// SPDX-License-Identifier: GPL-2.0+ /* * Copyright IBM Corp. 2019 * Author(s): Harald Freudenberger <freude@linux.ibm.com> * Ingo Franzki <ifranzki@linux.ibm.com> * * Collection of CCA misc functions used by zcrypt and pkey */ #define KMSG_COMPONENT "zcrypt" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/random.h> #include <asm/zcrypt.h> #include <asm/pkey.h> #include "ap_bus.h" #include "zcrypt_api.h" #include "zcrypt_debug.h" #include "zcrypt_msgtype6.h" #include "zcrypt_ccamisc.h" #define DEBUG_DBG(...) ZCRYPT_DBF(DBF_DEBUG, ##__VA_ARGS__) #define DEBUG_INFO(...) ZCRYPT_DBF(DBF_INFO, ##__VA_ARGS__) #define DEBUG_WARN(...) ZCRYPT_DBF(DBF_WARN, ##__VA_ARGS__) #define DEBUG_ERR(...) ZCRYPT_DBF(DBF_ERR, ##__VA_ARGS__) /* Size of parameter block used for all cca requests/replies */ #define PARMBSIZE 512 /* Size of vardata block used for some of the cca requests/replies */ #define VARDATASIZE 4096 struct cca_info_list_entry { struct list_head list; u16 cardnr; u16 domain; struct cca_info info; }; /* a list with cca_info_list_entry entries */ static LIST_HEAD(cca_info_list); static DEFINE_SPINLOCK(cca_info_list_lock); /* * Simple check if the token is a valid CCA secure AES data key * token. If keybitsize is given, the bitsize of the key is * also checked. Returns 0 on success or errno value on failure. */ int cca_check_secaeskeytoken(debug_info_t *dbg, int dbflvl, const u8 *token, int keybitsize) { struct secaeskeytoken *t = (struct secaeskeytoken *)token; #define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__) if (t->type != TOKTYPE_CCA_INTERNAL) { if (dbg) DBF("%s token check failed, type 0x%02x != 0x%02x\n", __func__, (int)t->type, TOKTYPE_CCA_INTERNAL); return -EINVAL; } if (t->version != TOKVER_CCA_AES) { if (dbg) DBF("%s token check failed, version 0x%02x != 0x%02x\n", __func__, (int)t->version, TOKVER_CCA_AES); return -EINVAL; } if (keybitsize > 0 && t->bitsize != keybitsize) { if (dbg) DBF("%s token check failed, bitsize %d != %d\n", __func__, (int)t->bitsize, keybitsize); return -EINVAL; } #undef DBF return 0; } EXPORT_SYMBOL(cca_check_secaeskeytoken); /* * Simple check if the token is a valid CCA secure AES cipher key * token. If keybitsize is given, the bitsize of the key is * also checked. If checkcpacfexport is enabled, the key is also * checked for the export flag to allow CPACF export. * Returns 0 on success or errno value on failure. */ int cca_check_secaescipherkey(debug_info_t *dbg, int dbflvl, const u8 *token, int keybitsize, int checkcpacfexport) { struct cipherkeytoken *t = (struct cipherkeytoken *)token; bool keybitsizeok = true; #define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__) if (t->type != TOKTYPE_CCA_INTERNAL) { if (dbg) DBF("%s token check failed, type 0x%02x != 0x%02x\n", __func__, (int)t->type, TOKTYPE_CCA_INTERNAL); return -EINVAL; } if (t->version != TOKVER_CCA_VLSC) { if (dbg) DBF("%s token check failed, version 0x%02x != 0x%02x\n", __func__, (int)t->version, TOKVER_CCA_VLSC); return -EINVAL; } if (t->algtype != 0x02) { if (dbg) DBF("%s token check failed, algtype 0x%02x != 0x02\n", __func__, (int)t->algtype); return -EINVAL; } if (t->keytype != 0x0001) { if (dbg) DBF("%s token check failed, keytype 0x%04x != 0x0001\n", __func__, (int)t->keytype); return -EINVAL; } if (t->plfver != 0x00 && t->plfver != 0x01) { if (dbg) DBF("%s token check failed, unknown plfver 0x%02x\n", __func__, (int)t->plfver); return -EINVAL; } if (t->wpllen != 512 && t->wpllen != 576 && t->wpllen != 640) { if (dbg) DBF("%s token check failed, unknown wpllen %d\n", __func__, (int)t->wpllen); return -EINVAL; } if (keybitsize > 0) { switch (keybitsize) { case 128: if (t->wpllen != (t->plfver ? 640 : 512)) keybitsizeok = false; break; case 192: if (t->wpllen != (t->plfver ? 640 : 576)) keybitsizeok = false; break; case 256: if (t->wpllen != 640) keybitsizeok = false; break; default: keybitsizeok = false; break; } if (!keybitsizeok) { if (dbg) DBF("%s token check failed, bitsize %d\n", __func__, keybitsize); return -EINVAL; } } if (checkcpacfexport && !