// SPDX-License-Identifier: GPL-2.0-only /* * Just-In-Time compiler for eBPF bytecode on MIPS. * Implementation of JIT functions for 64-bit CPUs. * * Copyright (c) 2021 Anyfi Networks AB. * Author: Johan Almbladh <johan.almbladh@gmail.com> * * Based on code and ideas from * Copyright (c) 2017 Cavium, Inc. * Copyright (c) 2017 Shubham Bansal <illusionist.neo@gmail.com> * Copyright (c) 2011 Mircea Gherzan <mgherzan@gmail.com> */ #include <linux/errno.h> #include <linux/filter.h> #include <linux/bpf.h> #include <asm/cpu-features.h> #include <asm/isa-rev.h> #include <asm/uasm.h> #include "bpf_jit_comp.h" /* MIPS t0-t3 are not available in the n64 ABI */ #undef MIPS_R_T0 #undef MIPS_R_T1 #undef MIPS_R_T2 #undef MIPS_R_T3 /* Stack is 16-byte aligned in n64 ABI */ #define MIPS_STACK_ALIGNMENT 16 /* Extra 64-bit eBPF registers used by JIT */ #define JIT_REG_TC (MAX_BPF_JIT_REG + 0) #define JIT_REG_ZX (MAX_BPF_JIT_REG + 1) /* Number of prologue bytes to skip when doing a tail call */ #define JIT_TCALL_SKIP 4 /* Callee-saved CPU registers that the JIT must preserve */ #define JIT_CALLEE_REGS \ (BIT(MIPS_R_S0) | \ BIT(MIPS_R_S1) | \ BIT(MIPS_R_S2) | \ BIT(MIPS_R_S3) | \ BIT(MIPS_R_S4) | \ BIT(MIPS_R_S5) | \ BIT(MIPS_R_S6) | \ BIT(MIPS_R_S7) | \ BIT(MIPS_R_GP) | \ BIT(MIPS_R_FP) | \ BIT(MIPS_R_RA)) /* Caller-saved CPU registers available for JIT use */ #define JIT_CALLER_REGS \ (BIT(MIPS_R_A5) | \ BIT(MIPS_R_A6) | \ BIT(MIPS_R_A7)) /* * Mapping of 64-bit eBPF registers to 64-bit native MIPS registers. * MIPS registers t4 - t7 may be used by the JIT as temporary registers. * MIPS registers t8 - t9 are reserved for single-register common functions. */ static const u8 bpf2mips64[] = { /* Return value from in-kernel function, and exit value from eBPF */ [BPF_REG_0] = MIPS_R_V0, /* Arguments from eBPF program to in-kernel function */ [BPF_REG_1] = MIPS_R_A0, [BPF_REG_2] = MIPS_R_A1, [BPF_REG_3] = MIPS_R_A2, [BPF_REG_4] = MIPS_R_A3, [BPF_REG_5] = MIPS_R_A4, /* Callee-saved registers that in-kernel function will preserve */ [BPF_REG_6] = MIPS_R_S0, [BPF_REG_7] = MIPS_R_S1, [BPF_REG_8] = MIPS_R_S2, [BPF_REG_9] = MIPS_R_S3, /* Read-only frame pointer to access the eBPF stack */ [BPF_REG_FP] = MIPS_R_FP, /* Temporary register for blinding constants */ [BPF_REG_AX] = MIPS_R_AT, /* Tail call count register, caller-saved */ [JIT_REG_TC] = MIPS_R_A5, /* Constant for register zero-extension */ [JIT_REG_ZX] = MIPS_R_V1, }; /* * MIPS 32-bit operations on 64-bit registers generate a sign-extended * result. However, the eBPF ISA mandates zero-extension, so we rely on the * verifier to add that for us (emit_zext_ver). In addition, ALU arithmetic * operations, right shift and byte swap require properly sign-extended * operands or the result is unpredictable. We emit explicit sign-extensions * in those cases. */ /* Sign extension */ static void emit_sext(struct jit_context *ctx, u8 dst, u8 src) { emit(ctx, sll, dst, src, 0); clobber_reg(ctx, dst); } /* Zero extension */ static void emit_zext(struct jit_context *ctx, u8 dst) { if (cpu_has_mips64r2 || cpu_has_mips64r6) { emit(ctx, dinsu, dst, MIPS_R_ZERO, 32, 32); } else { emit(ctx, and, dst, dst, bpf2mips64[JIT_REG_ZX]); access_reg(ctx, JIT_REG_ZX); /* We need the ZX register */ } clobber_reg(ctx, dst); } /* Zero extension, if verifier does not do it for us */ static