// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/syscore_ops.h> #include <soc/at91/atmel_tcb.h> /* * We're configured to use a specific TC block, one that's not hooked * up to external hardware, to provide a time solution: * * - Two channels combine to create a free-running 32 bit counter * with a base rate of 5+ MHz, packaged as a clocksource (with * resolution better than 200 nsec). * - Some chips support 32 bit counter. A single channel is used for * this 32 bit free-running counter. the second channel is not used. * * - The third channel may be used to provide a clockevent source, used in * either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ, * and can handle delays of up to two seconds. For 32-bit counters, it runs at * the same rate as the clocksource * * REVISIT behavior during system suspend states... we should disable * all clocks and save the power. Easily done for clockevent devices, * but clocksources won't necessarily get the needed notifications. * For deeper system sleep states, this will be mandatory... */ static void __iomem *tcaddr; static struct { u32 cmr; u32 imr; u32 rc; bool clken; } tcb_cache[3]; static u32 bmr_cache; static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 }; static u64 tc_get_cycles(struct clocksource *cs) { unsigned long flags; u32 lower, upper; raw_local_irq_save(flags); do { upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)); lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV))); raw_local_irq_restore(flags); return (upper << 16) | lower; } static u64 tc_get_cycles32(struct clocksource *cs) { return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); } static void tc_clksrc_suspend(struct clocksource *cs) { int i; for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR)); tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR)); tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC)); tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) & ATMEL_TC_CLKSTA); } bmr_cache = readl(tcaddr + ATMEL_TC_BMR); } static void tc_clksrc_resume(struct clocksource *cs) { int i; for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { /* Restore registers for the channel, RA and RB are not used */ writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR)); writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC)); writel(0, tcaddr + ATMEL_TC_REG(i, RA)); writel(0, tcaddr + ATMEL_TC_REG(i, RB)); /* Disable all the interrupts */ writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR)); /* Reenable interrupts that were enabled before suspending */ writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER)); /* Start the clock if it was used */ if (tcb_cache[i].clken) writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR)); } /* Dual channel, chain channels */ writel(bmr_cache, tcaddr + ATMEL_TC_BMR); /* Finally, trigger all the channels*/ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static struct clocksource clksrc = { .rating = 200, .read = tc_get_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .suspend = tc_clksrc_suspend, .resume = tc_clksrc_resume, }; static u64 notrace tc_sched_clock_read(void) { return tc_get_cycles(&clksrc); } static u64 notrace tc_sched_clock_read32(void) { return tc_get_cycles32(&clksrc); } static struct delay_timer tc_delay_timer; static unsigned long tc_delay_timer_read(void) { return tc_get_cycles(&clksrc); } static unsigned long notrace tc_delay_timer_read32(void) { return tc_get_cycles32(&clksrc); } #ifdef CONFIG_GENERIC_CLOCKEVENTS struct tc_clkevt_device { struct clock_event_device clkevt; struct clk *clk; u32 rate; void __iomem *regs; }; static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt) { return container_of(clkevt, struct tc_clkevt_device, clkevt); } static u32 timer_clock; static int tc_shutdown(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; writel(0xff, regs + ATMEL_TC_REG(2, IDR)); writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); if (!clockevent_state_detached(d)) clk_disable(tcd->clk); return 0; } static int tc_set_oneshot(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) tc_shutdown(d); clk_enable(tcd->clk); /* count up to RC, then irq and stop */ writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); /* set_next_event() configures and starts the timer */ return 0; } static int tc_set_periodic(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) tc_shutdown(d); /* By not making the gentime core emulate periodic mode on top * of oneshot, we get lower overhead and improved accuracy. */ clk_enable(tcd->clk); /* count up to RC, then irq and restart */ writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); /* Enable clock and interrupts on RC compare */ writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); /* go go gadget! */ writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs + ATMEL_TC_REG(2, CCR)); return 0; } static int tc_next_event(unsigned long delta, struct clock_event_device *d) { writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC)); /* go go gadget! */ writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, tcaddr + ATMEL_TC_REG(2, CCR)); return 0; } static struct tc_clkevt_device clkevt = { .clkevt = { .