(t->kmf1 & KMF1_XPRT_CPAC)) { if (dbg) DBF("%s token check failed, XPRT_CPAC bit is 0\n", __func__); return -EINVAL; } #undef DBF return 0; } EXPORT_SYMBOL(cca_check_secaescipherkey); /* * Simple check if the token is a valid CCA secure ECC private * key token. Returns 0 on success or errno value on failure. */ int cca_check_sececckeytoken(debug_info_t *dbg, int dbflvl, const u8 *token, size_t keysize, int checkcpacfexport) { struct eccprivkeytoken *t = (struct eccprivkeytoken *)token; #define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__) if (t->type != TOKTYPE_CCA_INTERNAL_PKA) { if (dbg) DBF("%s token check failed, type 0x%02x != 0x%02x\n", __func__, (int)t->type, TOKTYPE_CCA_INTERNAL_PKA); return -EINVAL; } if (t->len > keysize) { if (dbg) DBF("%s token check failed, len %d > keysize %zu\n", __func__, (int)t->len, keysize); return -EINVAL; } if (t->secid != 0x20) { if (dbg) DBF("%s token check failed, secid 0x%02x != 0x20\n", __func__, (int)t->secid); return -EINVAL; } if (checkcpacfexport && !(t->kutc & 0x01)) { if (dbg) DBF("%s token check failed, XPRTCPAC bit is 0\n", __func__); return -EINVAL; } #undef DBF return 0; } EXPORT_SYMBOL(cca_check_sececckeytoken); /* * Allocate consecutive memory for request CPRB, request param * block, reply CPRB and reply param block and fill in values * for the common fields. Returns 0 on success or errno value * on failure. */ static int alloc_and_prep_cprbmem(size_t paramblen, u8 **p_cprb_mem, struct CPRBX **p_req_cprb, struct CPRBX **p_rep_cprb) { u8 *cprbmem; size_t cprbplusparamblen = sizeof(struct CPRBX) + paramblen; struct CPRBX *preqcblk, *prepcblk; /* * allocate consecutive memory for request CPRB, request param * block, reply CPRB and reply param block */ cprbmem = kcalloc(2, cprbplusparamblen, GFP_KERNEL); if (!cprbmem) return -ENOMEM; preqcblk = (struct CPRBX *)cprbmem; prepcblk = (struct CPRBX *)(cprbmem + cprbplusparamblen); /* fill request cprb struct */ preqcblk->cprb_len = sizeof(struct CPRBX); preqcblk->cprb_ver_id = 0x02; memcpy(preqcblk->func_id, "T2", 2); preqcblk->rpl_msgbl = cprbplusparamblen; if (paramblen) { preqcblk->req_parmb = ((u8 __user *)preqcblk) + sizeof(struct CPRBX); preqcblk->rpl_parmb = ((u8 __user *)prepcblk) + sizeof(struct CPRBX); } *p_cprb_mem = cprbmem; *p_req_cprb = preqcblk; *p_rep_cprb = prepcblk; return 0; } /* * Free the cprb memory allocated with the function above. * If the scrub value is not zero, the memory is filled * with zeros before freeing (useful if there was some * clear key material in there). */ static void free_cprbmem(void *mem, size_t paramblen, int scrub) { if (scrub) memzero_explicit(mem, 2 * (sizeof(struct CPRBX) + paramblen)); kfree(mem); } /* * Helper function to prepare the xcrb struct */ static inline void prep_xcrb(struct ica_xcRB *pxcrb, u16 cardnr, struct CPRBX *preqcblk, struct CPRBX *prepcblk) { memset(pxcrb, 0, sizeof(*pxcrb)); pxcrb->agent_ID = 0x4341; /* 'CA' */ pxcrb->user_defined = (cardnr == 0xFFFF ? AUTOSELECT : cardnr); pxcrb->request_control_blk_length = preqcblk->cprb_len + preqcblk->req_parml; pxcrb->request_control_blk_addr = (void __user *)preqcblk; pxcrb->reply_control_blk_length = preqcblk->rpl_msgbl; pxcrb->reply_control_blk_addr = (void __user *)prepcblk; } /* * Generate (random) CCA AES DATA secure key. */ int cca_genseckey(u16 cardnr, u16 domain, u32 keybitsize, u8 *seckey) { int i, rc, keysize; int seckeysize; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct kgreqparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv1 { u16 len; char key_form[8]; char key_length[8]; char key_type1[8]; char key_type2[8]; } lv1; struct lv2 { u16 len; struct keyid { u16 len; u16 attr; u8 data[SECKEYBLOBSIZE]; } keyid[6]; } lv2; } __packed * preqparm; struct kgrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 keyblocklen; struct { u16 toklen; u16 tokattr; u8 tok[]; /* ... some more data ... */ } keyblock; } lv3; } __packed * prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with KG request */ preqparm = (struct kgreqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "KG", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len); preqparm->lv1.len = sizeof(struct lv1); memcpy(preqparm->lv1.key_form, "OP ", 8); switch (keybitsize) { case PKEY_SIZE_AES_128: case PKEY_KEYTYPE_AES_128: /* older ioctls used this */ keysize = 16; memcpy(preqparm->lv1.key_length, "KEYLN16 ", 8); break; case PKEY_SIZE_AES_192: case PKEY_KEYTYPE_AES_192: /* older ioctls used this */ keysize = 24; memcpy(preqparm->lv1.key_length, "KEYLN24 ", 8); break; case PKEY_SIZE_AES_256: case PKEY_KEYTYPE_AES_256: /* older ioctls used this */ keysize = 32; memcpy(preqparm->lv1.key_length, "KEYLN32 ", 8); break; default: DEBUG_ERR("%s unknown/unsupported keybitsize %d\n", __func__, keybitsize); rc = -EINVAL; goto out; } memcpy(preqparm->lv1.key_type1, "AESDATA ", 8); preqparm->lv2.len = sizeof(struct lv2); for (i = 0; i < 6; i++) { preqparm->lv2.keyid[i].len = sizeof(struct keyid); preqparm->lv2.keyid[i].attr = (i == 2 ? 0x30 : 0x10); } preqcblk->req_parml = sizeof(struct kgreqparm); /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, errno %d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR("%s secure key generate failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct kgrepparm *)ptr; /* check length of the returned secure key token */ seckeysize = prepparm->lv3.keyblock.toklen - sizeof(prepparm->lv3.keyblock.toklen) - sizeof(prepparm->lv3.keyblock.tokattr); if (seckeysize != SECKEYBLOBSIZE) { DEBUG_ERR("%s secure token size mismatch %d != %d bytes\n", __func__, seckeysize, SECKEYBLOBSIZE); rc = -EIO; goto out; } /* check secure key token */ rc = cca_check_secaeskeytoken(zcrypt_dbf_info, DBF_ERR, prepparm->lv3.keyblock.tok, 8 * keysize); if (rc) { rc = -EIO; goto out; } /* copy the generated secure key token */ memcpy(seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE); out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(cca_genseckey); /* * Generate an CCA AES DATA secure key with given key value. */ int cca_clr2seckey(u16 cardnr, u16 domain, u32 keybitsize, const u8 *clrkey, u8 *seckey) { int rc, keysize, seckeysize; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct cmreqparm { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[8]; struct lv1 { u16 len; u8 clrkey[]; } lv1; /* followed by struct lv2 */ } __packed * preqparm; struct lv2 { u16 len; struct keyid { u16 len; u16 attr; u8 data[SECKEYBLOBSIZE]; } keyid; } __packed * plv2; struct cmrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 keyblocklen; struct { u16 toklen; u16 tokattr; u8 tok[]; /* ... some more data ... */ } keyblock; } lv3; } __packed * prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with CM request */ preqparm = (struct cmreqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "CM", 2); memcpy(preqparm->rule_array, "AES ", 8); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); switch (keybitsize) { case PKEY_SIZE_AES_128: case PKEY_KEYTYPE_AES_128: /* older ioctls used this */ keysize = 16; break; case PKEY_SIZE_AES_192: case PKEY_KEYTYPE_AES_192: /* older ioctls used this */ keysize = 24; break; case PKEY_SIZE_AES_256: case PKEY_KEYTYPE_AES_256: /* older ioctls used this */ keysize = 32; break; default: DEBUG_ERR("%s unknown/unsupported keybitsize %d\n", __func__, keybitsize); rc = -EINVAL; goto out; } preqparm->lv1.len = sizeof(struct lv1) + keysize; memcpy(preqparm->lv1.clrkey, clrkey, keysize); plv2 = (struct lv2 *)(((u8 *)preqparm) + sizeof(*preqparm) + keysize); plv2->len = sizeof(struct lv2); plv2->keyid.len = sizeof(struct keyid); plv2->keyid.attr = 0x30; preqcblk->req_parml = sizeof(*preqparm) + keysize + sizeof(*plv2); /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR("%s clear key import failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct cmrepparm *)ptr; /* check length of the returned secure key token */ seckeysize = prepparm->lv3.keyblock.toklen - sizeof(prepparm->lv3.keyblock.toklen) - sizeof(prepparm->lv3.keyblock.tokattr); if (seckeysize != SECKEYBLOBSIZE) { DEBUG_ERR("%s secure token size mismatch %d != %d bytes\n", __func__, seckeysize, SECKEYBLOBSIZE); rc = -EIO; goto out; } /* check secure key token */ rc = cca_check_secaeskeytoken(zcrypt_dbf_info, DBF_ERR, prepparm->lv3.keyblock.tok, 8 * keysize); if (rc) { rc = -EIO; goto out; } /* copy the generated secure key token */ if (seckey) memcpy(seckey, prepparm->lv3.keyblock.tok, SECKEYBLOBSIZE); out: free_cprbmem(mem, PARMBSIZE, 1); return rc; } EXPORT_SYMBOL(cca_clr2seckey); /* * Derive proteced key from an CCA AES DATA secure key. */ int cca_sec2protkey(u16 cardnr, u16 domain, const u8 *seckey, u8 *protkey, u32 *protkeylen, u32 *protkeytype) { int rc; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct uskreqparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv1 { u16 len; u16 attr_len; u16 attr_flags; } lv1; struct lv2 { u16 len; u16 attr_len; u16 attr_flags; u8 token[]; /* cca secure key token */ } lv2; } __packed * preqparm; struct uskrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct lv3 { u16 len; u16 attr_len; u16 attr_flags; struct cpacfkeyblock { u8 version; /* version of this struct */ u8 flags[2]; u8 algo; u8 form; u8 pad1[3]; u16 len; u8 key[64]; /* the key (len bytes) */ u16 keyattrlen; u8 keyattr[32]; u8 pad2[1]; u8 vptype; u8 vp[32]; /* verification pattern */ } ckb; } lv3; } __packed * prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with USK request */ preqparm = (struct uskreqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "US", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len); preqparm->lv1.len = sizeof(struct lv1); preqparm->lv1.attr_len = sizeof(struct lv1) - sizeof(preqparm->lv1.len); preqparm->lv1.attr_flags = 0x0001; preqparm->lv2.len = sizeof(struct lv2) + SECKEYBLOBSIZE; preqparm->lv2.attr_len = sizeof(struct lv2) - sizeof(preqparm->lv2.len) + SECKEYBLOBSIZE; preqparm->lv2.attr_flags = 0x0000; memcpy(preqparm->lv2.token, seckey, SECKEYBLOBSIZE); preqcblk->req_parml = sizeof(struct uskreqparm) + SECKEYBLOBSIZE; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR("%s unwrap secure key failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290) rc = -EAGAIN; else rc = -EIO; goto out; } if (prepcblk->ccp_rscode != 0) { DEBUG_WARN("%s unwrap secure key warning, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct uskrepparm *)ptr; /* check the returned keyblock */ if (prepparm->lv3.ckb.version != 0x01 && prepparm->lv3.ckb.version != 0x02) { DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x\n", __func__, (int)prepparm->lv3.ckb.version); rc = -EIO; goto out; } /* copy the translated protected key */ switch (prepparm->lv3.ckb.len) { case 16 + 32: /* AES 128 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_128; break; case 24 + 32: /* AES 192 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_192; break; case 32 + 32: /* AES 256 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_256; break; default: DEBUG_ERR("%s unknown/unsupported keylen %d\n", __func__, prepparm->lv3.ckb.len); rc = -EIO; goto out; } memcpy(protkey, prepparm->lv3.ckb.key, prepparm->lv3.ckb.len); if (protkeylen) *protkeylen = prepparm->lv3.ckb.len; out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(cca_sec2protkey); /* * AES cipher key skeleton created with CSNBKTB2 with these flags: * INTERNAL, NO-KEY, AES, CIPHER, ANY-MODE, NOEX-SYM, NOEXAASY, * NOEXUASY, XPRTCPAC, NOEX-RAW, NOEX-DES, NOEX-AES, NOEX-RSA * used by cca_gencipherkey() and cca_clr2cipherkey(). */ static const u8 aes_cipher_key_skeleton[] = { 0x01, 0x00, 0x00, 0x38, 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x1a, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x01, 0x02, 0xc0, 0x00, 0xff, 0x00, 0x03, 0x08, 0xc8, 0x00, 0x00, 0x00, 0x00 }; #define SIZEOF_SKELETON (sizeof(aes_cipher_key_skeleton)) /* * Generate (random) CCA AES CIPHER secure key. */ int cca_gencipherkey(u16 cardnr, u16 domain, u32 keybitsize, u32 keygenflags, u8 *keybuf, size_t *keybufsize) { int rc; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct gkreqparm { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[2 * 8]; struct { u16 len; u8 key_type_1[8]; u8 key_type_2[8]; u16 clear_key_bit_len; u16 key_name_1_len; u16 key_name_2_len; u16 user_data_1_len; u16 user_data_2_len; /* u8 key_name_1[]; */ /* u8 key_name_2[]; */ /* u8 user_data_1[]; */ /* u8 user_data_2[]; */ } vud; struct { u16 len; struct { u16 len; u16 flag; /* u8 kek_id_1[]; */ } tlv1; struct { u16 len; u16 flag; /* u8 kek_id_2[]; */ } tlv2; struct { u16 len; u16 flag; u8 gen_key_id_1[SIZEOF_SKELETON]; } tlv3; struct { u16 len; u16 flag; /* u8 gen_key_id_1_label[]; */ } tlv4; struct { u16 len; u16 flag; /* u8 gen_key_id_2[]; */ } tlv5; struct { u16 len; u16 flag; /* u8 gen_key_id_2_label[]; */ } tlv6; } kb; } __packed * preqparm; struct gkrepparm { u8 subfunc_code[2]; u16 rule_array_len; struct { u16 len; } vud; struct { u16 len; struct { u16 len; u16 flag; u8 gen_key[]; /* 120-136 bytes */ } tlv1; } kb; } __packed * prepparm; struct cipherkeytoken *t; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; preqcblk->req_parml = sizeof(struct gkreqparm); /* prepare request param block with GK request */ preqparm = (struct gkreqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "GK", 2); preqparm->rule_array_len = sizeof(uint16_t) + 2 * 8; memcpy(preqparm->rule_array, "AES OP ", 2 * 8); /* prepare vud block */ preqparm->vud.len = sizeof(preqparm->vud); switch (keybitsize) { case 128: case 192: case 256: break; default: DEBUG_ERR( "%s unknown/unsupported keybitsize %d\n", __func__, keybitsize); rc = -EINVAL; goto out; } preqparm->vud.clear_key_bit_len = keybitsize; memcpy(preqparm->vud.key_type_1, "TOKEN ", 8); memset(preqparm->vud.key_type_2, ' ', sizeof(preqparm->vud.key_type_2)); /* prepare kb block */ preqparm->kb.len = sizeof(preqparm->kb); preqparm->kb.tlv1.len = sizeof(preqparm->kb.tlv1); preqparm->kb.tlv1.flag = 0x0030; preqparm->kb.tlv2.len = sizeof(preqparm->kb.tlv2); preqparm->kb.tlv2.flag = 0x0030; preqparm->kb.tlv3.len = sizeof(preqparm->kb.tlv3); preqparm->kb.tlv3.flag = 0x0030; memcpy(preqparm->kb.tlv3.gen_key_id_1, aes_cipher_key_skeleton, SIZEOF_SKELETON); preqparm->kb.tlv4.len = sizeof(preqparm->kb.tlv4); preqparm->kb.tlv4.flag = 0x0030; preqparm->kb.tlv5.len = sizeof(preqparm->kb.tlv5); preqparm->kb.tlv5.flag = 0x0030; preqparm->kb.tlv6.len = sizeof(preqparm->kb.tlv6); preqparm->kb.tlv6.flag = 0x0030; /* patch the skeleton key token export flags inside the kb block */ if (keygenflags) { t = (struct cipherkeytoken *)preqparm->kb.tlv3.gen_key_id_1; t->kmf1 |= (u16)(keygenflags & 0x0000FF00); t->kmf1 &= (u16)~(keygenflags & 0x000000FF); } /* prepare xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s cipher key generate failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct gkrepparm *)ptr; /* do some plausibility checks on the key block */ if (prepparm->kb.len < 120 + 5 * sizeof(uint16_t) || prepparm->kb.len > 136 + 5 * sizeof(uint16_t)) { DEBUG_ERR("%s reply with invalid or unknown key block\n", __func__); rc = -EIO; goto out; } /* and some checks on the generated key */ rc = cca_check_secaescipherkey(zcrypt_dbf_info, DBF_ERR, prepparm->kb.tlv1.gen_key, keybitsize, 1); if (rc) { rc = -EIO; goto out; } /* copy the generated vlsc key token */ t = (struct cipherkeytoken *)prepparm->kb.tlv1.gen_key; if (keybuf) { if (*keybufsize >= t->len) memcpy(keybuf, t, t->len); else rc = -EINVAL; } *keybufsize = t->len; out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(cca_gencipherkey); /* * Helper function, does a the CSNBKPI2 CPRB. */ static int _ip_cprb_helper(u16 cardnr, u16 domain, const char *rule_array_1, const char *rule_array_2, const char *rule_array_3, const u8 *clr_key_value, int clr_key_bit_size, u8 *key_token, int *key_token_size) { int rc, n; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct rule_array_block { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[]; } __packed * preq_ra_block; struct vud_block { u16 len; struct { u16 len; u16 flag; /* 0x0064 */ u16 clr_key_bit_len; } tlv1; struct { u16 len; u16 flag; /* 0x0063 */ u8 clr_key[]; /* clear key value bytes */ } tlv2; } __packed * preq_vud_block; struct key_block { u16 len; struct { u16 len; u16 flag; /* 0x0030 */ u8 key_token[]; /* key skeleton */ } tlv1; } __packed * preq_key_block; struct iprepparm { u8 subfunc_code[2]; u16 rule_array_len; struct { u16 len; } vud; struct { u16 len; struct { u16 len; u16 flag; /* 0x0030 */ u8 key_token[]; /* key token */ } tlv1; } kb; } __packed * prepparm; struct cipherkeytoken *t; int complete = strncmp(rule_array_2, "COMPLETE", 8) ? 