// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/ia64/kernel/irq_ia64.c * * Copyright (C) 1998-2001 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * David Mosberger-Tang <davidm@hpl.hp.com> * * 6/10/99: Updated to bring in sync with x86 version to facilitate * support for SMP and different interrupt controllers. * * 09/15/00 Goutham Rao <goutham.rao@intel.com> Implemented pci_irq_to_vector * PCI to vector allocation routine. * 04/14/2004 Ashok Raj <ashok.raj@intel.com> * Added CPU Hotplug handling for IPF. */ #include <linux/module.h> #include <linux/pgtable.h> #include <linux/jiffies.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/kernel_stat.h> #include <linux/ptrace.h> #include <linux/signal.h> #include <linux/smp.h> #include <linux/threads.h> #include <linux/bitops.h> #include <linux/irq.h> #include <linux/ratelimit.h> #include <linux/acpi.h> #include <linux/sched.h> #include <asm/delay.h> #include <asm/intrinsics.h> #include <asm/io.h> #include <asm/hw_irq.h> #include <asm/tlbflush.h> #define IRQ_DEBUG 0 #define IRQ_VECTOR_UNASSIGNED (0) #define IRQ_UNUSED (0) #define IRQ_USED (1) #define IRQ_RSVD (2) int ia64_first_device_vector = IA64_DEF_FIRST_DEVICE_VECTOR; int ia64_last_device_vector = IA64_DEF_LAST_DEVICE_VECTOR; /* default base addr of IPI table */ void __iomem *ipi_base_addr = ((void __iomem *) (__IA64_UNCACHED_OFFSET | IA64_IPI_DEFAULT_BASE_ADDR)); static cpumask_t vector_allocation_domain(int cpu); /* * Legacy IRQ to IA-64 vector translation table. */ __u8 isa_irq_to_vector_map[16] = { /* 8259 IRQ translation, first 16 entries */ 0x2f, 0x20, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0x21 }; EXPORT_SYMBOL(isa_irq_to_vector_map); DEFINE_SPINLOCK(vector_lock); struct irq_cfg irq_cfg[NR_IRQS] __read_mostly = { [0 ... NR_IRQS - 1] = { .vector = IRQ_VECTOR_UNASSIGNED, .domain = CPU_MASK_NONE } }; DEFINE_PER_CPU(int[IA64_NUM_VECTORS], vector_irq) = { [0 ... IA64_NUM_VECTORS - 1] = -1 }; static cpumask_t vector_table[IA64_NUM_VECTORS] = { [0 ... IA64_NUM_VECTORS - 1] = CPU_MASK_NONE }; static int irq_status[NR_IRQS] = { [0 ... NR_IRQS -1] = IRQ_UNUSED }; static inline int find_unassigned_irq(void) { int irq; for (irq = IA64_FIRST_DEVICE_VECTOR; irq < NR_IRQS; irq++) if (irq_status[irq] == IRQ_UNUSED) return irq; return -ENOSPC; } static inline int find_unassigned_vector(cpumask_t domain) { cpumask_t mask; int pos, vector; cpumask_and(&mask, &domain, cpu_online_mask); if (cpumask_empty(&mask)) return -EINVAL; for (pos = 0; pos < IA64_NUM_DEVICE_VECTORS; pos++) { vector = IA64_FIRST_DEVICE_VECTOR + pos; cpumask_and(&mask, &domain, &vector_table[vector]); if (!cpumask_empty(&mask)) continue; return vector; } return -ENOSPC; } static int __bind_irq_vector(int irq, int vector, cpumask_t domain) { cpumask_t mask; int cpu; struct irq_cfg *cfg = &irq_cfg[irq]; BUG_ON((unsigned)irq >= NR_IRQS); BUG_ON((unsigned)vector >= IA64_NUM_VECTORS); cpumask_and(&mask, &domain, cpu_online_mask); if (cpumask_empty(&mask)) return -EINVAL; if ((cfg->vector == vector) && cpumask_equal(&cfg->domain, &domain)) return 0; if (cfg->vector != IRQ_VECTOR_UNASSIGNED) return -EBUSY; for_each_cpu(cpu, &mask) per_cpu(vector_irq, cpu)[vector] = irq; cfg->vector = vector; cfg->domain = domain; irq_status[irq] = IRQ_USED; cpumask_or(&vector_table[vector], &vector_table[vector], &domain); return 0; } int bind_irq_vector(int irq, int vector, cpumask_t domain) { unsigned long flags; int ret; spin_lock_irqsave(&vector_lock, flags); ret = __bind_irq_vector(irq, vector, domain); spin_unlock_irqrestore(&vector_lock, flags); return