void emit_zext_ver(struct jit_context *ctx, u8 dst) { if (!ctx->program->aux->verifier_zext) emit_zext(ctx, dst); } /* dst = imm (64-bit) */ static void emit_mov_i64(struct jit_context *ctx, u8 dst, u64 imm64) { if (imm64 >= 0xffffffffffff8000ULL || imm64 < 0x8000ULL) { emit(ctx, daddiu, dst, MIPS_R_ZERO, (s16)imm64); } else if (imm64 >= 0xffffffff80000000ULL || (imm64 < 0x80000000 && imm64 > 0xffff)) { emit(ctx, lui, dst, (s16)(imm64 >> 16)); emit(ctx, ori, dst, dst, (u16)imm64 & 0xffff); } else { u8 acc = MIPS_R_ZERO; int shift = 0; int k; for (k = 0; k < 4; k++) { u16 half = imm64 >> (48 - 16 * k); if (acc == dst) shift += 16; if (half) { if (shift) emit(ctx, dsll_safe, dst, dst, shift); emit(ctx, ori, dst, acc, half); acc = dst; shift = 0; } } if (shift) emit(ctx, dsll_safe, dst, dst, shift); } clobber_reg(ctx, dst); } /* ALU immediate operation (64-bit) */ static void emit_alu_i64(struct jit_context *ctx, u8 dst, s32 imm, u8 op) { switch (BPF_OP(op)) { /* dst = dst | imm */ case BPF_OR: emit(ctx, ori, dst, dst, (u16)imm); break; /* dst = dst ^ imm */ case BPF_XOR: emit(ctx, xori, dst, dst, (u16)imm); break; /* dst = -dst */ case BPF_NEG: emit(ctx, dsubu, dst, MIPS_R_ZERO, dst); break; /* dst = dst << imm */ case BPF_LSH: emit(ctx, dsll_safe, dst, dst, imm); break; /* dst = dst >> imm */ case BPF_RSH: emit(ctx, dsrl_safe, dst, dst, imm); break; /* dst = dst >> imm (arithmetic) */ case BPF_ARSH: emit(ctx, dsra_safe, dst, dst, imm); break; /* dst = dst + imm */ case BPF_ADD: emit(ctx, daddiu, dst, dst, imm); break; /* dst = dst - imm */ case BPF_SUB: emit(ctx, daddiu, dst, dst, -imm); break; default: /* Width-generic operations */ emit_alu_i(ctx, dst, imm, op); } clobber_reg(ctx, dst); } /* ALU register operation (64-bit) */ static void emit_alu_r64(struct jit_context *ctx, u8 dst, u8 src, u8 op) { switch (BPF_OP(op)) { /* dst = dst << src */ case BPF_LSH: emit(ctx, dsllv, dst, dst, src); break; /* dst = dst >> src */ case BPF_RSH: emit(ctx, dsrlv, dst, dst, src); break; /* dst = dst >> src (arithmetic) */ case BPF_ARSH: emit(ctx, dsrav, dst, dst, src); break; /* dst = dst + src */ case BPF_ADD: emit(ctx, daddu, dst, dst, src); break; /* dst = dst - src */ case BPF_SUB: emit(ctx, dsubu, dst, dst, src); break; /* dst = dst * src */ case BPF_MUL: if (cpu_has_mips64r6) { emit(ctx, dmulu, dst, dst, src); } else { emit(ctx, dmultu, dst, src); emit(ctx, mflo, dst); /* Ensure multiplication is completed */ if (IS_ENABLED(CONFIG_CPU_R4000_WORKAROUNDS)) emit(ctx, mfhi, MIPS_R_ZERO); } break; /* dst = dst / src */ case BPF_DIV: if (cpu_has_mips64r6) { emit(ctx, ddivu_r6, dst, dst, src); } else { emit(ctx, ddivu, dst, src); emit(ctx, mflo, dst); } break; /* dst = dst % src */ case BPF_MOD: if (cpu_has_mips64r6) { emit(ctx, dmodu, dst, dst, src); } else { emit(ctx, ddivu, dst, src); emit(ctx, mfhi, dst); } break; default: /* Width-generic operations */ emit_alu_r(ctx, dst, src, op); } clobber_reg(ctx, dst); } /* Swap sub words in a register double word */ static void emit_swap_r64(struct jit_context *ctx, u8 dst, u8 mask, u32 bits) { u8 tmp = MIPS_R_T9; emit(ctx, and, tmp, dst, mask); /* tmp = dst & mask */ emit(ctx, dsll, tmp, tmp, bits); /* tmp = tmp << bits */ emit(ctx, dsrl, dst, dst, bits); /* dst = dst >> bits */ emit(ctx, and, dst, dst, mask); /* dst = dst & mask */ emit(ctx, or, dst, dst, tmp); /* dst = dst | tmp */ } /* Swap bytes and truncate a register double word, word or half word */ static void emit_bswap_r64(struct jit_context *ctx, u8 dst, u32 width) { switch (width) { /* Swap bytes in a double word */ case 64: if (cpu_has_mips64r2 || cpu_has_mips64r6) { emit(ctx, dsbh, dst, dst); emit(ctx, dshd, dst, dst); } else { u8 t1 = MIPS_R_T6; u8 t2 = MIPS_R_T7; emit(ctx, dsll32, t2, dst, 0); /* t2 = dst << 32 */ emit(ctx, dsrl32, dst, dst, 0); /* dst = dst >> 32 */ emit(ctx, or, dst, dst, t2); /* dst = dst | t2 */ emit(ctx, ori, t2, MIPS_R_ZERO, 0xffff); emit(ctx, dsll32, t1, t2, 0); /* t1 = t2 << 32 */ emit(ctx, or, t1, t1, t2); /* t1 = t1 | t2 */ emit_swap_r64(ctx, dst, t1, 16);/* dst = swap16(dst) */ emit(ctx, lui, t2, 0xff); /* t2 = 0x00ff0000 */ emit(ctx, ori, t2, t2, 0xff); /* t2 = t2 | 0x00ff */ emit(ctx, dsll32, t1, t2, 0); /* t1 = t2 << 32 */ emit(ctx, or, t1, t1, t2); /* t1 = t1 | t2 */ emit_swap_r64(ctx, dst, t1, 8); /* dst = swap8(dst) */ } break; /* Swap bytes in a half word */ /* Swap bytes in a word */ case 32: case 16: emit_sext(ctx, dst, dst); emit_bswap_r(ctx, dst, width); if (cpu_has_mips64r2 || cpu_has_mips64r6) emit_zext(ctx, dst); break; } clobber_reg(ctx, dst); } /* Truncate a register double word, word or half word */ static void emit_trunc_r64(struct jit_context *ctx, u8 dst, u32 width) { switch (width) { case 64: break; /* Zero-extend a word */ case 32: emit_zext(ctx, dst); break; /* Zero-extend a half word */ case 16: emit(ctx, andi, dst, dst, 0xffff); break; } clobber_reg(ctx, dst); } /* Load operation: dst = *(size*)(src + off) */ static void emit_ldx(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 size) { switch (size) { /* Load a byte */ case BPF_B: emit(ctx, lbu, dst, off, src); break; /* Load a half word */ case BPF_H: emit(ctx, lhu, dst, off, src); break; /* Load a word */ case BPF_W: emit(ctx, lwu, dst, off, src); break; /* Load a double word */ case BPF_DW: emit(ctx, ld, dst, off, src); break; } clobber_reg(ctx, dst); } /* Store operation: *(size *)(dst + off) = src */ static void emit_stx(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 size) { switch (size) { /* Store a byte */ case BPF_B: emit(ctx, sb, src, off, dst); break; /* Store a half word */ case BPF_H: emit(ctx, sh, src, off, dst); break; /* Store a word */ case BPF_W: emit(ctx, sw, src, off, dst); break; /* Store a double word */ case BPF_DW: emit(ctx, sd, src, off, dst); break; } } /* Atomic read-modify-write */ static void emit_atomic_r64(struct jit_context *ctx, u8 dst, u8 src, s16 off, u8 code) { u8 t1 = MIPS_R_T6; u8 t2 = MIPS_R_T7; LLSC_sync(ctx); emit(ctx, lld, t1, off, dst); switch (code) { case BPF_ADD: case BPF_ADD | BPF_FETCH: emit(ctx, daddu, t2, t1, src); break; case BPF_AND: case BPF_AND | BPF_FETCH: emit(ctx, and, t2, t1, src); break; case BPF_OR: case BPF_OR | BPF_FETCH: emit(ctx, or, t2, t1, src); break; case BPF_XOR: case BPF_XOR | BPF_FETCH: emit(ctx, xor, t2, t1, src); break; case BPF_XCHG: emit(ctx, move, t2, src); break; } emit(ctx, scd, t2, off, dst); emit(ctx, LLSC_beqz, t2, -16 - LLSC_offset); emit(ctx, nop); /* Delay slot */ if (code & BPF_FETCH) { emit(ctx, move, src, t1); clobber_reg(ctx, src); } } /* Atomic compare-and-exchange */ static void emit_cmpxchg_r64(struct jit_context *ctx, u8 dst, u8 src, s16 off) { u8 r0 = bpf2mips64[BPF_REG_0]; u8 t1 = MIPS_R_T6; u8 t2 = MIPS_R_T7; LLSC_sync(ctx); emit(ctx, lld, t1, off, dst); emit(ctx, bne, t1, r0, 12); emit(ctx, move, t2, src); /* Delay slot */ emit(ctx, scd, t2, off, dst); emit(ctx, LLSC_beqz, t2, -20 - LLSC_offset); emit(ctx, move, r0, t1); /* Delay slot */ clobber_reg(ctx, r0); } /* Function call */ static int emit_call(struct jit_context *ctx, const struct bpf_insn *insn) { u8 zx = bpf2mips64[JIT_REG_ZX]; u8 tmp = MIPS_R_T6; bool fixed; u64 addr; /* Decode the call address */ if (bpf_jit_get_func_addr(ctx->program, insn, false, &addr, &fixed) < 0) return -1; if (!fixed) return -1; /* Push caller-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 0, 0); /* Emit function call */ emit_mov_i64(ctx, tmp, addr & JALR_MASK); emit(ctx, jalr, MIPS_R_RA, tmp); emit(ctx, nop); /* Delay slot */ /* Restore caller-saved registers */ pop_regs(ctx, ctx->clobbered & JIT_CALLER_REGS, 0, 0); /* Re-initialize the JIT zero-extension register if accessed */ if (ctx->accessed & BIT(JIT_REG_ZX)) { emit(ctx, daddiu, zx, MIPS_R_ZERO, -1); emit(ctx, dsrl32, zx, zx, 0); } clobber_reg(ctx, MIPS_R_RA); clobber_reg(ctx, MIPS_R_V0); clobber_reg(ctx, MIPS_R_V1); return 0; } /* Function tail call */ static int emit_tail_call(struct jit_context *ctx) { u8 ary = bpf2mips64[BPF_REG_2]; u8 ind = bpf2mips64[BPF_REG_3]; u8 tcc = bpf2mips64[JIT_REG_TC]; u8 tmp = MIPS_R_T6; int off; /* * Tail call: * eBPF R1 - function argument (context ptr), passed in a0-a1 * eBPF R2 - ptr to object with array of function entry points * eBPF R3 - array index of function to be called */ /* if (ind >= ary->map.max_entries) goto out */ off = offsetof(struct bpf_array, map.max_entries); if (off > 0x7fff) return -1; emit(ctx, lwu, tmp, off, ary); /* tmp = ary->map.max_entrs*/ emit(ctx, sltu, tmp, ind, tmp); /* tmp = ind < t1 */ emit(ctx, beqz, tmp, get_offset(ctx, 1)); /* PC += off(1) if tmp == 0*/ /* if (--TCC < 0) goto out */ emit(ctx, daddiu, tcc, tcc, -1); /* tcc-- (delay slot) */ emit(ctx, bltz, tcc, get_offset(ctx, 1)); /* PC += off(1) if tcc < 0 */ /* (next insn delay slot) */ /* prog = ary->ptrs[ind] */ off = offsetof(struct bpf_array, ptrs); if (off > 0x7fff) return -1; emit(ctx, dsll, tmp, ind, 3); /* tmp = ind << 3 */ emit(ctx, daddu, tmp, tmp, ary); /* tmp += ary */ emit(ctx, ld, tmp, off, tmp); /* tmp = *(tmp + off) */ /* if (prog == 0) goto out */ emit(ctx, beqz, tmp, get_offset(ctx, 1)); /* PC += off(1) if tmp == 0*/ emit(ctx, nop); /* Delay slot */ /* func = prog->bpf_func + 8 (prologue skip offset) */ off = offsetof(struct bpf_prog, bpf_func); if (off > 0x7fff) return -1; emit(ctx, ld, tmp, off, tmp); /* tmp = *(tmp + off) */ emit(ctx, daddiu, tmp, tmp, JIT_TCALL_SKIP); /* tmp += skip (4) */ /* goto func */ build_epilogue(ctx, tmp); access_reg(ctx, JIT_REG_TC); return 0; } /* * Stack frame layout for a JITed program (stack grows down). * * Higher address : Previous stack frame : * +===========================+ <--- MIPS sp before call * | Callee-saved registers, | * | including RA and FP | * +---------------------------+ <--- eBPF FP (MIPS fp) * | Local eBPF variables | * | allocated by program | * +---------------------------+ * | Reserved for caller-saved | * | registers | * Lower address +===========================+ <--- MIPS sp */ /* Build program prologue to set up the stack and