0 : 1; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; preqcblk->req_parml = 0; /* prepare request param block with IP request */ preq_ra_block = (struct rule_array_block __force *)preqcblk->req_parmb; memcpy(preq_ra_block->subfunc_code, "IP", 2); preq_ra_block->rule_array_len = sizeof(uint16_t) + 2 * 8; memcpy(preq_ra_block->rule_array, rule_array_1, 8); memcpy(preq_ra_block->rule_array + 8, rule_array_2, 8); preqcblk->req_parml = sizeof(struct rule_array_block) + 2 * 8; if (rule_array_3) { preq_ra_block->rule_array_len += 8; memcpy(preq_ra_block->rule_array + 16, rule_array_3, 8); preqcblk->req_parml += 8; } /* prepare vud block */ preq_vud_block = (struct vud_block __force *) (preqcblk->req_parmb + preqcblk->req_parml); n = complete ? 0 : (clr_key_bit_size + 7) / 8; preq_vud_block->len = sizeof(struct vud_block) + n; preq_vud_block->tlv1.len = sizeof(preq_vud_block->tlv1); preq_vud_block->tlv1.flag = 0x0064; preq_vud_block->tlv1.clr_key_bit_len = complete ? 0 : clr_key_bit_size; preq_vud_block->tlv2.len = sizeof(preq_vud_block->tlv2) + n; preq_vud_block->tlv2.flag = 0x0063; if (!complete) memcpy(preq_vud_block->tlv2.clr_key, clr_key_value, n); preqcblk->req_parml += preq_vud_block->len; /* prepare key block */ preq_key_block = (struct key_block __force *) (preqcblk->req_parmb + preqcblk->req_parml); n = *key_token_size; preq_key_block->len = sizeof(struct key_block) + n; preq_key_block->tlv1.len = sizeof(preq_key_block->tlv1) + n; preq_key_block->tlv1.flag = 0x0030; memcpy(preq_key_block->tlv1.key_token, key_token, *key_token_size); preqcblk->req_parml += preq_key_block->len; /* prepare xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s CSNBKPI2 failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct iprepparm *)ptr; /* do some plausibility checks on the key block */ if (prepparm->kb.len < 120 + 3 * sizeof(uint16_t) || prepparm->kb.len > 136 + 3 * sizeof(uint16_t)) { DEBUG_ERR("%s reply with invalid or unknown key block\n", __func__); rc = -EIO; goto out; } /* do not check the key here, it may be incomplete */ /* copy the vlsc key token back */ t = (struct cipherkeytoken *)prepparm->kb.tlv1.key_token; memcpy(key_token, t, t->len); *key_token_size = t->len; out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } /* * Build CCA AES CIPHER secure key with a given clear key value. */ int cca_clr2cipherkey(u16 card, u16 dom, u32 keybitsize, u32 keygenflags, const u8 *clrkey, u8 *keybuf, size_t *keybufsize) { int rc; u8 *token; int tokensize; u8 exorbuf[32]; struct cipherkeytoken *t; /* fill exorbuf with random data */ get_random_bytes(exorbuf, sizeof(exorbuf)); /* allocate space for the key token to build */ token = kmalloc(MAXCCAVLSCTOKENSIZE, GFP_KERNEL); if (!token) return -ENOMEM; /* prepare the token with the key skeleton */ tokensize = SIZEOF_SKELETON; memcpy(token, aes_cipher_key_skeleton, tokensize); /* patch the skeleton key token export flags */ if (keygenflags) { t = (struct cipherkeytoken *)token; t->kmf1 |= (u16)(keygenflags & 0x0000FF00); t->kmf1 &= (u16)~(keygenflags & 0x000000FF); } /* * Do the key import with the clear key value in 4 steps: * 1/4 FIRST import with only random data * 2/4 EXOR the clear key * 3/4 EXOR the very same random data again * 4/4 COMPLETE the secure cipher key import */ rc = _ip_cprb_helper(card, dom, "AES ", "FIRST ", "MIN3PART", exorbuf, keybitsize, token, &tokensize); if (rc) { DEBUG_ERR( "%s clear key import 1/4 with CSNBKPI2 failed, rc=%d\n", __func__, rc); goto out; } rc = _ip_cprb_helper(card, dom, "AES ", "ADD-PART", NULL, clrkey, keybitsize, token, &tokensize); if (rc) { DEBUG_ERR( "%s clear key import 2/4 with CSNBKPI2 failed, rc=%d\n", __func__, rc); goto out; } rc = _ip_cprb_helper(card, dom, "AES ", "ADD-PART", NULL, exorbuf, keybitsize, token, &tokensize); if (rc) { DEBUG_ERR( "%s clear key import 3/4 with CSNBKPI2 failed, rc=%d\n", __func__, rc); goto out; } rc = _ip_cprb_helper(card, dom, "AES ", "COMPLETE", NULL, NULL, keybitsize, token, &tokensize); if (rc) { DEBUG_ERR( "%s clear key import 4/4 with CSNBKPI2 failed, rc=%d\n", __func__, rc); goto out; } /* copy the generated key token */ if (keybuf) { if (tokensize > *keybufsize) rc = -EINVAL; else