/* SPDX-License-Identifier: GPL-2.0 */ /* * arch/ia64/kernel/entry.S * * Kernel entry points. * * Copyright (C) 1998-2003, 2005 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Copyright (C) 1999, 2002-2003 * Asit Mallick <Asit.K.Mallick@intel.com> * Don Dugger <Don.Dugger@intel.com> * Suresh Siddha <suresh.b.siddha@intel.com> * Fenghua Yu <fenghua.yu@intel.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> */ /* * ia64_switch_to now places correct virtual mapping in in TR2 for * kernel stack. This allows us to handle interrupts without changing * to physical mode. * * Jonathan Nicklin <nicklin@missioncriticallinux.com> * Patrick O'Rourke <orourke@missioncriticallinux.com> * 11/07/2000 */ /* * Copyright (c) 2008 Isaku Yamahata <yamahata at valinux co jp> * VA Linux Systems Japan K.K. * pv_ops. */ /* * Global (preserved) predicate usage on syscall entry/exit path: * * pKStk: See entry.h. * pUStk: See entry.h. * pSys: See entry.h. * pNonSys: !pSys */ #include <linux/export.h> #include <linux/pgtable.h> #include <asm/asmmacro.h> #include <asm/cache.h> #include <asm/errno.h> #include <asm/kregs.h> #include <asm/asm-offsets.h> #include <asm/percpu.h> #include <asm/processor.h> #include <asm/thread_info.h> #include <asm/unistd.h> #include <asm/ftrace.h> #include "minstate.h" /* * execve() is special because in case of success, we need to * setup a null register window frame. */ ENTRY(ia64_execve) /* * Allocate 8 input registers since ptrace() may clobber them */ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) alloc loc1=ar.pfs,8,2,3,0 mov loc0=rp .body mov out0=in0 // filename ;; // stop bit between alloc and call mov out1=in1 // argv mov out2=in2 // envp br.call.sptk.many rp=sys_execve .ret0: cmp4.ge p6,p7=r8,r0 mov ar.pfs=loc1 // restore ar.pfs sxt4 r8=r8 // return 64-bit result ;; stf.spill [sp]=f0 mov rp=loc0 (p6) mov ar.pfs=r0 // clear ar.pfs on success (p7) br.ret.sptk.many rp /* * In theory, we'd have to zap this state only to prevent leaking of * security sensitive state (e.g., if current->mm->dumpable is zero). However, * this executes in less than 20 cycles even on Itanium, so it's not worth * optimizing for...). */ mov ar.unat=0; mov ar.lc=0 mov r4=0; mov f2=f0; mov b1=r0 mov r5=0; mov f3=f0; mov b2=r0 mov r6=0; mov f4=f0; mov b3=r0 mov r7=0; mov f5=f0; mov b4=r0 ldf.fill f12=[sp]; mov f13=f0; mov b5=r0 ldf.fill f14=[sp]; ldf.fill f15=[sp]; mov f16=f0 ldf.fill f17=[sp]; ldf.fill f18=[sp]; mov f19=f0 ldf.fill f20=[sp]; ldf.fill f21=[sp]; mov f22=f0 ldf.fill f23=[sp]; ldf.fill f24=[sp]; mov f25=f0 ldf.fill f26=[sp]; ldf.fill f27=[sp]; mov f28=f0 ldf.fill f29=[sp]; ldf.fill f30=[sp]; mov f31=f0 br.ret.sptk.many rp END(ia64_execve) /* * sys_clone2(u64 flags, u64 ustack_base, u64 ustack_size, u64 parent_tidptr, u64 child_tidptr, * u64 tls) */ GLOBAL_ENTRY(sys_clone2) /* * Allocate 8 input registers since ptrace() may clobber them */ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) alloc r16=ar.pfs,8,2,6,0 DO_SAVE_SWITCH_STACK mov loc0=rp mov loc1=r16 // save ar.pfs across ia64_clone .body mov out0=in0 mov out1=in1 mov out2=in2 mov out3=in3 mov out4=in4 mov out5=in5 br.call.sptk.many rp=ia64_clone .ret1: .restore sp adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rp END(sys_clone2) /* * sys_clone(u64 flags, u64 ustack_base, u64 parent_tidptr, u64 child_tidptr, u64 tls) * Deprecated. Use sys_clone2() instead. */ GLOBAL_ENTRY(sys_clone) /* * Allocate 8 input registers since ptrace() may clobber them */ .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) alloc r16=ar.pfs,8,2,6,0 DO_SAVE_SWITCH_STACK mov loc0=rp mov loc1=r16 // save ar.pfs across ia64_clone .body mov out0=in0 mov out1=in1 mov out2=16 // stacksize (compensates for 16-byte scratch area) mov out3=in3 mov out4=in4 mov out5=in5 br.call.sptk.many rp=ia64_clone .ret2: .restore sp adds sp=IA64_SWITCH_STACK_SIZE,sp // pop the switch stack mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rp END(sys_clone) /* * prev_task <- ia64_switch_to(struct task_struct *next) * With Ingo's new scheduler, interrupts are disabled when this routine gets * called. The code starting at .map relies on this. The rest of the code * doesn't care about the interrupt masking status. */ GLOBAL_ENTRY(ia64_switch_to) .prologue alloc r16=ar.pfs,1,0,0,0 DO_SAVE_SWITCH_STACK .body adds r22=IA64_TASK_THREAD_KSP_OFFSET,r13 movl r25=init_task mov r27=IA64_KR(CURRENT_STACK) adds r21=IA64_TASK_THREAD_KSP_OFFSET,in0 dep r20=0,in0,61,3 // physical address of "next" ;; st8 [r22]=sp // save kernel stack pointer of old task shr.u r26=r20,IA64_GRANULE_SHIFT cmp.eq p7,p6=r25,in0 ;; /* * If we've already mapped this