ret; } static void __clear_irq_vector(int irq) { int vector, cpu; cpumask_t domain; struct irq_cfg *cfg = &irq_cfg[irq]; BUG_ON((unsigned)irq >= NR_IRQS); BUG_ON(cfg->vector == IRQ_VECTOR_UNASSIGNED); vector = cfg->vector; domain = cfg->domain; for_each_cpu_and(cpu, &cfg->domain, cpu_online_mask) per_cpu(vector_irq, cpu)[vector] = -1; cfg->vector = IRQ_VECTOR_UNASSIGNED; cfg->domain = CPU_MASK_NONE; irq_status[irq] = IRQ_UNUSED; cpumask_andnot(&vector_table[vector], &vector_table[vector], &domain); } static void clear_irq_vector(int irq) { unsigned long flags; spin_lock_irqsave(&vector_lock, flags); __clear_irq_vector(irq); spin_unlock_irqrestore(&vector_lock, flags); } int ia64_native_assign_irq_vector (int irq) { unsigned long flags; int vector, cpu; cpumask_t domain = CPU_MASK_NONE; vector = -ENOSPC; spin_lock_irqsave(&vector_lock, flags); for_each_online_cpu(cpu) { domain = vector_allocation_domain(cpu); vector = find_unassigned_vector(domain); if (vector >= 0) break; } if (vector < 0) goto out; if (irq == AUTO_ASSIGN) irq = vector; BUG_ON(__bind_irq_vector(irq, vector, domain)); out: spin_unlock_irqrestore(&vector_lock, flags); return vector; } void ia64_native_free_irq_vector (int vector) { if (vector < IA64_FIRST_DEVICE_VECTOR || vector > IA64_LAST_DEVICE_VECTOR) return; clear_irq_vector(vector); } int reserve_irq_vector (int vector) { if (vector < IA64_FIRST_DEVICE_VECTOR || vector > IA64_LAST_DEVICE_VECTOR) return -EINVAL; return !!bind_irq_vector(vector, vector, CPU_MASK_ALL); } /* * Initialize vector_irq on a new cpu. This function must be called * with vector_lock held. */ void __setup_vector_irq(int cpu) { int irq, vector; /* Clear vector_irq */ for (vector = 0; vector < IA64_NUM_VECTORS; ++vector) per_cpu(vector_irq, cpu)[vector] = -1; /* Mark the inuse vectors */ for (irq = 0; irq < NR_IRQS; ++irq) { if (!cpumask_test_cpu(cpu, &irq_cfg[irq].domain)) continue; vector = irq_to_vector(irq); per_cpu(vector_irq, cpu)[vector] = irq; } } #ifdef CONFIG_SMP static enum vector_domain_type { VECTOR_DOMAIN_NONE, VECTOR_DOMAIN_PERCPU } vector_domain_type = VECTOR_DOMAIN_NONE; static cpumask_t vector_allocation_domain(int cpu) { if (vector_domain_type == VECTOR_DOMAIN_PERCPU) return *cpumask_of(cpu); return CPU_MASK_ALL; } static int __irq_prepare_move(int irq, int cpu) { struct irq_cfg *cfg = &irq_cfg[irq]; int vector; cpumask_t domain; if (cfg->move_in_progress || cfg->move_cleanup_count) return -EBUSY; if (cfg->vector == IRQ_VECTOR_UNASSIGNED || !cpu_online(cpu)) return -EINVAL; if (cpumask_test_cpu(cpu, &cfg->domain)) return 0; domain = vector_allocation_domain(cpu); vector = find_unassigned_vector(domain); if (vector < 0) return -ENOSPC; cfg->move_in_progress = 1; cfg->old_domain = cfg->domain; cfg->vector = IRQ_VECTOR_UNASSIGNED; cfg->domain = CPU_MASK_NONE; BUG_ON(__bind_irq_vector(irq, vector, domain)); return 0; } int irq_prepare_move(int irq, int cpu) { unsigned long flags; int ret; spin_lock_irqsave(&vector_lock, flags); ret = __irq_prepare_move(irq, cpu); spin_unlock_irqrestore(&vector_lock, flags); return ret; } void irq_complete_move(unsigned irq) { struct irq_cfg *cfg = &irq_cfg[irq]; cpumask_t cleanup_mask; int i; if (likely(!cfg->move_in_progress)) return; if (unlikely(cpumask_test_cpu(smp_processor_id(), &cfg->old_domain))) return; cpumask_and(&cleanup_mask, &cfg->old_domain, cpu_online_mask); cfg->move_cleanup_count = cpumask_weight(&cleanup_mask); for_each_cpu(i, &cleanup_mask) ia64_send_ipi(i, IA64_IRQ_MOVE_VECTOR, IA64_IPI_DM_INT, 0); cfg->move_in_progress = 0; } static irqreturn_t smp_irq_move_cleanup_interrupt(int