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, /* Should be lower than at91rm9200's system timer */ .rating = 125, .set_next_event = tc_next_event, .set_state_shutdown = tc_shutdown, .set_state_periodic = tc_set_periodic, .set_state_oneshot = tc_set_oneshot, }, }; static irqreturn_t ch2_irq(int irq, void *handle) { struct tc_clkevt_device *dev = handle; unsigned int sr; sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR)); if (sr & ATMEL_TC_CPCS) { dev->clkevt.event_handler(&dev->clkevt); return IRQ_HANDLED; } return IRQ_NONE; } static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) { int ret; struct clk *t2_clk = tc->clk[2]; int irq = tc->irq[2]; int bits = tc->tcb_config->counter_width; /* try to enable t2 clk to avoid future errors in mode change */ ret = clk_prepare_enable(t2_clk); if (ret) return ret; clkevt.regs = tc->regs; clkevt.clk = t2_clk; if (bits == 32) { timer_clock = divisor_idx; clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx]; } else { ret = clk_prepare_enable(tc->slow_clk); if (ret) { clk_disable_unprepare(t2_clk); return ret; } clkevt.rate = clk_get_rate(tc->slow_clk); timer_clock = ATMEL_TC_TIMER_CLOCK5; } clk_disable(t2_clk); clkevt.clkevt.cpumask = cpumask_of(0); ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt); if (ret) { clk_unprepare(t2_clk); if (bits != 32) clk_disable_unprepare(tc->slow_clk); return ret; } clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1); return ret; } #else /* !CONFIG_GENERIC_CLOCKEVENTS */ static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) { /* NOTHING */ return 0; } #endif static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) { /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */ writel(mck_divisor_idx /* likely divide-by-8 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP /* free-run */ | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */ | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */ tcaddr + ATMEL_TC_REG(0, CMR)); writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); /* channel 1: waveform mode, input TIOA0 */ writel(ATMEL_TC_XC1 /* input: TIOA0 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP, /* free-run */ tcaddr + ATMEL_TC_REG(1, CMR)); writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); /* chain channel 0 to channel 1*/ writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); /* then reset all the timers */ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) { /* channel 0: waveform mode, input mclk/8 */ writel(mck_divisor_idx /* likely divide-by-8 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP, /* free-run */ tcaddr + ATMEL_TC_REG(0, CMR)); writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); /* then reset all the timers */ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static struct atmel_tcb_config tcb_rm9200_config = { .counter_width = 16, }; static struct atmel_tcb_config tcb_sam9x5_config = { .counter_width = 32, }; static struct atmel_tcb_config tcb_sama5d2_config = { .counter_width = 32, .has_gclk = 1, }; static const struct of_device_id atmel_tcb_of_match[] = { { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, }, { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, }, { .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, }, { /* sentinel */ } }; static int __init tcb_clksrc_init(struct device_node *node) { struct atmel_tc tc; struct clk *t0_clk; const struct of_device_id *match; u64 (*tc_sched_clock)(void); u32 rate, divided_rate = 0; int best_divisor_idx = -1; int bits; int i; int ret; /* Protect against multiple calls */ if (tcaddr) return 0; tc.regs = of_iomap(node->parent, 0); if (!tc.regs) return -ENXIO; t0_clk = of_clk_get_by_name(node->parent, "t0_clk"); if (IS_ERR(t0_clk)) return PTR_ERR(t0_clk); tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk"); if (IS_ERR(tc.slow_clk)) return PTR_ERR(tc.slow_clk); tc.clk[0] = t0_clk; tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk"); if (IS_ERR(tc.clk[1])) tc.clk[1] = t0_clk; tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk"); if (IS_ERR(tc.clk[2])) tc.clk[2] = t0_clk; tc.irq[2] = of_irq_get(node->parent, 2); if (tc.irq[2] <= 0) { tc.irq[2] = of_irq_get(node->parent, 0); if (tc.irq[2] <= 0) return -EINVAL; } match = of_match_node(atmel_tcb_of_match, node->parent); if (!match) return -ENODEV; tc.tcb_config = match->data; bits = tc.tcb_config->counter_width; for (i = 0; i < ARRAY_SIZE(tc.irq); i++) writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR)); ret = clk_prepare_enable(t0_clk); if (ret) { pr_debug("can't enable T0 clk\n"); return ret; } /* How fast will we be counting? Pick something over 5 MHz. */ rate = (u32) clk_get_rate(t0_clk); i = 0; if (tc.tcb_config->has_gclk) i = 1; for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) { unsigned divisor = atmel_tcb_divisors[i]; unsigned tmp; tmp = rate / divisor; pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp); if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000)) break; divided_rate = tmp; best_divisor_idx = i; } clksrc.name = kbasename(node->parent->full_name); clkevt.clkevt.name = kbasename(node->parent->full_name); pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000, ((divided_rate % 1000000) + 500) / 1000); tcaddr = tc.regs; if (bits == 32) { /* use appropriate function to read 32 bit counter */ clksrc.read = tc_get_cycles32; /* setup only channel 0 */ tcb_setup_single_chan(&tc, best_divisor_idx); tc_sched_clock = tc_sched_clock_read32; tc_delay_timer.read_current_timer = tc_delay_timer_read32; } else { /* we have three clocks no matter what the * underlying platform supports. */ ret = clk_prepare_enable(tc.clk[1]); if (ret) { pr_debug("can't enable T1 clk\n"); goto err_disable_t0; } /* setup both channel 0 & 1 */ tcb_setup_dual_chan(&tc, best_divisor_idx); tc_sched_clock = tc_sched_clock_read; tc_delay_timer.read_current_timer = tc_delay_timer_read; } /* and away we go! */ ret = clocksource_register_hz(&clksrc, divided_rate); if (ret) goto err_disable_t1; /* channel 2: periodic and oneshot timer support */ ret = setup_clkevents(&tc, best_divisor_idx); if (ret) goto err_unregister_clksrc; sched_clock_register(tc_sched_clock, 32, divided_rate); tc_delay_timer.freq = divided_rate; register_current_timer_delay(&tc_delay_timer); return 0; err_unregister_clksrc: clocksource_unregister(&clksrc); err_disable_t1: if (bits != 32) clk_disable_unprepare(tc.clk[1]); err_disable_t0: clk_disable_unprepare(t0_clk); tcaddr = NULL; return ret; } TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);