task's page, we can skip doing it again. */ (p6) cmp.eq p7,p6=r26,r27 (p6) br.cond.dpnt .map ;; .done: ld8 sp=[r21] // load kernel stack pointer of new task MOV_TO_KR(CURRENT, in0, r8, r9) // update "current" application register mov r8=r13 // return pointer to previously running task mov r13=in0 // set "current" pointer ;; DO_LOAD_SWITCH_STACK #ifdef CONFIG_SMP sync.i // ensure "fc"s done by this CPU are visible on other CPUs #endif br.ret.sptk.many rp // boogie on out in new context .map: RSM_PSR_IC(r25) // interrupts (psr.i) are already disabled here movl r25=PAGE_KERNEL ;; srlz.d or r23=r25,r20 // construct PA | page properties mov r25=IA64_GRANULE_SHIFT<<2 ;; MOV_TO_ITIR(p0, r25, r8) MOV_TO_IFA(in0, r8) // VA of next task... ;; mov r25=IA64_TR_CURRENT_STACK MOV_TO_KR(CURRENT_STACK, r26, r8, r9) // remember last page we mapped... ;; itr.d dtr[r25]=r23 // wire in new mapping... SSM_PSR_IC_AND_SRLZ_D(r8, r9) // reenable the psr.ic bit br.cond.sptk .done END(ia64_switch_to) /* * Note that interrupts are enabled during save_switch_stack and load_switch_stack. This * means that we may get an interrupt with "sp" pointing to the new kernel stack while * ar.bspstore is still pointing to the old kernel backing store area. Since ar.rsc, * ar.rnat, ar.bsp, and ar.bspstore are all preserved by interrupts, this is not a * problem. Also, we don't need to specify unwind information for preserved registers * that are not modified in save_switch_stack as the right unwind information is already * specified at the call-site of save_switch_stack. */ /* * save_switch_stack: * - r16 holds ar.pfs * - b7 holds address to return to * - rp (b0) holds return address to save */ GLOBAL_ENTRY(save_switch_stack) .prologue .altrp b7 flushrs // flush dirty regs to backing store (must be first in insn group) .save @priunat,r17 mov r17=ar.unat // preserve caller's .body #ifdef CONFIG_ITANIUM adds r2=16+128,sp adds r3=16+64,sp adds r14=SW(R4)+16,sp ;; st8.spill [r14]=r4,16 // spill r4 lfetch.fault.excl.nt1 [r3],128 ;; lfetch.fault.excl.nt1 [r2],128 lfetch.fault.excl.nt1 [r3],128 ;; lfetch.fault.excl [r2] lfetch.fault.excl [r3] adds r15=SW(R5)+16,sp #else add r2=16+3*128,sp add r3=16,sp add r14=SW(R4)+16,sp ;; st8.spill [r14]=r4,SW(R6)-SW(R4) // spill r4 and prefetch offset 0x1c0 lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x010 ;; lfetch.fault.excl.nt1 [r3],128 // prefetch offset 0x090 lfetch.fault.excl.nt1 [r2],128 // prefetch offset 0x190 ;; lfetch.fault.excl.nt1 [r3] // prefetch offset 0x110 lfetch.fault.excl.nt1 [r2] // prefetch offset 0x210 adds r15=SW(R5)+16,sp #endif ;; st8.spill [r15]=r5,SW(R7)-SW(R5) // spill r5 mov.m ar.rsc=0 // put RSE in mode: enforced lazy, little endian, pl 0 add r2=SW(F2)+16,sp // r2 = &sw->f2 ;; st8.spill [r14]=r6,SW(B0)-SW(R6) // spill r6 mov.m r18=ar.fpsr // preserve fpsr add r3=SW(F3)+16,sp // r3 = &sw->f3 ;; stf.spill [r2]=f2,32 mov.m r19=ar.rnat mov r21=b0 stf.spill [r3]=f3,32 st8.spill [r15]=r7,SW(B2)-SW(R7) // spill r7 mov r22=b1 ;; // since we're done with the spills, read and save ar.unat: mov.m r29=ar.unat mov.m r20=ar.bspstore mov r23=b2 stf.spill [r2]=f4,32 stf.spill [r3]=f5,32 mov r24=b3 ;; st8 [r14]=r21,SW(B1)-SW(B0) // save b0 st8 [r15]=r23,SW(B3)-SW(B2) // save b2 mov r25=b4 mov r26=b5 ;; st8 [r14]=r22,SW(B4)-SW(B1) // save b1 st8 [r15]=r24,SW(AR_PFS)-SW(B3) // save b3 mov r21=ar.lc // I-unit stf.spill [r2]=f12,32 stf.spill [r3]=f13,32 ;; st8 [r14]=r25,SW(B5)-SW(B4) // save b4 st8 [r15]=r16,SW(AR_LC)-SW(AR_PFS) // save ar.pfs stf.spill [r2]=f14,32 stf.spill [r3]=f15,32 ;; st8 [r14]=r26 // save b5 st8 [r15]=r21 // save ar.lc stf.spill [r2]=f16,32 stf.spill [r3]=f17,32 ;; stf.spill [r2]=f18,32 stf.spill [r3]=f19,32 ;; stf.spill [r2]=f20,32 stf.spill [r3]=f21,32 ;; stf.spill [r2]=f22,32 stf.spill [r3]=f23,32 ;; stf.spill [r2]=f24,32 stf.spill [r3]=f25,32 ;; stf.spill [r2]=f26,32 stf.spill [r3]=f27,32 ;; stf.spill [r2]=f28,32 stf.spill [r3]=f29,32 ;; stf.spill [r2]=f30,SW(AR_UNAT)-SW(F30) stf.spill [r3]=f31,SW(PR)-SW(F31) add r14=SW(CALLER_UNAT)+16,sp ;; st8 [r2]=r29,SW(AR_RNAT)-SW(AR_UNAT) // save ar.unat st8 [r14]=r17,SW(AR_FPSR)-SW(CALLER_UNAT) // save caller_unat mov r21=pr ;; st8 [r2]=r19,SW(AR_BSPSTORE)-SW(AR_RNAT) // save ar.rnat st8 [r3]=r21 // save predicate registers ;; st8 [r2]=r20 // save ar.bspstore st8 [r14]=r18 // save fpsr mov ar.rsc=3 // put RSE back into eager mode, pl 0 br.cond.sptk.many b7 END(save_switch_stack) /* * load_switch_stack: * - "invala" MUST be done at call site (normally in DO_LOAD_SWITCH_STACK) * - b7 holds address to return to * - must not touch r8-r11 */ GLOBAL_ENTRY(load_switch_stack) .prologue .altrp b7 .body lfetch.fault.nt1 [sp] adds r2=SW(AR_BSPSTORE)+16,sp adds r3=SW(AR_UNAT)+16,sp mov ar.rsc=0 // put RSE into enforced lazy mode adds r14=SW(CALLER_UNAT)+16,sp adds r15=SW(AR_FPSR)+16,sp ;; ld8 r27=[r2],(SW(B0)-SW(AR_BSPSTORE)) // bspstore ld8 r29=[r3],(SW(B1)-SW(AR_UNAT)) // unat ;; ld8 r21=[r2],16 // restore b0 ld8 r22=[r3],16 // restore b1 ;; ld8 r23=[r2],16 // restore b2 ld8 r24=[r3],16 // restore b3 ;; ld8 r25=[r2],16 // restore b4 ld8 r26=[r3],16 // restore b5 ;; ld8 r16=[r2],(SW(PR)-SW(AR_PFS)) // ar.pfs ld8 r17=[r3],(SW(AR_RNAT)-SW(AR_LC)) // ar.lc ;; ld8 r28=[r2] // restore pr ld8 r30=[r3] // restore rnat ;; ld8 r18=[r14],16 // restore caller's unat ld8 r19=[r15],24 // restore fpsr ;; ldf.fill f2=[r14],32 ldf.fill f3=[r15],32 ;; ldf.fill f4=[r14],32 ldf.fill f5=[r15],32 ;; ldf.fill f12=[r14],32 ldf.fill f13=[r15],32 ;; ldf.fill f14=[r14],32 ldf.fill f15=[r15],32 ;; ldf.fill f16=[r14],32 ldf.fill f17=[r15],32 ;; ldf.fill f18=[r14],32 ldf.fill f19=[r15],32 mov b0=r21 ;; ldf.fill f20=[r14],32 ldf.fill f21=[r15],32 mov b1=r22 ;; ldf.fill f22=[r14],32 ldf.fill f23=[r15],32 mov b2=r23 ;; mov ar.bspstore=r27 mov ar.unat=r29 // establish unat holding the NaT bits for r4-r7 mov b3=r24 ;; ldf.fill f24=[r14],32 ldf.fill f25=[r15],32 mov b4=r25 ;; ldf.fill f26=[r14],32 ldf.fill f27=[r15],32 mov b5=r26 ;; ldf.fill f28=[r14],32 ldf.fill f29=[r15],32 mov ar.pfs=r16 ;; ldf.fill f30=[r14],32 ldf.fill f31=[r15],24 mov ar.lc=r17 ;; ld8.fill r4=[r14],16 ld8.fill r5=[r15],16 mov pr=r28,-1 ;; ld8.fill r6=[r14],16 ld8.fill r7=[r15],16 mov ar.unat=r18 // restore caller's unat mov ar.rnat=r30 // must restore after bspstore but before rsc! mov ar.fpsr=r19 // restore fpsr mov ar.rsc=3 // put RSE back into eager mode, pl 0 br.cond.sptk.many b7 END(load_switch_stack) /* * Invoke a system call, but do some tracing before and after the call. * We MUST preserve the current register frame throughout this routine * because some system calls (such as ia64_execve) directly * manipulate ar.pfs. */ GLOBAL_ENTRY(ia64_trace_syscall) PT_REGS_UNWIND_INFO(0) /* * We need to preserve the scratch registers f6-f11 in case the system * call is sigreturn. */ adds r16=PT(F6)+16,sp adds r17=PT(F7)+16,sp ;; stf.spill [r16]=f6,32 stf.spill [r17]=f7,32 ;; stf.spill [r16]=f8,32 stf.spill [r17]=f9,32 ;; stf.spill [r16]=f10 stf.spill [r17]=f11 br.call.sptk.many rp=syscall_trace_enter // give parent a chance to catch syscall args cmp.lt p6,p0=r8,r0 // check tracehook adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8 adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10 mov r10=0 (p6) br.cond.sptk strace_error // syscall failed -> adds r16=PT(F6)+16,sp adds r17=PT(F7)+16,sp ;; ldf.fill f6=[r16],32 ldf.fill f7=[r17],32 ;; ldf.fill f8=[r16],32 ldf.fill f9=[r17],32 ;; ldf.fill f10=[r16] ldf.fill f11=[r17] // the syscall number may have changed, so re-load it and re-calculate the // syscall entry-point: adds r15=PT(R15)+16,sp // r15 = &pt_regs.r15 (syscall #) ;; ld8 r15=[r15] mov r3=NR_syscalls - 1 ;; adds r15=-1024,r15 movl r16=sys_call_table ;; shladd r20=r15,3,r16 // r20 = sys_call_table + 8*(syscall-1024) cmp.leu p6,p7=r15,r3 ;; (p6) ld8 r20=[r20] // load address of syscall entry point (p7) movl r20=sys_ni_syscall ;; mov b6=r20 br.call.sptk.many rp=b6 // do the syscall .strace_check_retval: cmp.lt p6,p0=r8,r0 // syscall failed? adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8 adds r3=PT(R10)+16,sp // r3 = &pt_regs.r10 mov r10=0 (p6) br.cond.sptk strace_error // syscall failed -> ;; // avoid RAW on r10 .strace_save_retval: .mem.offset 0,0; st8.spill [r2]=r8 // store return value in slot for r8 .mem.offset 8,0; st8.spill [r3]=r10 // clear error indication in slot for r10 br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value .ret3: (pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk (pUStk) rsm psr.i // disable interrupts br.cond.sptk ia64_work_pending_syscall_end strace_error: ld8 r3=[r2] // load pt_regs.r8 sub r9=0,r8 // negate return value to get errno value ;; cmp.ne p6,p0=r3,r0 // is pt_regs.r8!