irq, void *dev_id) { int me = smp_processor_id(); ia64_vector vector; unsigned long flags; for (vector = IA64_FIRST_DEVICE_VECTOR; vector < IA64_LAST_DEVICE_VECTOR; vector++) { int irq; struct irq_desc *desc; struct irq_cfg *cfg; irq = __this_cpu_read(vector_irq[vector]); if (irq < 0) continue; desc = irq_to_desc(irq); cfg = irq_cfg + irq; raw_spin_lock(&desc->lock); if (!cfg->move_cleanup_count) goto unlock; if (!cpumask_test_cpu(me, &cfg->old_domain)) goto unlock; spin_lock_irqsave(&vector_lock, flags); __this_cpu_write(vector_irq[vector], -1); cpumask_clear_cpu(me, &vector_table[vector]); spin_unlock_irqrestore(&vector_lock, flags); cfg->move_cleanup_count--; unlock: raw_spin_unlock(&desc->lock); } return IRQ_HANDLED; } static int __init parse_vector_domain(char *arg) { if (!arg) return -EINVAL; if (!strcmp(arg, "percpu")) { vector_domain_type = VECTOR_DOMAIN_PERCPU; no_int_routing = 1; } return 0; } early_param("vector", parse_vector_domain); #else static cpumask_t vector_allocation_domain(int cpu) { return CPU_MASK_ALL; } #endif void destroy_and_reserve_irq(unsigned int irq) { unsigned long flags; irq_init_desc(irq); spin_lock_irqsave(&vector_lock, flags); __clear_irq_vector(irq); irq_status[irq] = IRQ_RSVD; spin_unlock_irqrestore(&vector_lock, flags); } /* * Dynamic irq allocate and deallocation for MSI */ int create_irq(void) { unsigned long flags; int irq, vector, cpu; cpumask_t domain = CPU_MASK_NONE; irq = vector = -ENOSPC; spin_lock_irqsave(&vector_lock, flags); for_each_online_cpu(cpu) { domain = vector_allocation_domain(cpu); vector = find_unassigned_vector(domain); if (vector >= 0) break; } if (vector < 0) goto out; irq = find_unassigned_irq(); if (irq < 0) goto out; BUG_ON(__bind_irq_vector(irq, vector, domain)); out: spin_unlock_irqrestore(&vector_lock, flags); if (irq >= 0) irq_init_desc(irq); return irq; } void destroy_irq(unsigned int irq) { irq_init_desc(irq); clear_irq_vector(irq); } #ifdef CONFIG_SMP # define IS_RESCHEDULE(vec) (vec == IA64_IPI_RESCHEDULE) # define IS_LOCAL_TLB_FLUSH(vec) (vec == IA64_IPI_LOCAL_TLB_FLUSH) #else # define IS_RESCHEDULE(vec) (0) # define IS_LOCAL_TLB_FLUSH(vec) (0) #endif /* * That's where the IVT branches when we get an external * interrupt. This branches to the correct hardware IRQ handler via * function ptr. */ void ia64_handle_irq (ia64_vector vector, struct pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs(regs); unsigned long saved_tpr; #if IRQ_DEBUG { unsigned long bsp, sp; /* * Note: if the interrupt happened while executing in * the context switch routine (ia64_switch_to), we may * get a spurious stack overflow here. This is * because the register and the memory stack are not * switched atomically. */ bsp = ia64_getreg(_IA64_REG_AR_BSP); sp = ia64_getreg(_IA64_REG_SP); if ((sp - bsp) < 1024) { static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5); if (__ratelimit(&ratelimit)) { printk("ia64_handle_irq: DANGER: less than " "1KB of free stack space!!\n" "(bsp=0x%lx, sp=%lx)\n", bsp, sp); } } } #endif /* IRQ_DEBUG */ /* * Always set TPR to limit maximum interrupt nesting depth to * 16 (without this, it would be ~240, which could easily lead * to kernel stack overflows). */ irq_enter(); saved_tpr = ia64_getreg(_IA64_REG_CR_TPR); ia64_srlz_d(); while (vector != IA64_SPURIOUS_INT_VECTOR) { int irq = local_vector_to_irq(vector); if (unlikely(IS_LOCAL_TLB_FLUSH(vector))) { smp_local_flush_tlb(); kstat_incr_irq_this_cpu(irq); } else if (unlikely(IS_RESCHEDULE(vector))) { scheduler_ipi(); kstat_incr_irq_this_cpu(irq); } else { ia64_setreg(_IA64_REG_CR_TPR, vector); ia64_srlz_d(); if (unlikely(irq < 0)) { printk(KERN_ERR "%s: Unexpected interrupt " "vector %d on CPU %d is not mapped " "to any IRQ!