"; case CIPHER_MODE_XTS: return "xts(aes)"; case CIPHER_MODE_GCM: return "gcm(aes)"; default: return "aes"; } break; case CIPHER_ALG_DES: switch (mode) { case CIPHER_MODE_CBC: return "cbc(des)"; case CIPHER_MODE_ECB: return "ecb(des)"; case CIPHER_MODE_CTR: return "ctr(des)"; default: return "des"; } break; case CIPHER_ALG_3DES: switch (mode) { case CIPHER_MODE_CBC: return "cbc(des3_ede)"; case CIPHER_MODE_ECB: return "ecb(des3_ede)"; case CIPHER_MODE_CTR: return "ctr(des3_ede)"; default: return "3des"; } break; default: return "other"; } } static ssize_t spu_debugfs_read(struct file *filp, char __user *ubuf, size_t count, loff_t *offp) { struct bcm_device_private *ipriv; char *buf; ssize_t ret, out_offset, out_count; int i; u32 fifo_len; u32 spu_ofifo_ctrl; u32 alg; u32 mode; u32 op_cnt; out_count = 2048; buf = kmalloc(out_count, GFP_KERNEL); if (!buf) return -ENOMEM; ipriv = filp->private_data; out_offset = 0; out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Number of SPUs.........%u\n", ipriv->spu.num_spu); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Current sessions.......%u\n", atomic_read(&ipriv->session_count)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Session count..........%u\n", atomic_read(&ipriv->stream_count)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Cipher setkey..........%u\n", atomic_read(&ipriv->setkey_cnt[SPU_OP_CIPHER])); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Cipher Ops.............%u\n", atomic_read(&ipriv->op_counts[SPU_OP_CIPHER])); for (alg = 0; alg < CIPHER_ALG_LAST; alg++) { for (mode = 0; mode < CIPHER_MODE_LAST; mode++) { op_cnt = atomic_read(&ipriv->cipher_cnt[alg][mode]); if (op_cnt) { out_offset += scnprintf(buf + out_offset, out_count - out_offset, " %-13s%11u\n", spu_alg_name(alg, mode), op_cnt); } } } out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Hash Ops...............%u\n", atomic_read(&ipriv->op_counts[SPU_OP_HASH])); for (alg = 0; alg < HASH_ALG_LAST; alg++) { op_cnt = atomic_read(&ipriv->hash_cnt[alg]); if (op_cnt) { out_offset += scnprintf(buf + out_offset, out_count - out_offset, " %-13s%11u\n", hash_alg_name[alg], op_cnt); } } out_offset += scnprintf(buf + out_offset, out_count - out_offset, "HMAC setkey............%u\n", atomic_read(&ipriv->setkey_cnt[SPU_OP_HMAC])); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "HMAC Ops...............%u\n", atomic_read(&ipriv->op_counts[SPU_OP_HMAC])); for (alg = 0; alg < HASH_ALG_LAST; alg++) { op_cnt = atomic_read(&ipriv->hmac_cnt[alg]); if (op_cnt) { out_offset += scnprintf(buf + out_offset, out_count - out_offset, " %-13s%11u\n", hash_alg_name[alg], op_cnt); } } out_offset += scnprintf(buf + out_offset, out_count - out_offset, "AEAD setkey............%u\n", atomic_read(&ipriv->setkey_cnt[SPU_OP_AEAD])); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "AEAD Ops...............%u\n", atomic_read(&ipriv->op_counts[SPU_OP_AEAD])); for (alg = 0; alg < AEAD_TYPE_LAST; alg++) { op_cnt = atomic_read(&ipriv->aead_cnt[alg]); if (op_cnt) { out_offset += scnprintf(buf + out_offset, out_count - out_offset, " %-13s%11u\n", aead_alg_name[alg], op_cnt); } } out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Bytes of req data......%llu\n", (u64)atomic64_read(&ipriv->bytes_out)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Bytes of resp data.....%llu\n", (u64)atomic64_read(&ipriv->bytes_in)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Mailbox full...........%u\n", atomic_read(&ipriv->mb_no_spc)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Mailbox send failures..%u\n", atomic_read(&ipriv->mb_send_fail)); out_offset += scnprintf(buf + out_offset, out_count - out_offset, "Check ICV errors.......%u\n", atomic_read(&ipriv->bad_icv)); if (ipriv->spu.spu_type == SPU_TYPE_SPUM) for (i = 0; i < ipriv->spu.num_spu; i++) { spu_ofifo_ctrl = ioread32(ipriv->spu.reg_vbase[i] + SPU_OFIFO_CTRL); fifo_len = spu_ofifo_ctrl & SPU_FIFO_WATERMARK; out_offset += scnprintf(buf + out_offset, out_count - out_offset, "SPU %d output FIFO high water.....%u\n", i, fifo_len); } if (out_offset > out_count) out_offset = out_count; ret = simple_read_from_buffer(ubuf, count, offp, buf, out_offset); kfree(buf); return ret; } static const struct file_operations spu_debugfs_stats = { .owner = THIS_MODULE, .open = simple_open, .read = spu_debugfs_read, }; /* * Create the debug FS directories. If the top-level directory has not yet * been created, create it now. Create a stats file in this directory for * a SPU. */ void spu_setup_debugfs(void) { if (!debugfs_initialized()) return; if (!iproc_priv.debugfs_dir) iproc_priv.debugfs_dir = debugfs_create_dir(KBUILD_MODNAME, NULL); if (!iproc_priv.debugfs_stats) /* Create file with permissions S_IRUSR */ debugfs_create_file("stats", 0400, iproc_priv.debugfs_dir, &iproc_priv, &spu_debugfs_stats); } void spu_free_debugfs(void) { debugfs_remove_recursive(iproc_priv.debugfs_dir); iproc_priv.debugfs_dir = NULL; } /** * format_value_ccm() - Format a value into a buffer, using a specified number * of bytes (i.e. maybe writing value X into a 4 byte * buffer, or maybe into a 12 byte buffer), as per the * SPU CCM spec. * * @val: value to write (up to max of unsigned int) * @buf: (pointer to) buffer to write the value * @len: number of bytes to use (0 to 255) * */ void format_value_ccm(unsigned int val, u8 *buf, u8 len) { int i; /* First clear full output buffer */ memset(buf, 0, len); /* Then, starting from right side, fill in with data */ for (i = 0; i < len; i++) { buf[len - i - 1] = (val >> (8 * i)) & 0xff; if (i >= 3) break; /* Only handle up to 32 bits of 'val' */ } }