registers */ void build_prologue(struct jit_context *ctx) { u8 fp = bpf2mips64[BPF_REG_FP]; u8 tc = bpf2mips64[JIT_REG_TC]; u8 zx = bpf2mips64[JIT_REG_ZX]; int stack, saved, locals, reserved; /* * In the unlikely event that the TCC limit is raised to more * than 16 bits, it is clamped to the maximum value allowed for * the generated code (0xffff). It is better fail to compile * instead of degrading gracefully. */ BUILD_BUG_ON(MAX_TAIL_CALL_CNT > 0xffff); /* * The first instruction initializes the tail call count register. * On a tail call, the calling function jumps into the prologue * after this instruction. */ emit(ctx, ori, tc, MIPS_R_ZERO, MAX_TAIL_CALL_CNT); /* === Entry-point for tail calls === */ /* * If the eBPF frame pointer and tail call count registers were * accessed they must be preserved. Mark them as clobbered here * to save and restore them on the stack as needed. */ if (ctx->accessed & BIT(BPF_REG_FP)) clobber_reg(ctx, fp); if (ctx->accessed & BIT(JIT_REG_TC)) clobber_reg(ctx, tc); if (ctx->accessed & BIT(JIT_REG_ZX)) clobber_reg(ctx, zx); /* Compute the stack space needed for callee-saved registers */ saved = hweight32(ctx->clobbered & JIT_CALLEE_REGS) * sizeof(u64); saved = ALIGN(saved, MIPS_STACK_ALIGNMENT); /* Stack space used by eBPF program local data */ locals = ALIGN(ctx->program->aux->stack_depth, MIPS_STACK_ALIGNMENT); /* * If we are emitting function calls, reserve extra stack space for * caller-saved registers needed by the JIT. The required space is * computed automatically during resource usage discovery (pass 1). */ reserved = ctx->stack_used; /* Allocate the stack frame */ stack = ALIGN(saved + locals + reserved, MIPS_STACK_ALIGNMENT); if (stack) emit(ctx, daddiu, MIPS_R_SP, MIPS_R_SP, -stack); /* Store callee-saved registers on stack */ push_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, stack - saved); /* Initialize the eBPF frame pointer if accessed */ if (ctx->accessed & BIT(BPF_REG_FP)) emit(ctx, daddiu, fp, MIPS_R_SP, stack - saved); /* Initialize the ePF JIT zero-extension register if accessed */ if (ctx->accessed & BIT(JIT_REG_ZX)) { emit(ctx, daddiu, zx, MIPS_R_ZERO, -1); emit(ctx, dsrl32, zx, zx, 0); } ctx->saved_size = saved; ctx->stack_size = stack; } /* Build the program epilogue to restore the stack and registers */ void build_epilogue(struct jit_context *ctx, int dest_reg) { /* Restore callee-saved registers from stack */ pop_regs(ctx, ctx->clobbered & JIT_CALLEE_REGS, 0, ctx->stack_size - ctx->saved_size); /* Release the stack frame */ if (ctx->stack_size) emit(ctx, daddiu, MIPS_R_SP, MIPS_R_SP, ctx->stack_size); /* Jump to return address and sign-extend the 32-bit return value */ emit(ctx, jr, dest_reg); emit(ctx, sll, MIPS_R_V0, MIPS_R_V0, 0); /* Delay slot */ } /* Build one eBPF instruction */ int build_insn(const struct bpf_insn *insn, struct jit_context *ctx) { u8 dst = bpf2mips64[insn->dst_reg]; u8 src = bpf2mips64[insn->src_reg]; u8 res = bpf2mips64[BPF_REG_0]; u8 code = insn->code; s16 off = insn->off; s32 imm = insn->imm; s32 val, rel; u8 alu, jmp; switch (code) { /* ALU operations */ /* dst = imm */ case BPF_ALU | BPF_MOV | BPF_K: emit_mov_i(ctx, dst, imm); emit_zext_ver(ctx, dst); break; /* dst = src */ case BPF_ALU | BPF_MOV | BPF_X: if (imm == 1) { /* Special mov32 for zext */ emit_zext(ctx, dst); } else { emit_mov_r(ctx, dst, src); emit_zext_ver(ctx, dst); } break; /* dst = -dst */ case BPF_ALU | BPF_NEG: emit_sext(ctx, dst, dst); emit_alu_i(ctx, dst, 0, BPF_NEG); emit_zext_ver(ctx, dst); break; /* dst = dst & imm */ /* dst = dst | imm */ /* dst = dst ^ imm */ /* dst = dst << imm */ case BPF_ALU | BPF_OR | BPF_K: case BPF_ALU | BPF_AND | BPF_K: case BPF_ALU | BPF_XOR | BPF_K: case BPF_ALU | BPF_LSH | BPF_K: if (!valid_alu_i(BPF_OP(code), imm)) { emit_mov_i(ctx, MIPS_R_T4, imm); emit_alu_r(ctx, dst, MIPS_R_T4, BPF_OP(code)); } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) { emit_alu_i(ctx, dst, val, alu); } emit_zext_ver(ctx, dst); break; /* dst = dst >> imm */ /* dst = dst >> imm (arithmetic) */ /* dst = dst + imm */ /* dst = dst - imm */ /* dst = dst * imm */ /* dst = dst / imm */ /* dst = dst % imm */ case BPF_ALU | BPF_RSH | BPF_K: case BPF_ALU | BPF_ARSH | BPF_K: case BPF_ALU | BPF_ADD | BPF_K: case BPF_ALU | BPF_SUB | BPF_K: case BPF_ALU | BPF_MUL | BPF_K: case BPF_ALU | BPF_DIV | BPF_K: case BPF_ALU | BPF_MOD | BPF_K: if (!valid_alu_i(BPF_OP(code), imm)) { emit_sext(ctx, dst, dst); emit_mov_i(ctx, MIPS_R_T4, imm); emit_alu_r(ctx, dst, MIPS_R_T4, BPF_OP(code)); } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) { emit_sext(ctx, dst, dst); emit_alu_i(ctx, dst, val, alu); } emit_zext_ver(ctx, dst); break; /* dst = dst & src */ /* dst = dst | src */ /* dst = dst ^ src */ /* dst = dst << src */ case BPF_ALU | BPF_AND | BPF_X: case BPF_ALU | BPF_OR | BPF_X: case BPF_ALU | BPF_XOR | BPF_X: case BPF_ALU | BPF_LSH | BPF_X: emit_alu_r(ctx, dst, src, BPF_OP(code)); emit_zext_ver(ctx, dst); break; /* dst = dst >> src */ /* dst = dst >> src (arithmetic) */ /* dst = dst + src */ /* dst = dst - src */ /* dst = dst * src */ /* dst = dst / src */ /* dst = dst % src */ case BPF_ALU | BPF_RSH | BPF_X: case BPF_ALU | BPF_ARSH | BPF_X: case BPF_ALU | BPF_ADD | BPF_X: case BPF_ALU | BPF_SUB | BPF_X: case BPF_ALU | BPF_MUL | BPF_X: case BPF_ALU | BPF_DIV | BPF_X: case BPF_ALU | BPF_MOD | BPF_X: emit_sext(ctx, dst, dst); emit_sext(ctx, MIPS_R_T4, src); emit_alu_r(ctx, dst, MIPS_R_T4, BPF_OP(code)); emit_zext_ver(ctx, dst); break; /* dst = imm (64-bit) */ case BPF_ALU64 | BPF_MOV | BPF_K: emit_mov_i(ctx, dst, imm); break; /* dst = src (64-bit) */ case BPF_ALU64 | BPF_MOV | BPF_X: emit_mov_r(ctx, dst, src); break; /* dst = -dst (64-bit) */ case BPF_ALU64 | BPF_NEG: emit_alu_i64(ctx, dst, 0, BPF_NEG); break; /* dst = dst & imm (64-bit) */ /* dst = dst | imm (64-bit) */ /* dst = dst ^ imm (64-bit) */ /* dst = dst << imm (64-bit) */ /* dst = dst >> imm (64-bit) */ /* dst = dst >> imm ((64-bit, arithmetic) */ /* dst = dst + imm (64-bit) */ /* dst = dst - imm (64-bit) */ /* dst = dst * imm (64-bit) */ /* dst = dst / imm (64-bit) */ /* dst = dst % imm (64-bit) */ case BPF_ALU64 | BPF_AND | BPF_K: case BPF_ALU64 | BPF_OR | BPF_K: case BPF_ALU64 | BPF_XOR | BPF_K: case BPF_ALU64 | BPF_LSH | BPF_K: case BPF_ALU64 | BPF_RSH | BPF_K: case BPF_ALU64 | BPF_ARSH | BPF_K: case BPF_ALU64 | BPF_ADD | BPF_K: case BPF_ALU64 | BPF_SUB | BPF_K: case BPF_ALU64 | BPF_MUL | BPF_K: case BPF_ALU64 | BPF_DIV | BPF_K: case BPF_ALU64 | BPF_MOD | BPF_K: if (!valid_alu_i(BPF_OP(code), imm)) { emit_mov_i(ctx, MIPS_R_T4, imm); emit_alu_r64(ctx, dst, MIPS_R_T4, BPF_OP(code)); } else if (rewrite_alu_i(BPF_OP(code), imm, &alu, &val)) { emit_alu_i64(ctx, dst, val, alu); } break; /* dst = dst & src (64-bit) */ /* dst = dst | src (64-bit) */ /* dst = dst ^ src (64-bit) */ /* dst = dst << src (64-bit) */ /* dst = dst >> src (64-bit) */ /* dst = dst >> src (64-bit, arithmetic) */ /* dst = dst + src (64-bit) */ /* dst = dst - src (64-bit) */ /* dst = dst * src (64-bit) */ /* dst = dst / src (64-bit) */ /* dst = dst % src (64-bit) */ case BPF_ALU64 | BPF_AND | BPF_X: case BPF_ALU64 | BPF_OR | BPF_X: case BPF_ALU64 | BPF_XOR | BPF_X: case BPF_ALU64 | BPF_LSH | BPF_X: case BPF_ALU64 | BPF_RSH | BPF_X: case BPF_ALU64 | BPF_ARSH | BPF_X: case BPF_ALU64 | BPF_ADD | BPF_X: case BPF_ALU64 | BPF_SUB | BPF_X: case BPF_ALU64 | BPF_MUL | BPF_X: case BPF_ALU64 | BPF_DIV | BPF_X: case BPF_ALU64 | BPF_MOD | BPF_X: emit_alu_r64(ctx, dst, src, BPF_OP(code)); break; /* dst = htole(dst) */ /* dst = htobe(dst) */ case BPF_ALU | BPF_END | BPF_FROM_LE: case BPF_ALU | BPF_END | BPF_FROM_BE: if (BPF_SRC(code) == #ifdef __BIG_ENDIAN BPF_FROM_LE #else BPF_FROM_BE #endif ) emit_bswap_r64(ctx, dst, imm); else emit_trunc_r64(ctx, dst, imm); break; /* dst = imm64 */ case BPF_LD | BPF_IMM | BPF_DW: emit_mov_i64(ctx, dst, (u32)imm | ((u64)insn[1].imm << 32)); return 1; /* LDX: dst = *(size *)(src + off) */ case BPF_LDX | BPF_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_DW: emit_ldx(ctx, dst, src, off, BPF_SIZE(code)); break; /* ST: *(size *)(dst + off) = imm */ case BPF_ST | BPF_MEM | BPF_W: case BPF_ST | BPF_MEM | BPF_H: case BPF_ST | BPF_MEM | BPF_B: case BPF_ST | BPF_MEM | BPF_DW: emit_mov_i(ctx, MIPS_R_T4, imm); emit_stx(ctx, dst, MIPS_R_T4, off, BPF_SIZE(code)); break; /* STX: *(size *)(dst + off) = src */ case BPF_STX | BPF_MEM | BPF_W: case BPF_STX | BPF_MEM | BPF_H: case BPF_STX | BPF_MEM | BPF_B: case BPF_STX | BPF_MEM | BPF_DW: emit_stx(ctx, dst, src, off, BPF_SIZE(code)); break; /* Speculation barrier */ case BPF_ST | BPF_NOSPEC: break; /* Atomics */ case BPF_STX | BPF_ATOMIC | BPF_W: case BPF_STX | BPF_ATOMIC | BPF_DW: switch (imm) { case BPF_ADD: case BPF_ADD | BPF_FETCH: case BPF_AND: case BPF_AND | BPF_FETCH: case BPF_OR: case BPF_OR | BPF_FETCH: case BPF_XOR: case BPF_XOR | BPF_FETCH: case BPF_XCHG: if (BPF_SIZE(code) == BPF_DW) { emit_atomic_r64(ctx, dst, src, off, imm); } else if (imm & BPF_FETCH) { u8 tmp = dst; if (src == dst) { /* Don't overwrite dst */ emit_mov_r(ctx, MIPS_R_T4, dst); tmp = MIPS_R_T4; } emit_sext(ctx, src, src); emit_atomic_r(ctx, tmp, src, off, imm); emit_zext_ver(ctx, src); } else { /* 32-bit, no fetch */ emit_sext(ctx, MIPS_R_T4, src); emit_atomic_r(ctx, dst, MIPS_R_T4, off, imm); } break; case BPF_CMPXCHG: if (BPF_SIZE(code) == BPF_DW) { emit_cmpxchg_r64(ctx, dst, src, off); } else { u8 tmp = res; if (res == dst) /* Don't overwrite dst */ tmp = MIPS_R_T4; emit_sext(ctx, tmp, res); emit_sext(ctx, MIPS_R_T5, src); emit_cmpxchg_r(ctx, dst, MIPS_R_T5, tmp, off); if (res == dst) /* Restore result */ emit_mov_r(ctx, res, MIPS_R_T4); /* Result zext inserted by verifier */ } break; default: goto notyet; } break; /* PC += off if dst == src */ /* PC += off if dst != src */ /* PC += off if dst & src */ /* PC += off if dst > src */ /* PC += off if dst >= src */ /* PC += off if dst < src */ /* PC += off if dst <= src */ /* PC += off if dst > src (signed) */ /* PC += off if dst >= src (signed) */ /* PC += off if dst < src (signed) */ /* PC += off if dst <= src (signed) */ case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: if (off == 0) break; setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); emit_sext(ctx, MIPS_R_T4, dst); /* Sign-extended dst */ emit_sext(ctx, MIPS_R_T5, src); /* Sign-extended src */ emit_jmp_r(ctx, MIPS_R_T4, MIPS_R_T5, rel, jmp); if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == imm */ /* PC += off if dst != imm */ /* PC += off if dst & imm */ /* PC += off if dst > imm */ /* PC += off if dst >= imm */ /* PC += off if dst < imm */ /* PC += off if dst <= imm */ /* PC += off if dst > imm (signed) */ /* PC += off if dst >= imm (signed) */ /* PC += off if dst < imm (signed) */ /* PC += off if dst <= imm (signed) */ case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: if (off == 0) break; setup_jmp_i(ctx, imm, 32, BPF_OP(code), off, &jmp, &rel); emit_sext(ctx, MIPS_R_T4, dst); /* Sign-extended dst */ if (valid_jmp_i(jmp, imm)) { emit_jmp_i(ctx, MIPS_R_T4, imm, rel, jmp); } else { /* Move large immediate to register, sign-extended */ emit_mov_i(ctx, MIPS_R_T5, imm); emit_jmp_r(ctx, MIPS_R_T4, MIPS_R_T5, rel, jmp); } if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == src */ /* PC += off if dst != src */ /* PC += off if dst & src */ /* PC += off if dst > src */ /* PC += off if dst >= src */ /* PC += off if dst < src */ /* PC += off if dst <= src */ /* PC += off if dst > src (signed) */ /* PC += off if dst >= src (signed) */ /* PC += off if dst < src (signed) */ /* PC += off if dst <= src (signed) */ case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: if (off == 0) break; setup_jmp_r(ctx, dst == src, BPF_OP(code), off, &jmp, &rel); emit_jmp_r(ctx, dst, src, rel, jmp); if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off if dst == imm */ /* PC += off if dst != imm */ /* PC += off if dst & imm */ /* PC += off if dst > imm */ /* PC += off if dst >= imm */ /* PC += off if dst < imm */ /* PC += off if dst <= imm */ /* PC += off if dst > imm (signed) */ /* PC += off if dst >= imm (signed) */ /* PC += off if dst < imm (signed) */ /* PC += off if dst <= imm (signed) */ case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: if (off == 0) break; setup_jmp_i(ctx, imm, 64, BPF_OP(code), off, &jmp, &rel); if (valid_jmp_i(jmp, imm)) { emit_jmp_i(ctx, dst, imm, rel, jmp); } else { /* Move large immediate to register */ emit_mov_i(ctx, MIPS_R_T4, imm); emit_jmp_r(ctx, dst, MIPS_R_T4, rel, jmp); } if (finish_jmp(ctx, jmp, off) < 0) goto toofar; break; /* PC += off */ case BPF_JMP | BPF_JA: if (off == 0) break; if (emit_ja(ctx, off) < 0) goto toofar; break; /* Tail call */ case BPF_JMP | BPF_TAIL_CALL: if (emit_tail_call(ctx) < 0) goto invalid; break; /* Function call */ case BPF_JMP | BPF_CALL: if (emit_call(ctx, insn) < 0) goto invalid; break; /* Function return */ case BPF_JMP | BPF_EXIT: /* * Optimization: when last instruction is EXIT * simply continue to epilogue. */ if (ctx->bpf_index == ctx->program->len - 1) break; if (emit_exit(ctx) < 0) goto toofar; break; default: invalid: pr_err_once("unknown opcode %02x\n", code); return -EINVAL; notyet: pr_info_once("*** NOT YET: opcode %02x ***\n", code); return -EFAULT; toofar: pr_info_once("*** TOO FAR: jump at %u opcode %02x ***\n", ctx->bpf_index, code); return -E2BIG; } return 0; }