=0? adds r3=16,r2 // r3=&pt_regs.r10 ;; (p6) mov r10=-1 (p6) mov r8=r9 br.cond.sptk .strace_save_retval END(ia64_trace_syscall) /* * When traced and returning from sigreturn, we invoke syscall_trace but then * go straight to ia64_leave_kernel rather than ia64_leave_syscall. */ GLOBAL_ENTRY(ia64_strace_leave_kernel) PT_REGS_UNWIND_INFO(0) { /* * Some versions of gas generate bad unwind info if the first instruction of a * procedure doesn't go into the first slot of a bundle. This is a workaround. */ nop.m 0 nop.i 0 br.call.sptk.many rp=syscall_trace_leave // give parent a chance to catch return value } .ret4: br.cond.sptk ia64_leave_kernel END(ia64_strace_leave_kernel) ENTRY(call_payload) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(0) /* call the kernel_thread payload; fn is in r4, arg - in r5 */ alloc loc1=ar.pfs,0,3,1,0 mov loc0=rp mov loc2=gp mov out0=r5 // arg ld8 r14 = [r4], 8 // fn.address ;; mov b6 = r14 ld8 gp = [r4] // fn.gp ;; br.call.sptk.many rp=b6 // fn(arg) .ret12: mov gp=loc2 mov rp=loc0 mov ar.pfs=loc1 /* ... and if it has returned, we are going to userland */ cmp.ne pKStk,pUStk=r0,r0 br.ret.sptk.many rp END(call_payload) GLOBAL_ENTRY(ia64_ret_from_clone) PT_REGS_UNWIND_INFO(0) { /* * Some versions of gas generate bad unwind info if the first instruction of a * procedure doesn't go into the first slot of a bundle. This is a workaround. */ nop.m 0 nop.i 0 /* * We need to call schedule_tail() to complete the scheduling process. * Called by ia64_switch_to() after ia64_clone()->copy_thread(). r8 contains the * address of the previously executing task. */ br.call.sptk.many rp=ia64_invoke_schedule_tail } .ret8: (pKStk) br.call.sptk.many rp=call_payload adds r2=TI_FLAGS+IA64_TASK_SIZE,r13 ;; ld4 r2=[r2] ;; mov r8=0 and r2=_TIF_SYSCALL_TRACEAUDIT,r2 ;; cmp.ne p6,p0=r2,r0 (p6) br.cond.spnt .strace_check_retval ;; // added stop bits to prevent r8 dependency END(ia64_ret_from_clone) // fall through GLOBAL_ENTRY(ia64_ret_from_syscall) PT_REGS_UNWIND_INFO(0) cmp.ge p6,p7=r8,r0 // syscall executed successfully? adds r2=PT(R8)+16,sp // r2 = &pt_regs.r8 mov r10=r0 // clear error indication in r10 (p7) br.cond.spnt handle_syscall_error // handle potential syscall failure END(ia64_ret_from_syscall) // fall through /* * ia64_leave_syscall(): Same as ia64_leave_kernel, except that it doesn't * need to switch to bank 0 and doesn't restore the scratch registers. * To avoid leaking kernel bits, the scratch registers are set to * the following known-to-be-safe values: * * r1: restored (global pointer) * r2: cleared * r3: 1 (when returning to user-level) * r8-r11: restored (syscall return value(s)) * r12: restored (user-level stack pointer) * r13: restored (user-level thread pointer) * r14: set to __kernel_syscall_via_epc * r15: restored (syscall #) * r16-r17: cleared * r18: user-level b6 * r19: cleared * r20: user-level ar.fpsr * r21: user-level b0 * r22: cleared * r23: user-level ar.bspstore * r24: user-level ar.rnat * r25: user-level ar.unat * r26: user-level ar.pfs * r27: user-level ar.rsc * r28: user-level ip * r29: user-level psr * r30: user-level cfm * r31: user-level pr * f6-f11: cleared * pr: restored (user-level pr) * b0: restored (user-level rp) * b6: restored * b7: set to __kernel_syscall_via_epc * ar.unat: restored (user-level ar.unat) * ar.pfs: restored (user-level ar.pfs) * ar.rsc: restored (user-level ar.rsc) * ar.rnat: restored (user-level ar.rnat) * ar.bspstore: restored (user-level ar.bspstore) * ar.fpsr: restored (user-level ar.fpsr) * ar.ccv: cleared * ar.csd: cleared * ar.ssd: cleared */ GLOBAL_ENTRY(ia64_leave_syscall) PT_REGS_UNWIND_INFO(0) /* * work.need_resched etc. mustn't get changed by this CPU before it returns to * user- or fsys-mode, hence we disable interrupts early on. * * p6 controls whether current_thread_info()->flags needs to be check for * extra work. We always check for extra work when returning to user-level. * With CONFIG_PREEMPTION, we also check for extra work when the preempt_count * is 0. After extra work processing has been completed, execution * resumes at ia64_work_processed_syscall with p6 set to 1 if the extra-work-check * needs to be redone. */ #ifdef CONFIG_PREEMPTION RSM_PSR_I(p0, r2, r18) // disable interrupts cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall (pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13 ;; .pred.rel.mutex pUStk,pKStk (pKStk) ld4 r21=[r20] // r21 <- preempt_count (pUStk) mov r21=0 // r21 <- 0 ;; cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0) #else /* !CONFIG_PREEMPTION */ RSM_PSR_I(pUStk, r2, r18) cmp.eq pLvSys,p0=r0,r0 // pLvSys=1: leave from syscall (pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk #endif .global ia64_work_processed_syscall; ia64_work_processed_syscall: #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE adds r2=PT(LOADRS)+16,r12 MOV_FROM_ITC(pUStk, p9, r22, r19) // fetch time at leave adds r18=TI_FLAGS+IA64_TASK_SIZE,r13 ;; (p6) ld4 r31=[r18] // load current_thread_info()->flags ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs" adds r3=PT(AR_BSPSTORE)+16,r12 // deferred ;; #else adds r2=PT(LOADRS)+16,r12 adds r3=PT(AR_BSPSTORE)+16,r12 adds r18=TI_FLAGS+IA64_TASK_SIZE,r13 ;; (p6) ld4 r31=[r18] // load