memcpy(keybuf, token, tokensize); } *keybufsize = tokensize; out: kfree(token); return rc; } EXPORT_SYMBOL(cca_clr2cipherkey); /* * Derive proteced key from CCA AES cipher secure key. */ int cca_cipher2protkey(u16 cardnr, u16 domain, const u8 *ckey, u8 *protkey, u32 *protkeylen, u32 *protkeytype) { int rc; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct aureqparm { u8 subfunc_code[2]; u16 rule_array_len; u8 rule_array[8]; struct { u16 len; u16 tk_blob_len; u16 tk_blob_tag; u8 tk_blob[66]; } vud; struct { u16 len; u16 cca_key_token_len; u16 cca_key_token_flags; u8 cca_key_token[]; /* 64 or more */ } kb; } __packed * preqparm; struct aurepparm { u8 subfunc_code[2]; u16 rule_array_len; struct { u16 len; u16 sublen; u16 tag; struct cpacfkeyblock { u8 version; /* version of this struct */ u8 flags[2]; u8 algo; u8 form; u8 pad1[3]; u16 keylen; u8 key[64]; /* the key (keylen bytes) */ u16 keyattrlen; u8 keyattr[32]; u8 pad2[1]; u8 vptype; u8 vp[32]; /* verification pattern */ } ckb; } vud; struct { u16 len; } kb; } __packed * prepparm; int keytoklen = ((struct cipherkeytoken *)ckey)->len; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with AU request */ preqparm = (struct aureqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "AU", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); memcpy(preqparm->rule_array, "EXPT-SK ", 8); /* vud, tk blob */ preqparm->vud.len = sizeof(preqparm->vud); preqparm->vud.tk_blob_len = sizeof(preqparm->vud.tk_blob) + 2 * sizeof(uint16_t); preqparm->vud.tk_blob_tag = 0x00C2; /* kb, cca token */ preqparm->kb.len = keytoklen + 3 * sizeof(uint16_t); preqparm->kb.cca_key_token_len = keytoklen + 2 * sizeof(uint16_t); memcpy(preqparm->kb.cca_key_token, ckey, keytoklen); /* now fill length of param block into cprb */ preqcblk->req_parml = sizeof(struct aureqparm) + keytoklen; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s unwrap secure key failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290) rc = -EAGAIN; else rc = -EIO; goto out; } if (prepcblk->ccp_rscode != 0) { DEBUG_WARN( "%s unwrap secure key warning, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct aurepparm *)ptr; /* check the returned keyblock */ if (prepparm->vud.ckb.version != 0x01 && prepparm->vud.ckb.version != 0x02) { DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x\n", __func__, (int)prepparm->vud.ckb.version); rc = -EIO; goto out; } if (prepparm->vud.ckb.algo != 0x02) { DEBUG_ERR( "%s reply param keyblock algo mismatch 0x%02x != 0x02\n", __func__, (int)prepparm->vud.ckb.algo); rc = -EIO; goto out; } /* copy the translated protected key */ switch (prepparm->vud.ckb.keylen) { case 16 + 32: /* AES 128 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_128; break; case 24 + 32: /* AES 192 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_192; break; case 32 + 32: /* AES 256 protected key */ if (protkeytype) *protkeytype = PKEY_KEYTYPE_AES_256; break; default: DEBUG_ERR("%s unknown/unsupported keylen %d\n", __func__, prepparm->vud.ckb.keylen); rc = -EIO; goto out; } memcpy(protkey, prepparm->vud.ckb.key, prepparm->vud.ckb.keylen); if (protkeylen) *protkeylen = prepparm->vud.ckb.keylen; out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(cca_cipher2protkey); /* * Derive protected key from CCA ECC secure private key. */ int cca_ecc2protkey(u16 cardnr, u16 domain, const u8 *key, u8 *protkey, u32 *protkeylen, u32 *protkeytype) { int rc; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct aureqparm { u8 subfunc_code[2]; u16 rule_array_len; u8 rule_array[8]; struct { u16 len; u16 tk_blob_len; u16 tk_blob_tag; u8 tk_blob[66]; } vud; struct { u16 len; u16 cca_key_token_len; u16 cca_key_token_flags; u8 cca_key_token[]; } kb; } __packed * preqparm; struct aurepparm { u8 subfunc_code[2]; u16 rule_array_len; struct { u16 len; u16 sublen; u16 tag; struct cpacfkeyblock { u8 version; /* version of this struct */ u8 flags[2]; u8 algo; u8 form; u8 pad1[3]; u16 keylen; u8 key[]; /* the key (keylen bytes) */ /* u16 keyattrlen; */ /* u8 keyattr[32]; */ /* u8 pad2[1]; */ /* u8 vptype; */ /* u8 vp[32]; verification pattern */ } ckb; } vud; /* followed by