// SPDX-License-Identifier: GPL-2.0-only /* * L220/L310 cache controller support * * Copyright (C) 2016 ARM Limited */ #include <linux/errno.h> #include <linux/hrtimer.h> #include <linux/io.h> #include <linux/list.h> #include <linux/perf_event.h> #include <linux/printk.h> #include <linux/slab.h> #include <linux/types.h> #include <asm/hardware/cache-l2x0.h> #define PMU_NR_COUNTERS 2 static void __iomem *l2x0_base; static struct pmu *l2x0_pmu; static cpumask_t pmu_cpu; static const char *l2x0_name; static ktime_t l2x0_pmu_poll_period; static struct hrtimer l2x0_pmu_hrtimer; /* * The L220/PL310 PMU has two equivalent counters, Counter1 and Counter0. * Registers controlling these are laid out in pairs, in descending order, i.e. * the register for Counter1 comes first, followed by the register for * Counter0. * We ensure that idx 0 -> Counter0, and idx1 -> Counter1. */ static struct perf_event *events[PMU_NR_COUNTERS]; /* Find an unused counter */ static int l2x0_pmu_find_idx(void) { int i; for (i = 0; i < PMU_NR_COUNTERS; i++) { if (!events[i]) return i; } return -1; } /* How many counters are allocated? */ static int l2x0_pmu_num_active_counters(void) { int i, cnt = 0; for (i = 0; i < PMU_NR_COUNTERS; i++) { if (events[i]) cnt++; } return cnt; } static void l2x0_pmu_counter_config_write(int idx, u32 val) { writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT0_CFG - 4 * idx); } static u32 l2x0_pmu_counter_read(int idx) { return readl_relaxed(l2x0_base + L2X0_EVENT_CNT0_VAL - 4 * idx); } static void l2x0_pmu_counter_write(int idx, u32 val) { writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT0_VAL - 4 * idx); } static void __l2x0_pmu_enable(void) { u32 val = readl_relaxed(l2x0_base + L2X0_EVENT_CNT_CTRL); val |= L2X0_EVENT_CNT_CTRL_ENABLE; writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT_CTRL); } static void __l2x0_pmu_disable(void) { u32 val = readl_relaxed(l2x0_base + L2X0_EVENT_CNT_CTRL); val &= ~L2X0_EVENT_CNT_CTRL_ENABLE; writel_relaxed(val, l2x0_base + L2X0_EVENT_CNT_CTRL); } static void l2x0_pmu_enable(struct pmu *pmu) { if (l2x0_pmu_num_active_counters() == 0) return; __l2x0_pmu_enable(); } static void l2x0_pmu_disable(struct pmu *pmu) { if (l2x0_pmu_num_active_counters() == 0) return; __l2x0_pmu_disable(); } static void warn_if_saturated(u32 count) { if (count != 0xffffffff) return; pr_warn_ratelimited("L2X0 counter saturated. Poll period too long\n"); } static void l2x0_pmu_event_read(struct perf_event *event) { struct hw_perf_event *hw = &event->hw; u64 prev_count, new_count, mask; do { prev_count = local64_read(&hw->prev_count); new_count = l2x0_pmu_counter_read(hw->idx); } while (local64_xchg(&hw->prev_count, new_count) != prev_count); mask = GENMASK_ULL(31, 0); local64_add((new_count - prev_count) & mask, &event->count); warn_if_saturated(new_count); } static void l2x0_pmu_event_configure(struct perf_event *event) { struct hw_perf_event *hw = &event->hw; /* * The L2X0 counters saturate at 0xffffffff rather than wrapping, so we * will *always* lose some number of events when a counter saturates, * and