\n", __func__, vector, smp_processor_id()); } else generic_handle_irq(irq); /* * Disable interrupts and send EOI: */ local_irq_disable(); ia64_setreg(_IA64_REG_CR_TPR, saved_tpr); } ia64_eoi(); vector = ia64_get_ivr(); } /* * This must be done *after* the ia64_eoi(). For example, the keyboard softirq * handler needs to be able to wait for further keyboard interrupts, which can't * come through until ia64_eoi() has been done. */ irq_exit(); set_irq_regs(old_regs); } #ifdef CONFIG_HOTPLUG_CPU /* * This function emulates a interrupt processing when a cpu is about to be * brought down. */ void ia64_process_pending_intr(void) { ia64_vector vector; unsigned long saved_tpr; extern unsigned int vectors_in_migration[NR_IRQS]; vector = ia64_get_ivr(); irq_enter(); saved_tpr = ia64_getreg(_IA64_REG_CR_TPR); ia64_srlz_d(); /* * Perform normal interrupt style processing */ while (vector != IA64_SPURIOUS_INT_VECTOR) { int irq = local_vector_to_irq(vector); if (unlikely(IS_LOCAL_TLB_FLUSH(vector))) { smp_local_flush_tlb(); kstat_incr_irq_this_cpu(irq); } else if (unlikely(IS_RESCHEDULE(vector))) { kstat_incr_irq_this_cpu(irq); } else { struct pt_regs *old_regs = set_irq_regs(NULL); ia64_setreg(_IA64_REG_CR_TPR, vector); ia64_srlz_d(); /* * Now try calling normal ia64_handle_irq as it would have got called * from a real intr handler. Try passing null for pt_regs, hopefully * it will work. I hope it works!. * Probably could shared code. */ if (unlikely(irq < 0)) { printk(KERN_ERR "%s: Unexpected interrupt " "vector %d on CPU %d not being mapped " "to any IRQ!!\n", __func__, vector, smp_processor_id()); } else { vectors_in_migration[irq]=0; generic_handle_irq(irq); } set_irq_regs(old_regs); /* * Disable interrupts and send EOI */ local_irq_disable(); ia64_setreg(_IA64_REG_CR_TPR, saved_tpr); } ia64_eoi(); vector = ia64_get_ivr(); } irq_exit(); } #endif #ifdef CONFIG_SMP static irqreturn_t dummy_handler (int irq, void *dev_id) { BUG(); return IRQ_NONE; } /* * KVM uses this interrupt to force a cpu out of guest mode */ #endif void register_percpu_irq(ia64_vector vec, irq_handler_t handler, unsigned long flags, const char *name) { unsigned int irq; irq = vec; BUG_ON(bind_irq_vector(irq, vec, CPU_MASK_ALL)); irq_set_status_flags(irq, IRQ_PER_CPU); irq_set_chip(irq, &irq_type_ia64_lsapic); if (handler) if (request_irq(irq, handler, flags, name, NULL)) pr_err("Failed to request irq %u (%s)\n", irq, name); irq_set_handler(irq, handle_percpu_irq); } void __init ia64_native_register_ipi(void) { #ifdef CONFIG_SMP register_percpu_irq(IA64_IPI_VECTOR, handle_IPI, 0, "IPI"); register_percpu_irq(IA64_IPI_RESCHEDULE, dummy_handler, 0, "resched"); register_percpu_irq(IA64_IPI_LOCAL_TLB_FLUSH, dummy_handler, 0, "tlb_flush"); #endif } void __init init_IRQ (void) { acpi_boot_init(); ia64_register_ipi(); register_percpu_irq(IA64_SPURIOUS_INT_VECTOR, NULL, 0, NULL); #ifdef CONFIG_SMP if (vector_domain_type != VECTOR_DOMAIN_NONE) { register_percpu_irq(IA64_IRQ_MOVE_VECTOR, smp_irq_move_cleanup_interrupt, 0, "irq_move"); } #endif } void ia64_send_ipi (int cpu, int vector, int delivery_mode, int redirect) { void __iomem *ipi_addr; unsigned long ipi_data; unsigned long phys_cpu_id; phys_cpu_id = cpu_physical_id(cpu); /* * cpu number is in 8bit ID and 8bit EID */ ipi_data = (delivery_mode << 8) | (vector & 0xff); ipi_addr = ipi_base_addr + ((phys_cpu_id << 4) | ((redirect & 1) << 3)); writeq(ipi_data, ipi_addr); }