// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015, 2016 ARM Ltd. */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kvm.h> #include <linux/kvm_host.h> #include <linux/list_sort.h> #include <linux/nospec.h> #include <asm/kvm_hyp.h> #include "vgic.h" #define CREATE_TRACE_POINTS #include "trace.h" struct vgic_global kvm_vgic_global_state __ro_after_init = { .gicv3_cpuif = STATIC_KEY_FALSE_INIT, }; /* * Locking order is always: * kvm->lock (mutex) * vcpu->mutex (mutex) * kvm->arch.config_lock (mutex) * its->cmd_lock (mutex) * its->its_lock (mutex) * vgic_cpu->ap_list_lock must be taken with IRQs disabled * kvm->lpi_list_lock must be taken with IRQs disabled * vgic_irq->irq_lock must be taken with IRQs disabled * * As the ap_list_lock might be taken from the timer interrupt handler, * we have to disable IRQs before taking this lock and everything lower * than it. * * If you need to take multiple locks, always take the upper lock first, * then the lower ones, e.g. first take the its_lock, then the irq_lock. * If you are already holding a lock and need to take a higher one, you * have to drop the lower ranking lock first and re-acquire it after having * taken the upper one. * * When taking more than one ap_list_lock at the same time, always take the * lowest numbered VCPU's ap_list_lock first, so: * vcpuX->vcpu_id < vcpuY->vcpu_id: * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock); * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock); * * Since the VGIC must support injecting virtual interrupts from ISRs, we have * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer * spinlocks for any lock that may be taken while injecting an interrupt. */ /* * Iterate over the VM's list of mapped LPIs to find the one with a * matching interrupt ID and return a reference to the IRQ structure. */ static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid) { struct vgic_dist *dist = &kvm->arch.vgic; struct vgic_irq *irq = NULL; unsigned long flags; raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) { if (irq->intid != intid) continue; /* * This increases the refcount, the caller is expected to * call vgic_put_irq() later once it's finished with the IRQ. */ vgic_get_irq_kref(irq); goto out_unlock; } irq = NULL; out_unlock: raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); return irq; } /* * This looks up the virtual interrupt ID to get the corresponding * struct vgic_irq. It also increases the refcount, so any caller is expected * to call vgic_put_irq() once it's finished with this IRQ. */ struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 intid) { /* SGIs and PPIs */ if (intid <= VGIC_MAX_PRIVATE) { intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1); return &vcpu->arch.vgic_cpu.private_irqs[intid]; } /* SPIs */ if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) { intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS); return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; } /* LPIs */ if (intid >= VGIC_MIN_LPI) return vgic_get_lpi(kvm, intid); return NULL; } /* * We can't do anything in here, because we lack the kvm pointer to * lock and remove the item from the lpi_list. So we keep this function * empty and use the return value of kref_put() to trigger the freeing. */ static void vgic_irq_release(struct kref *ref) { } /* * Drop the refcount on the LPI. Must be called with lpi_list_lock held. */ void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq) { struct vgic_dist *dist = &kvm->arch.vgic; if (!kref_put(&irq->refcount, vgic_irq_release)) return; list_del(&irq->lpi_list); dist->lpi_list_count--; kfree(irq); } void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq) { struct vgic_dist *dist = &kvm->arch.vgic; unsigned long flags; if (irq->intid < VGIC_MIN_LPI) return; raw_spin_lock_irqsave(&dist->lpi_list_lock, flags); __vgic_put_lpi_locked(kvm, irq); raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags); } void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq, *tmp; unsigned long flags; raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { if (irq->intid >= VGIC_MIN_LPI) { raw_spin_lock(&irq->irq_lock); list_del(&irq->ap_list); irq->vcpu = NULL; raw_spin_unlock(&irq->irq_lock); vgic_put_irq(vcpu->kvm, irq); } } raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); } void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending) { WARN_ON(irq_set_irqchip_state(irq->host_irq, IRQCHIP_STATE_PENDING, pending)); } bool vgic_get_phys_line_level(struct vgic_irq *irq) { bool line_level; BUG_ON(!irq->hw); if (irq->ops && irq->ops->get_input_level) return irq->ops->get_input_level(irq->intid); WARN_ON(irq_get_irqchip_state(irq->host_irq, IRQCHIP_STATE_PENDING, &line_level)); return line_level; } /* Set/Clear the physical active state */ void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active) { BUG_ON(!irq->hw); WARN_ON(irq_set_irqchip_state(irq->host_irq, IRQCHIP_STATE_ACTIVE, active)); } /** * kvm_vgic_target_oracle - compute the target vcpu for an irq * * @irq: The irq to route. Must be already locked. * * Based on the current state of the interrupt (enabled, pending, * active, vcpu and target_vcpu), compute the next vcpu this should be * given to. Return NULL if this shouldn't be injected at all. * * Requires the IRQ lock to be held. */ static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq) { lockdep_assert_held(&irq->irq_lock); /* If the interrupt is active, it must stay on the current vcpu */ if (irq->active) return irq->vcpu ? : irq->target_vcpu; /* * If the IRQ is not active but enabled and pending, we should direct * it to its configured target VCPU. * If the distributor is disabled, pending interrupts shouldn't be * forwarded. */ if (irq->enabled && irq_is_pending(irq)) { if (unlikely(irq->target_vcpu && !irq->target_vcpu->kvm->arch.vgic.enabled)) return NULL; return irq->target_vcpu; } /* If neither active nor pending and enabled, then this IRQ should not * be queued to any VCPU. */ return NULL; } /* * The order of items in the ap_lists defines how we'll pack things in LRs as * well, the first items in the list being the first things populated in the * LRs. * * A hard rule is that active interrupts can never be pushed out of the LRs * (and therefore take priority) since we cannot reliably trap on deactivation * of IRQs and therefore they have to be present in the LRs. * * Otherwise things should be sorted by the priority field and the GIC * hardware support will take care of preemption of priority groups etc. * * Return negative if "a" sorts before "b", 0 to preserve order, and positive * to sort "b" before "a". */ static int vgic_irq_cmp(void *priv, const struct list_head *a, const struct list_head *b) { struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list); struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list); bool penda, pendb; int ret; /* * list_sort may call this function with the same element when * the list is fairly long. */ if (unlikely(irqa == irqb)) return 0; raw_spin_lock(&irqa->irq_lock); raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING); if (irqa->active || irqb->active) { ret = (int)irqb->active - (int)irqa->active; goto out; } penda = irqa->enabled && irq_is_pending(irqa); pendb = irqb->enabled && irq_is_pending(irqb); if (!penda || !pendb) { ret = (int)pendb - (int)penda; goto out; } /* Both pending and enabled, sort by priority */ ret = irqa->priority - irqb->priority; out: raw_spin_unlock(&irqb->irq_lock); raw_spin_unlock(&irqa->irq_lock); return ret; } /* Must be called with the ap_list_lock held */ static void vgic_sort_ap_list(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; lockdep_assert_held(&vgic_cpu->ap_list_lock); list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp); } /* * Only valid injection if changing level for level-triggered IRQs or for a * rising edge, and in-kernel connected IRQ lines can only be controlled by * their owner. */ static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner) { if (irq->owner != owner) return false; switch (irq->config) { case VGIC_CONFIG_LEVEL: return irq->line_level != level; case VGIC_CONFIG_EDGE: return level; } return false; } /* * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list. * Do the queuing if necessary, taking the right locks in the right order. * Returns true when the IRQ was queued, false otherwise. * * Needs to be entered with the IRQ lock already held, but will return * with all locks dropped. */ bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq, unsigned long flags) { struct kvm_vcpu *vcpu; lockdep_assert_held(&irq->irq_lock); retry: vcpu = vgic_target_oracle(irq); if (irq->vcpu || !vcpu) { /* * If this IRQ is already on a VCPU's ap_list, then it * cannot be moved or modified and there is no more work for * us to do. * * Otherwise, if the irq is not pending and enabled, it does * not need to be inserted into an ap_list and there is also * no more work for us to do. */ raw_spin_unlock_irqrestore(&irq->irq_lock, flags); /* * We have to kick the VCPU here, because we could be * queueing an edge-triggered interrupt for which we * get no EOI maintenance interrupt. In that case, * while the IRQ is already on the VCPU's AP list, the * VCPU could have EOI'ed the original interrupt and * won't see this one until it exits for some other * reason. */ if (vcpu) { kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); kvm_vcpu_kick(vcpu); } return false; } /* * We must unlock the irq lock to take the ap_list_lock where * we are going to insert this new pending interrupt. */ raw_spin_unlock_irqrestore(&irq->irq_lock, flags); /* someone can do stuff here, which we re-check below */ raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags); raw_spin_lock(&irq->irq_lock); /* * Did something change behind our backs? * * There are two cases: * 1) The irq lost its pending state or was disabled behind our * backs and/or it was queued to another VCPU's ap_list. * 2) Someone changed the affinity on this irq behind our * backs and we are now holding the wrong ap_list_lock. * * In both cases, drop the locks and retry. */ if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) { raw_spin_unlock(&irq->irq_lock); raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); raw_spin_lock_irqsave(&irq->irq_lock, flags); goto retry; } /* * Grab a reference to the irq to reflect the fact that it is * now in the ap_list. */ vgic_get_irq_kref(irq); list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head); irq->vcpu = vcpu; raw_spin_unlock(&irq->irq_lock); raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags); kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); kvm_vcpu_kick(vcpu); return true; } /** * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @intid: The INTID to inject a new state to. * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: raise the input signal * false: lower the input signal * @owner: The opaque pointer to the owner of the IRQ being raised to verify * that the caller is allowed to inject this IRQ. Userspace * injections will have owner == NULL. * * The VGIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid, bool level, void *owner) { struct kvm_vcpu *vcpu; struct vgic_irq *irq; unsigned long flags; int ret; trace_vgic_update_irq_pending(cpuid, intid, level); ret = vgic_lazy_init(kvm); if (ret) return ret; vcpu = kvm_get_vcpu(kvm, cpuid); if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS) return -EINVAL; irq = vgic_get_irq(kvm, vcpu, intid); if (!irq) return -EINVAL; raw_spin_lock_irqsave(&irq->irq_lock, flags); if (!vgic_validate_injection(irq, level, owner)) { /* Nothing to see here, move along... */ raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(kvm, irq); return 0; } if (irq->config == VGIC_CONFIG_LEVEL) irq->line_level = level; else irq->pending_latch = true; vgic_queue_irq_unlock(kvm, irq, flags); vgic_put_irq(kvm, irq); return 0; } /* @irq->irq_lock must be held */ static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq, unsigned int host_irq, struct irq_ops *ops) { struct irq_desc *desc; struct irq_data *data; /* * Find the physical IRQ number corresponding to @host_irq */ desc = irq_to_desc(host_irq); if (!desc) { kvm_err("%s: no interrupt descriptor\n", __func__); return -EINVAL; } data = irq_desc_get_irq_data(desc); while (data->parent_data) data = data->parent_data; irq->hw = true; irq->host_irq = host_irq; irq->hwintid = data->hwirq; irq->ops = ops; return 0; } /* @irq->irq_lock must be held */ static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq) { irq->hw = false; irq->hwintid = 0; irq->ops = NULL; } int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq, u32 vintid, struct irq_ops *ops) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); unsigned long flags; int ret; BUG_ON(!irq); raw_spin_lock_irqsave(&irq->irq_lock, flags); ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops); raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); return