have no way of detecting how many were lost. * * To minimize the impact of this, we try to maximize the period by * always starting counters at zero. To ensure that group ratios are * representative, we poll periodically to avoid counters saturating. * See l2x0_pmu_poll(). */ local64_set(&hw->prev_count, 0); l2x0_pmu_counter_write(hw->idx, 0); } static enum hrtimer_restart l2x0_pmu_poll(struct hrtimer *hrtimer) { unsigned long flags; int i; local_irq_save(flags); __l2x0_pmu_disable(); for (i = 0; i < PMU_NR_COUNTERS; i++) { struct perf_event *event = events[i]; if (!event) continue; l2x0_pmu_event_read(event); l2x0_pmu_event_configure(event); } __l2x0_pmu_enable(); local_irq_restore(flags); hrtimer_forward_now(hrtimer, l2x0_pmu_poll_period); return HRTIMER_RESTART; } static void __l2x0_pmu_event_enable(int idx, u32 event) { u32 val; val = event << L2X0_EVENT_CNT_CFG_SRC_SHIFT; val |= L2X0_EVENT_CNT_CFG_INT_DISABLED; l2x0_pmu_counter_config_write(idx, val); } static void l2x0_pmu_event_start(struct perf_event *event, int flags) { struct hw_perf_event *hw = &event->hw; if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) return; if (flags & PERF_EF_RELOAD) { WARN_ON_ONCE(!(hw->state & PERF_HES_UPTODATE)); l2x0_pmu_event_configure(event); } hw->state = 0; __l2x0_pmu_event_enable(hw->idx, hw->config_base); } static void __l2x0_pmu_event_disable(int idx) { u32 val; val = L2X0_EVENT_CNT_CFG_SRC_DISABLED << L2X0_EVENT_CNT_CFG_SRC_SHIFT; val |= L2X0_EVENT_CNT_CFG_INT_DISABLED; l2x0_pmu_counter_config_write(idx, val); } static void l2x0_pmu_event_stop(struct perf_event *event, int flags) { struct hw_perf_event *hw = &event->hw; if (WARN_ON_ONCE(event->hw.state & PERF_HES_STOPPED)) return; __l2x0_pmu_event_disable(hw->idx); hw->state |= PERF_HES_STOPPED; if (flags & PERF_EF_UPDATE) { l2x0_pmu_event_read(event); hw->state |= PERF_HES_UPTODATE; } } static int l2x0_pmu_event_add(struct perf_event *event, int flags) { struct hw_perf_event *hw = &event->hw; int idx = l2x0_pmu_find_idx(); if (idx == -1) return -EAGAIN; /* * Pin the timer, so that the overflows are handled by the chosen * event->cpu (this is the same one as presented in "cpumask" * attribute). */ if (l2x0_pmu_num_active_counters() == 0) hrtimer_start(&l2x0_pmu_hrtimer, l2x0_pmu_poll_period, HRTIMER_MODE_REL_PINNED); events[idx] = event; hw->idx = idx; l2x0_pmu_event_configure(event); hw->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; if (flags & PERF_EF_START) l2x0_pmu_event_start(event, 0); return 0; } static void l2x0_pmu_event_del(struct perf_event *event, int flags) { struct hw_perf_event *hw = &event->hw; l2x0_pmu_event_stop(event, PERF_EF_UPDATE); events[hw->idx] = NULL; hw->idx = -1; if (l2x0_pmu_num_active_counters() == 0) hrtimer_cancel(&l2x0_pmu_hrtimer); } static bool l2x0_pmu_group_is_valid(struct perf_event *event) { struct pmu *pmu = event->pmu; struct perf_event *leader = event->group_leader; struct perf_event *sibling; int num_hw = 0; if (leader->pmu == pmu) num_hw++; else if (!is_software_event(leader)) return false; for_each_sibling_event(sibling, leader) { if (sibling->pmu == pmu) num_hw++; else if (!is_software_event(sibling)) return false; } return num_hw <= PMU_NR_COUNTERS; } static int l2x0_pmu_event_init(struct perf_event *event) { struct hw_perf_event *hw = &event->hw; if (event->attr.type != l2x0_pmu->type) return -ENOENT; if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK) return -EINVAL; if (event->cpu < 0) return -EINVAL; if (event->attr.config & ~L2X0_EVENT_CNT_CFG_SRC_MASK) return -EINVAL; hw->config_base = event->attr.config; if (!l2x0_pmu_group_is_valid(event)) return -EINVAL; event->cpu = cpumask_first(&pmu_cpu); return 0; } struct l2x0_event_attribute { struct device_attribute attr; unsigned int config; bool pl310_only; }; #define L2X0_EVENT_ATTR(_name, _config, _pl310_only) \ (&((struct l2x0_event_attribute[]) {{ \ .attr = __ATTR(_name, S_IRUGO, l2x0_pmu_event_show, NULL), \ .config = _config, \ .pl310_only = _pl310_only, \ }})[0].attr.attr) #define L220_PLUS_EVENT_ATTR(_name, _config) \ L2X0_EVENT_ATTR(_name, _config, false) #define PL310_EVENT_ATTR(_name, _config) \ L2X0_EVENT_ATTR(_name, _config, true) static ssize_t l2x0_pmu_event_show(struct device *dev, struct device_attribute *attr, char *buf) { struct l2x0_event_attribute *lattr; lattr = container_of(attr, typeof(*lattr), attr); return snprintf(buf, PAGE_SIZE, "config=0x%x\n", lattr->config); } static umode_t l2x0_pmu_event_attr_is_visible(struct kobject *kobj, struct attribute *attr, int unused) { struct device *dev = kobj_to_dev(kobj); struct pmu *pmu = dev_get_drvdata(dev); struct l2x0_event_attribute *lattr; lattr = container_of(attr, typeof(*lattr), attr.attr); if (!lattr->pl310_only || strcmp("l2c_310", pmu->name) == 0) return attr->mode; return 0; } static struct attribute *l2x0_pmu_event_attrs[] = { L220_PLUS_EVENT_ATTR(co, 0x1), L220_PLUS_EVENT_ATTR(drhit, 0x2), L220_PLUS_EVENT_ATTR(drreq, 0x3), L220_PLUS_EVENT_ATTR(dwhit, 0x4), L220_PLUS_EVENT_ATTR(dwreq, 0x5), L220_PLUS_EVENT_ATTR(dwtreq, 0x6), L220_PLUS_EVENT_ATTR(irhit, 0x7), L220_PLUS_EVENT_ATTR(irreq, 0x8), L220_PLUS_EVENT_ATTR(wa, 0x9), PL310_EVENT_ATTR(ipfalloc, 0xa), PL310_EVENT_ATTR(epfhit, 0xb), PL310_EVENT_ATTR(epfalloc, 0xc), PL310_EVENT_ATTR(srrcvd, 0xd), PL310_EVENT_ATTR(srconf, 0xe), PL310_EVENT_ATTR(epfrcvd, 0xf), NULL }; static struct attribute_group l2x0_pmu_event_attrs_group = { .name = "events", .attrs = l2x0_pmu_event_attrs, .is_visible = l2x0_pmu_event_attr_is_visible, }; static ssize_t l2x0_pmu_cpumask_show(struct device *dev, struct device_attribute *attr, char *buf) { return cpumap_print_to_pagebuf(true, buf, &pmu_cpu); } static struct device_attribute l2x0_pmu_cpumask_attr = __ATTR(cpumask, S_IRUGO, l2x0_pmu_cpumask_show, NULL); static struct attribute *l2x0_pmu_cpumask_attrs[] = { &l2x0_pmu_cpumask_attr.attr, NULL, }; static struct attribute_group l2x0_pmu_cpumask_attr_group = { .attrs = l2x0_pmu_cpumask_attrs, }; static const struct attribute_group *l2x0_pmu_attr_groups[] = { &l2x0_pmu_event_attrs_group, &l2x0_pmu_cpumask_attr_group, NULL, }; static void l2x0_pmu_reset(void) { int i; __l2x0_pmu_disable(); for (i = 0; i < PMU_NR_COUNTERS; i++) __l2x0_pmu_event_disable(i); } static int l2x0_pmu_offline_cpu(unsigned int cpu) { unsigned int target; if (!cpumask_test_and_clear_cpu(cpu, &pmu_cpu)) return 0; target = cpumask_any_but(cpu_online_mask, cpu); if (target >= nr_cpu_ids) return 0; perf_pmu_migrate_context(l2x0_pmu, cpu, target); cpumask_set_cpu(target, &pmu_cpu); return 0; } void l2x0_pmu_suspend(void) { int i; if (!l2x0_pmu) return; l2x0_pmu_disable(l2x0_pmu); for (i = 0; i < PMU_NR_COUNTERS; i++) { if (events[i]) l2x0_pmu_event_stop(events[i], PERF_EF_UPDATE); } } void l2x0_pmu_resume(void) { int i; if (!l2x0_pmu) return; l2x0_pmu_reset(); for (i = 0; i < PMU_NR_COUNTERS; i++) { if (events[i]) l2x0_pmu_event_start(events[i], PERF_EF_RELOAD); } l2x0_pmu_enable(l2x0_pmu); } void __init l2x0_pmu_register(void __iomem *base, u32 part) { /* * Determine whether we support the PMU, and choose the name for sysfs. * This is also used by l2x0_pmu_event_attr_is_visible to determine * which events to display, as the PL310 PMU supports a superset of * L220 events. * * The L210 PMU has a different programmer's interface, and is not * supported by this driver. * * We must defer registering the PMU until the perf subsystem is up and * running, so just stash the name and base, and leave that to another * initcall. */ switch (part & L2X0_CACHE_ID_PART_MASK) { case L2X0_CACHE_ID_PART_L220: l2x0_name = "l2c_220"; break; case L2X0_CACHE_ID_PART_L310: l2x0_name = "l2c_310"; break; default: return; } l2x0_base = base; } static __init int l2x0_pmu_init(void) { int ret; if (!l2x0_base) return 0; l2x0_pmu = kzalloc(sizeof(*l2x0_pmu), GFP_KERNEL); if (!l2x0_pmu) { pr_warn("Unable to allocate L2x0 PMU\n"); return -ENOMEM; } *l2x0_pmu = (struct pmu) { .task_ctx_nr = perf_invalid_context, .pmu_enable = l2x0_pmu_enable, .pmu_disable = l2x0_pmu_disable, .read = l2x0_pmu_event_read, .start = l2x0_pmu_event_start, .stop = l2x0_pmu_event_stop, .add = l2x0_pmu_event_add, .del = l2x0_pmu_event_del, .event_init = l2x0_pmu_event_init, .attr_groups = l2x0_pmu_attr_groups, .capabilities = PERF_PMU_CAP_NO_EXCLUDE, }; l2x0_pmu_reset(); /* * We always use a hrtimer rather than an interrupt. * See comments in l2x0_pmu_event_configure and l2x0_pmu_poll. * * Polling once a second allows the counters to fill up to 1/128th on a * quad-core test chip with cores clocked at 400MHz. Hopefully this * leaves sufficient headroom to avoid overflow on production silicon * at higher frequencies. */ l2x0_pmu_poll_period = ms_to_ktime(1000); hrtimer_init(&l2x0_pmu_hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); l2x0_pmu_hrtimer.function = l2x0_pmu_poll; cpumask_set_cpu(0, &pmu_cpu); ret = cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_L2X0_ONLINE, "perf/arm/l2x0:online", NULL, l2x0_pmu_offline_cpu); if (ret) goto out_pmu; ret = perf_pmu_register(l2x0_pmu, l2x0_name, -1); if (ret) goto out_cpuhp; return 0; out_cpuhp: cpuhp_remove_state_nocalls(CPUHP_AP_PERF_ARM_L2X0_ONLINE); out_pmu: kfree(l2x0_pmu); l2x0_pmu = NULL; return ret; } device_initcall(l2x0_pmu_init);