current_thread_info()->flags ld8 r19=[r2],PT(B6)-PT(LOADRS) // load ar.rsc value for "loadrs" nop.i 0 ;; #endif mov r16=ar.bsp // M2 get existing backing store pointer ld8 r18=[r2],PT(R9)-PT(B6) // load b6 (p6) and r15=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE? ;; ld8 r23=[r3],PT(R11)-PT(AR_BSPSTORE) // load ar.bspstore (may be garbage) (p6) cmp4.ne.unc p6,p0=r15, r0 // any special work pending? (p6) br.cond.spnt .work_pending_syscall ;; // start restoring the state saved on the kernel stack (struct pt_regs): ld8 r9=[r2],PT(CR_IPSR)-PT(R9) ld8 r11=[r3],PT(CR_IIP)-PT(R11) (pNonSys) break 0 // bug check: we shouldn't be here if pNonSys is TRUE! ;; invala // M0|1 invalidate ALAT RSM_PSR_I_IC(r28, r29, r30) // M2 turn off interrupts and interruption collection cmp.eq p9,p0=r0,r0 // A set p9 to indicate that we should restore cr.ifs ld8 r29=[r2],16 // M0|1 load cr.ipsr ld8 r28=[r3],16 // M0|1 load cr.iip #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE (pUStk) add r14=TI_AC_LEAVE+IA64_TASK_SIZE,r13 ;; ld8 r30=[r2],16 // M0|1 load cr.ifs ld8 r25=[r3],16 // M0|1 load ar.unat (pUStk) add r15=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 ;; #else mov r22=r0 // A clear r22 ;; ld8 r30=[r2],16 // M0|1 load cr.ifs ld8 r25=[r3],16 // M0|1 load ar.unat (pUStk) add r14=IA64_TASK_THREAD_ON_USTACK_OFFSET,r13 ;; #endif ld8 r26=[r2],PT(B0)-PT(AR_PFS) // M0|1 load ar.pfs MOV_FROM_PSR(pKStk, r22, r21) // M2 read PSR now that interrupts are disabled nop 0 ;; ld8 r21=[r2],PT(AR_RNAT)-PT(B0) // M0|1 load b0 ld8 r27=[r3],PT(PR)-PT(AR_RSC) // M0|1 load ar.rsc mov f6=f0 // F clear f6 ;; ld8 r24=[r2],PT(AR_FPSR)-PT(AR_RNAT) // M0|1 load ar.rnat (may be garbage) ld8 r31=[r3],PT(R1)-PT(PR) // M0|1 load predicates mov f7=f0 // F clear f7 ;; ld8 r20=[r2],PT(R12)-PT(AR_FPSR) // M0|1 load ar.fpsr ld8.fill r1=[r3],16 // M0|1 load r1 (pUStk) mov r17=1 // A ;; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE (pUStk) st1 [r15]=r17 // M2|3 #else (pUStk) st1 [r14]=r17 // M2|3 #endif ld8.fill r13=[r3],16 // M0|1 mov f8=f0 // F clear f8 ;; ld8.fill r12=[r2] // M0|1 restore r12 (sp) ld8.fill r15=[r3] // M0|1 restore r15 mov b6=r18 // I0 restore b6 LOAD_PHYS_STACK_REG_SIZE(r17) mov f9=f0 // F clear f9 (pKStk) br.cond.dpnt.many skip_rbs_switch // B srlz.d // M0 ensure interruption collection is off (for cover) shr.u r18=r19,16 // I0|1 get byte size of existing "dirty" partition COVER // B add current frame into dirty partition & set cr.ifs ;; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE mov r19=ar.bsp // M2 get new backing store pointer st8 [r14]=r22 // M save time at leave mov f10=f0 // F clear f10 mov r22=r0 // A clear r22 movl r14=__kernel_syscall_via_epc // X ;; #else mov r19=ar.bsp // M2 get new backing store pointer mov f10=f0 // F clear f10 nop.m 0 movl r14=__kernel_syscall_via_epc // X ;; #endif mov.m ar.csd=r0 // M2 clear ar.csd mov.m ar.ccv=r0 // M2 clear ar.ccv mov b7=r14 // I0 clear b7 (hint with __kernel_syscall_via_epc) mov.m ar.ssd=r0 // M2 clear ar.ssd mov f11=f0 // F clear f11 br.cond.sptk.many rbs_switch // B END(ia64_leave_syscall) GLOBAL_ENTRY(ia64_leave_kernel) PT_REGS_UNWIND_INFO(0) /* * work.need_resched etc. mustn't get changed by this CPU before it returns to * user- or fsys-mode, hence we disable interrupts early on. * * p6 controls whether current_thread_info()->flags needs to be check for * extra work. We always check for extra work when returning to user-level. * With CONFIG_PREEMPTION, we also check for extra work when the preempt_count * is 0. After extra work processing has been completed, execution * resumes at .work_processed_syscall with p6 set to 1 if the extra-work-check * needs to be redone. */ #ifdef CONFIG_PREEMPTION RSM_PSR_I(p0, r17, r31) // disable interrupts cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel (pKStk) adds r20=TI_PRE_COUNT+IA64_TASK_SIZE,r13 ;; .pred.rel.mutex pUStk,pKStk (pKStk) ld4 r21=[r20] // r21 <- preempt_count (pUStk) mov r21=0 // r21 <- 0 ;; cmp.eq p6,p0=r21,r0 // p6 <- pUStk || (preempt_count == 0) #else RSM_PSR_I(pUStk, r17, r31) cmp.eq p0,pLvSys=r0,r0 // pLvSys=0: leave from kernel (pUStk) cmp.eq.unc p6,p0=r0,r0 // p6 <- pUStk #endif .work_processed_kernel: adds r17=TI_FLAGS+IA64_TASK_SIZE,r13 ;; (p6) ld4 r31=[r17] // load current_thread_info()->flags adds r21=PT(PR)+16,r12 ;; lfetch [r21],PT(CR_IPSR)-PT(PR) adds r2=PT(B6)+16,r12 adds r3=PT(R16)+16,r12 ;; lfetch [r21] ld8 r28=[r2],8 // load b6 adds r29=PT(R24)+16,r12 ld8.fill r16=[r3],PT(AR_CSD)-PT(R16) adds r30=PT(AR_CCV)+16,r12 (p6) and r19=TIF_WORK_MASK,r31 // any work other than TIF_SYSCALL_TRACE? ;; ld8.fill r24=[r29] ld8 r15=[r30] // load