ret; } /** * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ * @vcpu: The VCPU pointer * @vintid: The INTID of the interrupt * * Reset the active and pending states of a mapped interrupt. Kernel * subsystems injecting mapped interrupts should reset their interrupt lines * when we are doing a reset of the VM. */ void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); unsigned long flags; if (!irq->hw) goto out; raw_spin_lock_irqsave(&irq->irq_lock, flags); irq->active = false; irq->pending_latch = false; irq->line_level = false; raw_spin_unlock_irqrestore(&irq->irq_lock, flags); out: vgic_put_irq(vcpu->kvm, irq); } int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid) { struct vgic_irq *irq; unsigned long flags; if (!vgic_initialized(vcpu->kvm)) return -EAGAIN; irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); BUG_ON(!irq); raw_spin_lock_irqsave(&irq->irq_lock, flags); kvm_vgic_unmap_irq(irq); raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); return 0; } int kvm_vgic_get_map(struct kvm_vcpu *vcpu, unsigned int vintid) { struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); unsigned long flags; int ret = -1; raw_spin_lock_irqsave(&irq->irq_lock, flags); if (irq->hw) ret = irq->hwintid; raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); return ret; } /** * kvm_vgic_set_owner - Set the owner of an interrupt for a VM * * @vcpu: Pointer to the VCPU (used for PPIs) * @intid: The virtual INTID identifying the interrupt (PPI or SPI) * @owner: Opaque pointer to the owner * * Returns 0 if intid is not already used by another in-kernel device and the * owner is set, otherwise returns an error code. */ int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner) { struct vgic_irq *irq; unsigned long flags; int ret = 0; if (!vgic_initialized(vcpu->kvm)) return -EAGAIN; /* SGIs and LPIs cannot be wired up to any device */ if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid)) return -EINVAL; irq = vgic_get_irq(vcpu->kvm, vcpu, intid); raw_spin_lock_irqsave(&irq->irq_lock, flags); if (irq->owner && irq->owner != owner) ret = -EEXIST; else irq->owner = owner; raw_spin_unlock_irqrestore(&irq->irq_lock, flags); return ret; } /** * vgic_prune_ap_list - Remove non-relevant interrupts from the list * * @vcpu: The VCPU pointer * * Go over the list of "interesting" interrupts, and prune those that we * won't have to consider in the near future. */ static void vgic_prune_ap_list(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq, *tmp; DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); retry: raw_spin_lock(&vgic_cpu->ap_list_lock); list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) { struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB; bool target_vcpu_needs_kick = false; raw_spin_lock(&irq->irq_lock); BUG_ON(vcpu != irq->vcpu); target_vcpu = vgic_target_oracle(irq); if (!target_vcpu) { /* * We don't need to process this interrupt any * further, move it off the list. */ list_del(&irq->ap_list); irq->vcpu = NULL; raw_spin_unlock(&irq->irq_lock); /* * This vgic_put_irq call matches the * vgic_get_irq_kref in vgic_queue_irq_unlock, * where we added the LPI to the ap_list. As * we remove the irq from the list, we drop * also drop the refcount. */ vgic_put_irq(vcpu->kvm, irq); continue; } if (target_vcpu == vcpu) { /* We're on the right CPU */ raw_spin_unlock(&irq->irq_lock); continue; } /* This interrupt looks like it has to be migrated. */ raw_spin_unlock(&irq->irq_lock); raw_spin_unlock(&vgic_cpu->ap_list_lock); /* * Ensure locking order by always locking the smallest * ID first. */ if (vcpu->vcpu_id < target_vcpu->vcpu_id) { vcpuA = vcpu; vcpuB = target_vcpu; } else { vcpuA = target_vcpu; vcpuB = vcpu; } raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock); raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock, SINGLE_DEPTH_NESTING); raw_spin_lock(&irq->irq_lock); /* * If the affinity has been preserved, move the * interrupt around. Otherwise, it means things have * changed while the interrupt was unlocked, and we * need to replay this. * * In all cases, we cannot trust the list not to have * changed, so we restart from the beginning. */ if (target_vcpu == vgic_target_oracle(irq)) { struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu; list_del(&irq->ap_list); irq->vcpu = target_vcpu; list_add_tail(&irq->ap_list, &new_cpu->ap_list_head); target_vcpu_needs_kick = true; } raw_spin_unlock(&irq->irq_lock); raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock); raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock); if (target_vcpu_needs_kick) { kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu); kvm_vcpu_kick(target_vcpu); } goto retry; } raw_spin_unlock(&vgic_cpu->ap_list_lock); } static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_fold_lr_state(vcpu); else vgic_v3_fold_lr_state(vcpu); } /* Requires the irq_lock to be held. */ static inline void vgic_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr) { lockdep_assert_held(&irq->irq_lock); if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_populate_lr(vcpu, irq, lr); else vgic_v3_populate_lr(vcpu, irq, lr); } static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_clear_lr(vcpu, lr); else vgic_v3_clear_lr(vcpu, lr); } static inline void vgic_set_underflow(struct kvm_vcpu *vcpu) { if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_set_underflow(vcpu); else vgic_v3_set_underflow(vcpu); } /* Requires the ap_list_lock to be held. */ static int compute_ap_list_depth(struct kvm_vcpu *vcpu, bool *multi_sgi) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq; int count = 0; *multi_sgi = false; lockdep_assert_held(&vgic_cpu->ap_list_lock); list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { int w; raw_spin_lock(&irq->irq_lock); /* GICv2 SGIs can count for more than one... */ w = vgic_irq_get_lr_count(irq); raw_spin_unlock(&irq->irq_lock); count += w; *multi_sgi |= (w > 1); } return count; } /* Requires the VCPU's ap_list_lock to be held. */ static void vgic_flush_lr_state(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq; int count; bool multi_sgi; u8 prio = 0xff; int i = 0; lockdep_assert_held(&vgic_cpu->ap_list_lock); count = compute_ap_list_depth(vcpu, &multi_sgi); if (count > kvm_vgic_global_state.nr_lr || multi_sgi) vgic_sort_ap_list(vcpu); count = 0; list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { raw_spin_lock(&irq->irq_lock); /* * If we have multi-SGIs in the pipeline, we need to * guarantee that they are all seen before any IRQ of * lower priority. In that case, we need to filter out * these interrupts by exiting early. This is easy as * the AP list has been sorted already. */ if (multi_sgi && irq->priority > prio) { _raw_spin_unlock(&irq->irq_lock); break; } if (likely(vgic_target_oracle(irq) == vcpu)) { vgic_populate_lr(vcpu, irq, count++); if (irq->source) prio = irq->priority; } raw_spin_unlock(&irq->irq_lock); if (count == kvm_vgic_global_state.nr_lr) { if (!list_is_last(&irq->ap_list, &vgic_cpu->ap_list_head)) vgic_set_underflow(vcpu); break; } } /* Nuke remaining LRs */ for (i = count ; i < kvm_vgic_global_state.nr_lr; i++) vgic_clear_lr(vcpu, i); if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count; else vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count; } static inline bool can_access_vgic_from_kernel(void) { /* * GICv2 can always be accessed from the kernel because it is * memory-mapped, and VHE systems can access GICv3 EL2 system * registers. */ return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe(); } static inline void vgic_save_state(struct kvm_vcpu *vcpu) { if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) vgic_v2_save_state(vcpu); else __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3); } /* Sync back the hardware VGIC state into our emulation after a guest's run. */ void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { int used_lrs; /* An empty ap_list_head implies used_lrs == 0 */ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) return; if (can_access_vgic_from_kernel()) vgic_save_state(vcpu); if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs; else used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs; if (used_lrs) vgic_fold_lr_state(vcpu); vgic_prune_ap_list(vcpu); } static inline void vgic_restore_state(struct kvm_vcpu *vcpu) { if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif)) vgic_v2_restore_state(vcpu); else __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3); } /* Flush our emulation state into the GIC hardware before entering the guest. */ void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { /* * If there are no virtual interrupts active or pending for this * VCPU, then there is no work to do and we can bail out without * taking any lock. There is a potential race with someone injecting * interrupts to the VCPU, but it is a benign race as the VCPU will * either observe the new interrupt before or after doing this check, * and introducing additional synchronization mechanism doesn't change * this. * * Note that we still need to go through the whole thing if anything * can be directly injected (GICv4). */ if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) && !vgic_supports_direct_msis(vcpu->kvm)) return; DEBUG_SPINLOCK_BUG_ON(!irqs_disabled()); if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) { raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock); vgic_flush_lr_state(vcpu); raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock); } if (can_access_vgic_from_kernel()) vgic_restore_state(vcpu); if (vgic_supports_direct_msis(vcpu->kvm)) vgic_v4_commit(vcpu); } void kvm_vgic_load(struct kvm_vcpu *vcpu) { if (unlikely(!vgic_initialized(vcpu->kvm))) return; if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_load(vcpu); else vgic_v3_load(vcpu); } void kvm_vgic_put(struct kvm_vcpu *vcpu) { if (unlikely(!vgic_initialized(vcpu->kvm))) return; if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_put(vcpu); else vgic_v3_put(vcpu); } void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu) { if (unlikely(!irqchip_in_kernel(vcpu->kvm))) return; if (kvm_vgic_global_state.type == VGIC_V2) vgic_v2_vmcr_sync(vcpu); else vgic_v3_vmcr_sync(vcpu); } int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_irq *irq; bool pending = false; unsigned long flags; struct vgic_vmcr vmcr; if (!vcpu->kvm->arch.vgic.enabled) return false; if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last) return true; vgic_get_vmcr(vcpu, &vmcr); raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags); list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) { raw_spin_lock(&irq->irq_lock); pending = irq_is_pending(irq) && irq->enabled && !irq->active && irq->priority < vmcr.pmr; raw_spin_unlock(&irq->irq_lock); if (pending) break; } raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags); return pending; } void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; unsigned long c; /* * We've injected an interrupt, time to find out who deserves * a good kick... */ kvm_for_each_vcpu(c, vcpu, kvm) { if (kvm_vgic_vcpu_pending_irq(vcpu)) { kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu); kvm_vcpu_kick(vcpu); } } } bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid) { struct vgic_irq *irq; bool map_is_active; unsigned long flags; if (!vgic_initialized(vcpu->kvm)) return false; irq = vgic_get_irq(vcpu->kvm, vcpu, vintid); raw_spin_lock_irqsave(&irq->irq_lock, flags); map_is_active = irq->hw && irq->active; raw_spin_unlock_irqrestore(&irq->irq_lock, flags); vgic_put_irq(vcpu->kvm, irq); return map_is_active; } /* * Level-triggered mapped IRQs are special because we only observe rising * edges as input to the VGIC. * * If the guest never acked the interrupt we have to sample the physical * line and set the line level, because the device state could have changed * or we simply need to process the still pending interrupt later. * * We could also have entered the guest with the interrupt active+pending. * On the next exit, we need to re-evaluate the pending state, as it could * otherwise result in a spurious interrupt by injecting a now potentially * stale pending state. * * If this causes us to lower the level, we have to also clear the physical * active state, since we will otherwise never be told when the interrupt * becomes asserted again. * * Another case is when the interrupt requires a helping hand on * deactivation (no HW deactivation, for example). */ void vgic_irq_handle_resampling(struct vgic_irq *irq, bool lr_deactivated, bool lr_pending) { if (vgic_irq_is_mapped_level(irq)) { bool resample = false; if (unlikely(vgic_irq_needs_resampling(irq))) { resample = !(irq->active || irq->pending_latch); } else if (lr_pending || (lr_deactivated && irq->line_level)) { irq->line_level = vgic_get_phys_line_level(irq); resample = !irq->line_level; } if (resample) vgic_irq_set_phys_active(irq, false); } }