ar.ccv (p6) cmp4.ne.unc p6,p0=r19, r0 // any special work pending? ;; ld8 r29=[r2],16 // load b7 ld8 r30=[r3],16 // load ar.csd (p6) br.cond.spnt .work_pending ;; ld8 r31=[r2],16 // load ar.ssd ld8.fill r8=[r3],16 ;; ld8.fill r9=[r2],16 ld8.fill r10=[r3],PT(R17)-PT(R10) ;; ld8.fill r11=[r2],PT(R18)-PT(R11) ld8.fill r17=[r3],16 ;; ld8.fill r18=[r2],16 ld8.fill r19=[r3],16 ;; ld8.fill r20=[r2],16 ld8.fill r21=[r3],16 mov ar.csd=r30 mov ar.ssd=r31 ;; RSM_PSR_I_IC(r23, r22, r25) // initiate turning off of interrupt and interruption collection invala // invalidate ALAT ;; ld8.fill r22=[r2],24 ld8.fill r23=[r3],24 mov b6=r28 ;; ld8.fill r25=[r2],16 ld8.fill r26=[r3],16 mov b7=r29 ;; ld8.fill r27=[r2],16 ld8.fill r28=[r3],16 ;; ld8.fill r29=[r2],16 ld8.fill r30=[r3],24 ;; ld8.fill r31=[r2],PT(F9)-PT(R31) adds r3=PT(F10)-PT(F6),r3 ;; ldf.fill f9=[r2],PT(F6)-PT(F9) ldf.fill f10=[r3],PT(F8)-PT(F10) ;; ldf.fill f6=[r2],PT(F7)-PT(F6) ;; ldf.fill f7=[r2],PT(F11)-PT(F7) ldf.fill f8=[r3],32 ;; srlz.d // ensure that inter. collection is off (VHPT is don't care, since text is pinned) mov ar.ccv=r15 ;; ldf.fill f11=[r2] BSW_0(r2, r3, r15) // switch back to bank 0 (no stop bit required beforehand...) ;; (pUStk) mov r18=IA64_KR(CURRENT)// M2 (12 cycle read latency) adds r16=PT(CR_IPSR)+16,r12 adds r17=PT(CR_IIP)+16,r12 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE .pred.rel.mutex pUStk,pKStk MOV_FROM_PSR(pKStk, r22, r29) // M2 read PSR now that interrupts are disabled MOV_FROM_ITC(pUStk, p9, r22, r29) // M fetch time at leave nop.i 0 ;; #else MOV_FROM_PSR(pKStk, r22, r29) // M2 read PSR now that interrupts are disabled nop.i 0 nop.i 0 ;; #endif ld8 r29=[r16],16 // load cr.ipsr ld8 r28=[r17],16 // load cr.iip ;; ld8 r30=[r16],16 // load cr.ifs ld8 r25=[r17],16 // load ar.unat ;; ld8 r26=[r16],16 // load ar.pfs ld8 r27=[r17],16 // load ar.rsc cmp.eq p9,p0=r0,r0 // set p9 to indicate that we should restore cr.ifs ;; ld8 r24=[r16],16 // load ar.rnat (may be garbage) ld8 r23=[r17],16 // load ar.bspstore (may be garbage) ;; ld8 r31=[r16],16 // load predicates ld8 r21=[r17],16 // load b0 ;; ld8 r19=[r16],16 // load ar.rsc value for "loadrs" ld8.fill r1=[r17],16 // load r1 ;; ld8.fill r12=[r16],16 ld8.fill r13=[r17],16 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE (pUStk) adds r3=TI_AC_LEAVE+IA64_TASK_SIZE,r18 #else (pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18 #endif ;; ld8 r20=[r16],16 // ar.fpsr ld8.fill r15=[r17],16 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE (pUStk) adds r18=IA64_TASK_THREAD_ON_USTACK_OFFSET,r18 // deferred #endif ;; ld8.fill r14=[r16],16 ld8.fill r2=[r17] (pUStk) mov r17=1 ;; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE // mmi_ : ld8 st1 shr;; mmi_ : st8 st1 shr;; // mib : mov add br -> mib : ld8 add br // bbb_ : br nop cover;; mbb_ : mov br cover;; // // no one require bsp in r16 if (pKStk) branch is selected. (pUStk) st8 [r3]=r22 // save time at leave (pUStk) st1 [r18]=r17 // restore current->thread.on_ustack shr.u r18=r19,16 // get byte size of existing "dirty" partition ;; ld8.fill r3=[r16] // deferred LOAD_PHYS_STACK_REG_SIZE(r17) (pKStk) br.cond.dpnt skip_rbs_switch mov r16=ar.bsp // get existing backing store pointer #else ld8.fill r3=[r16] (pUStk) st1 [r18]=r17 // restore current->thread.on_ustack shr.u r18=r19,16 // get byte size of existing "dirty" partition ;; mov r16=ar.bsp // get existing backing store pointer LOAD_PHYS_STACK_REG_SIZE(r17) (pKStk) br.cond.dpnt skip_rbs_switch #endif /* * Restore user backing store. * * NOTE: alloc, loadrs, and cover can't be predicated. */ (pNonSys) br.cond.dpnt dont_preserve_current_frame COVER // add current frame into dirty partition and set cr.ifs ;; mov r19=ar.bsp // get new backing store pointer rbs_switch: sub r16=r16,r18 // krbs = old bsp - size of dirty partition cmp.ne p9,p0=r0,r0 // clear p9 to skip restore of cr.ifs ;; sub r19=r19,r16 // calculate total byte size of dirty partition add r18=64,r18 // don't force in0-in7 into memory... ;; shl r19=r19,16 // shift size of dirty partition into loadrs position ;; dont_preserve_current_frame: /* * To prevent leaking bits between the kernel and user-space, * we must clear the stacked registers in the "invalid" partition here. * Not pretty, but at least it's fast (3.34 registers/cycle on Itanium, * 5 registers/cycle on McKinley). */ # define pRecurse p6 # define pReturn p7 #ifdef CONFIG_ITANIUM # define Nregs 10 #else # define Nregs 14 #endif alloc loc0=ar.pfs,2,Nregs-2,2,0 shr.u loc1=r18,9 // RNaTslots <= floor(dirtySize / (64*8)) sub r17=r17,r18 // r17 = (physStackedSize + 8) - dirtySize ;; mov ar.rsc=r19 // load ar.rsc to be used for "loadrs" shladd in0=loc1,3,r17 mov in1=0 ;; TEXT_ALIGN(32) rse_clear_invalid: #ifdef CONFIG_ITANIUM // cycle 0 { .mii alloc loc0=ar.pfs,2,Nregs-2,2,0 cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse add out0=-Nregs*8,in0 }{ .mfb add out1=1,in1 // increment recursion count nop.f 0 nop.b 0 // can't do br.call here because of alloc (WAW on CFM) ;; }{ .mfi // cycle 1 mov loc1=0 nop.f 0 mov loc2=0 }{ .mib mov loc3=0 mov loc4=0 (pRecurse) br.call.sptk.many b0=rse_clear_invalid }{ .mfi // cycle 2 mov loc5=0 nop.f 0 cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret }{ .mib mov loc6=0 mov loc7=0 (pReturn) br.ret.sptk.many b0 } #else /* !CONFIG_ITANIUM */ alloc loc0=ar.pfs,2,Nregs-2,2,0 cmp.lt pRecurse,p0=Nregs*8,in0 // if more than Nregs regs left to clear, (re)curse add out0=-Nregs*8,in0 add out1=1,in1 // increment recursion count mov loc1=0 mov loc2=0 ;; mov loc3=0 mov loc4=0 mov loc5=0 mov loc6=0 mov loc7=0 (pRecurse) br.call.dptk.few b0=rse_clear_invalid ;; mov loc8=0 mov loc9=0 cmp.ne pReturn,p0=r0,in1 // if recursion count != 0, we need to do a br.ret mov loc10=0 mov loc11=0 (pReturn) br.ret.dptk.many b0 #endif /* !CONFIG_ITANIUM */ # undef pRecurse # undef pReturn ;; alloc r17=ar.pfs,0,0,0,0 // drop current register frame ;; loadrs ;; skip_rbs_switch: mov ar.unat=r25 // M2 (pKStk) extr.u r22=r22,21,1 // I0 extract current value of psr.pp from r22 (pLvSys)mov r19=r0 // A clear r19 for leave_syscall, no-op otherwise ;; (pUStk) mov ar.bspstore=r23 // M2 (pKStk) dep r29=r22,r29,21,1 // I0 update ipsr.pp with psr.pp (pLvSys)mov r16=r0 // A clear r16 for leave_syscall, no-op otherwise ;; MOV_TO_IPSR(p0, r29, r25) // M2 mov ar.pfs=r26 // I0 (pLvSys)mov r17=r0 // A clear r17 for leave_syscall, no-op otherwise MOV_TO_IFS(p9, r30, r25)// M2 mov b0=r21 // I0 (pLvSys)mov r18=r0 // A clear r18 for leave_syscall, no-op otherwise mov ar.fpsr=r20 // M2 MOV_TO_IIP(r28, r25) // M2 nop 0 ;; (pUStk) mov ar.rnat=r24 // M2 must happen with RSE in lazy mode nop 0 (pLvSys)mov r2=r0 mov ar.rsc=r27 // M2 mov pr=r31,-1 // I0 RFI // B /* * On entry: * r20 = ¤t->thread_info->pre_count (if CONFIG_PREEMPTION) * r31 = current->thread_info->flags * On exit: * p6 = TRUE if work-pending-check needs to be redone * * Interrupts are disabled on entry, reenabled depend on work, and * disabled on exit. */ .work_pending_syscall: add r2=-8,r2 add r3=-8,r3 ;; st8 [r2]=r8 st8 [r3]=r10 .work_pending: tbit.z p6,p0=r31,TIF_NEED_RESCHED // is resched not needed? (p6) br.cond.sptk.few .notify br.call.spnt.many rp=preempt_schedule_irq .ret9: cmp.eq p6,p0=r0,r0 // p6 <- 1 (re-check) (pLvSys)br.cond.sptk.few ia64_work_pending_syscall_end br.cond.sptk.many .work_processed_kernel .notify: (pUStk) br.call.spnt.many rp=notify_resume_user .ret10: cmp.ne p6,p0=r0,r0 // p6 <- 0 (don't re-check) (pLvSys)br.cond.sptk.few ia64_work_pending_syscall_end br.cond.sptk.many .work_processed_kernel .global ia64_work_pending_syscall_end; ia64_work_pending_syscall_end: adds r2=PT(R8)+16,r12 adds r3=PT(R10)+16,r12 ;; ld8 r8=[r2] ld8 r10=[r3] br.cond.sptk.many ia64_work_processed_syscall END(ia64_leave_kernel) ENTRY(handle_syscall_error) /* * Some system calls (e.g., ptrace, mmap) can return arbitrary values which could * lead us to mistake a negative return value as a failed syscall. Those syscall * must deposit a non-zero value in pt_regs.r8 to indicate an error. If * pt_regs.r8 is zero, we assume that the call completed successfully. */ PT_REGS_UNWIND_INFO(0) ld8 r3=[r2] // load pt_regs.r8 ;; cmp.eq p6,p7=r3,r0 // is pt_regs.r8==0? ;; (p7) mov r10=-1 (p7) sub r8=0,r8 // negate return value to get errno br.cond.sptk ia64_leave_syscall END(handle_syscall_error) /* * Invoke schedule_tail(task) while preserving in0-in7, which may be needed * in case a system call gets restarted. */ GLOBAL_ENTRY(ia64_invoke_schedule_tail) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) alloc loc1=ar.pfs,8,2,1,0 mov loc0=rp mov out0=r8 // Address of previous task ;; br.call.sptk.many rp=schedule_tail .ret11: mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rp END(ia64_invoke_schedule_tail) /* * Setup stack and call do_notify_resume_user(), keeping interrupts * disabled. * * Note that pSys and pNonSys need to be set up by the caller. * We declare 8 input registers so the system call args get preserved, * in case we need to restart a system call. */ GLOBAL_ENTRY(notify_resume_user) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(8) alloc loc1=ar.pfs,8,2,3,0 // preserve all eight input regs in case of syscall restart! mov r9=ar.unat mov loc0=rp // save return address mov out0=0 // there is no "oldset" adds out1=8,sp // out1=&sigscratch->ar_pfs (pSys) mov out2=1 // out2==1 => we're in a syscall ;; (pNonSys) mov out2=0 // out2==0 => not a syscall .fframe 16 .spillsp ar.unat, 16 st8 [sp]=r9,-16 // allocate space for ar.unat and save it st8 [out1]=loc1,-8 // save ar.pfs, out1=&sigscratch .body br.call.sptk.many rp=do_notify_resume_user .ret15: .restore sp adds sp=16,sp // pop scratch stack space ;; ld8 r9=[sp] // load new unat from sigscratch->scratch_unat mov rp=loc0 ;; mov ar.unat=r9 mov ar.pfs=loc1 br.ret.sptk.many rp END(notify_resume_user) ENTRY(sys_rt_sigreturn) PT_REGS_UNWIND_INFO(0) /* * Allocate 8 input registers since ptrace() may clobber them */ alloc r2=ar.pfs,8,0,1,0 .prologue PT_REGS_SAVES(16) adds sp=-16,sp .body cmp.eq pNonSys,pSys=r0,r0 // sigreturn isn't a normal syscall... ;; /* * leave_kernel() restores f6-f11 from pt_regs, but since the streamlined * syscall-entry path does not save them we save them here instead. Note: we * don't need to save any other registers that are not saved by the stream-lined * syscall path, because restore_sigcontext() restores them. */ adds r16=PT(F6)+32,sp adds r17=PT(F7)+32,sp ;; stf.spill [r16]=f6,32 stf.spill [r17]=f7,32 ;; stf.spill [r16]=f8,32 stf.spill [r17]=f9,32 ;; stf.spill [r16]=f10 stf.spill [r17]=f11 adds out0=16,sp // out0 = &sigscratch br.call.sptk.many rp=ia64_rt_sigreturn .ret19: .restore sp,0 adds sp=16,sp ;; ld8 r9=[sp] // load new ar.unat mov.sptk b7=r8,ia64_leave_kernel ;; mov ar.unat=r9 br.many b7 END(sys_rt_sigreturn) GLOBAL_ENTRY(ia64_prepare_handle_unaligned) .prologue /* * r16 = fake ar.pfs, we simply need to make sure privilege is still 0 */ mov r16=r0 DO_SAVE_SWITCH_STACK br.call.sptk.many rp=ia64_handle_unaligned // stack frame setup in ivt .ret21: .body DO_LOAD_SWITCH_STACK br.cond.sptk.many rp // goes to ia64_leave_kernel END(ia64_prepare_handle_unaligned) // // unw_init_running(void (*callback)(info, arg), void *arg) // # define EXTRA_FRAME_SIZE ((UNW_FRAME_INFO_SIZE+15)&~15) GLOBAL_ENTRY(unw_init_running) .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2) alloc loc1=ar.pfs,2,3,3,0 ;; ld8 loc2=[in0],8 mov loc0=rp mov r16=loc1 DO_SAVE_SWITCH_STACK .body .prologue ASM_UNW_PRLG_RP|ASM_UNW_PRLG_PFS, ASM_UNW_PRLG_GRSAVE(2) .fframe IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE SWITCH_STACK_SAVES(EXTRA_FRAME_SIZE) adds sp=-EXTRA_FRAME_SIZE,sp .body ;; adds out0=16,sp // &info mov out1=r13 // current adds out2=16+EXTRA_FRAME_SIZE,sp // &switch_stack br.call.sptk.many rp=unw_init_frame_info 1: adds out0=16,sp // &info mov b6=loc2 mov loc2=gp // save gp across indirect function call ;; ld8 gp=[in0] mov out1=in1 // arg br.call.sptk.many rp=b6 // invoke the callback function 1: mov gp=loc2 // restore gp // For now, we don't allow changing registers from within // unw_init_running; if we ever want to allow that, we'd // have to do a load_switch_stack here: .restore sp adds sp=IA64_SWITCH_STACK_SIZE+EXTRA_FRAME_SIZE,sp mov ar.pfs=loc1 mov rp=loc0 br.ret.sptk.many rp END(unw_init_running) EXPORT_SYMBOL(unw_init_running) #ifdef CONFIG_FUNCTION_TRACER #ifdef CONFIG_DYNAMIC_FTRACE GLOBAL_ENTRY(_mcount) br ftrace_stub END(_mcount) EXPORT_SYMBOL(_mcount) .here: br.ret.sptk.many b0 GLOBAL_ENTRY(ftrace_caller) alloc out0 = ar.pfs, 8, 0, 4, 0 mov out3 = r0 ;; mov out2 = b0 add r3 = 0x20, r3 mov out1 = r1; br.call.sptk.many b0 = ftrace_patch_gp //this might be called from module, so we must patch gp ftrace_patch_gp: movl gp=__gp mov b0 = r3 ;; .global ftrace_call; ftrace_call: { .mlx nop.m 0x0 movl r3 = .here;; } alloc loc0 = ar.pfs, 4, 4, 2, 0 ;; mov loc1 = b0 mov out0 = b0 mov loc2 = r8 mov loc3 = r15 ;; adds out0 = -MCOUNT_INSN_SIZE, out0 mov out1 = in2 mov b6 = r3 br.call.sptk.many b0 = b6 ;; mov ar.pfs = loc0 mov b0 = loc1 mov r8 = loc2 mov r15 = loc3 br ftrace_stub ;; END(ftrace_caller) #else GLOBAL_ENTRY(_mcount) movl r2 = ftrace_stub movl r3 = ftrace_trace_function;; ld8 r3 = [r3];; ld8 r3 = [r3];; cmp.eq p7,p0 = r2, r3 (p7) br.sptk.many ftrace_stub ;; alloc loc0 = ar.pfs, 4, 4, 2, 0 ;; mov loc1 = b0 mov out0 = b0 mov loc2 = r8 mov loc3 = r15 ;; adds out0 = -MCOUNT_INSN_SIZE, out0 mov out1 = in2 mov b6 = r3 br.call.sptk.many b0 = b6 ;; mov ar.pfs = loc0 mov b0 = loc1 mov r8 = loc2 mov r15 = loc3 br ftrace_stub ;; END(_mcount) #endif GLOBAL_ENTRY(ftrace_stub) mov r3 = b0 movl r2 = _mcount_ret_helper ;; mov b6 = r2 mov b7 = r3 br.ret.sptk.many b6 _mcount_ret_helper: mov b0 = r42 mov r1 = r41 mov ar.pfs = r40 br b7 END(ftrace_stub) #endif /* CONFIG_FUNCTION_TRACER */ #define __SYSCALL(nr, entry) data8 entry .rodata .align 8 .globl sys_call_table sys_call_table: #include <asm/syscall_table.h>