a key block */ } __packed * prepparm; int keylen = ((struct eccprivkeytoken *)key)->len; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(PARMBSIZE, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with AU request */ preqparm = (struct aureqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "AU", 2); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); memcpy(preqparm->rule_array, "EXPT-SK ", 8); /* vud, tk blob */ preqparm->vud.len = sizeof(preqparm->vud); preqparm->vud.tk_blob_len = sizeof(preqparm->vud.tk_blob) + 2 * sizeof(uint16_t); preqparm->vud.tk_blob_tag = 0x00C2; /* kb, cca token */ preqparm->kb.len = keylen + 3 * sizeof(uint16_t); preqparm->kb.cca_key_token_len = keylen + 2 * sizeof(uint16_t); memcpy(preqparm->kb.cca_key_token, key, keylen); /* now fill length of param block into cprb */ preqcblk->req_parml = sizeof(struct aureqparm) + keylen; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR( "%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR( "%s unwrap secure key failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); if (prepcblk->ccp_rtcode == 8 && prepcblk->ccp_rscode == 2290) rc = -EAGAIN; else rc = -EIO; goto out; } if (prepcblk->ccp_rscode != 0) { DEBUG_WARN( "%s unwrap secure key warning, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct aurepparm *)ptr; /* check the returned keyblock */ if (prepparm->vud.ckb.version != 0x02) { DEBUG_ERR("%s reply param keyblock version mismatch 0x%02x != 0x02\n", __func__, (int)prepparm->vud.ckb.version); rc = -EIO; goto out; } if (prepparm->vud.ckb.algo != 0x81) { DEBUG_ERR( "%s reply param keyblock algo mismatch 0x%02x != 0x81\n", __func__, (int)prepparm->vud.ckb.algo); rc = -EIO; goto out; } /* copy the translated protected key */ if (prepparm->vud.ckb.keylen > *protkeylen) { DEBUG_ERR("%s prot keylen mismatch %d > buffersize %u\n", __func__, prepparm->vud.ckb.keylen, *protkeylen); rc = -EIO; goto out; } memcpy(protkey, prepparm->vud.ckb.key, prepparm->vud.ckb.keylen); *protkeylen = prepparm->vud.ckb.keylen; if (protkeytype) *protkeytype = PKEY_KEYTYPE_ECC; out: free_cprbmem(mem, PARMBSIZE, 0); return rc; } EXPORT_SYMBOL(cca_ecc2protkey); /* * query cryptographic facility from CCA adapter */ int cca_query_crypto_facility(u16 cardnr, u16 domain, const char *keyword, u8 *rarray, size_t *rarraylen, u8 *varray, size_t *varraylen) { int rc; u16 len; u8 *mem, *ptr; struct CPRBX *preqcblk, *prepcblk; struct ica_xcRB xcrb; struct fqreqparm { u8 subfunc_code[2]; u16 rule_array_len; char rule_array[8]; struct lv1 { u16 len; u8 data[VARDATASIZE]; } lv1; u16 dummylen; } __packed * preqparm; size_t parmbsize = sizeof(struct fqreqparm); struct fqrepparm { u8 subfunc_code[2]; u8 lvdata[]; } __packed * prepparm; /* get already prepared memory for 2 cprbs with param block each */ rc = alloc_and_prep_cprbmem(parmbsize, &mem, &preqcblk, &prepcblk); if (rc) return rc; /* fill request cprb struct */ preqcblk->domain = domain; /* fill request cprb param block with FQ request */ preqparm = (struct fqreqparm __force *)preqcblk->req_parmb; memcpy(preqparm->subfunc_code, "FQ", 2); memcpy(preqparm->rule_array, keyword, sizeof(preqparm->rule_array)); preqparm->rule_array_len = sizeof(preqparm->rule_array_len) + sizeof(preqparm->rule_array); preqparm->lv1.len = sizeof(preqparm->lv1); preqparm->dummylen = sizeof(preqparm->dummylen); preqcblk->req_parml = parmbsize; /* fill xcrb struct */ prep_xcrb(&xcrb, cardnr, preqcblk, prepcblk); /* forward xcrb with request CPRB and reply CPRB to zcrypt dd */ rc = zcrypt_send_cprb(&xcrb); if (rc) { DEBUG_ERR("%s zcrypt_send_cprb (cardnr=%d domain=%d) failed, rc=%d\n", __func__, (int)cardnr, (int)domain, rc); goto out; } /* check response returncode and reasoncode */ if (prepcblk->ccp_rtcode != 0) { DEBUG_ERR("%s unwrap secure key failure, card response %d/%d\n", __func__, (int)prepcblk->ccp_rtcode, (int)prepcblk->ccp_rscode); rc = -EIO; goto out; } /* process response cprb param block */ ptr = ((u8 *)prepcblk) + sizeof(struct CPRBX); prepcblk->rpl_parmb = (u8 __user *)ptr; prepparm = (struct fqrepparm *)ptr; ptr = prepparm->lvdata; /* check and possibly copy reply rule array */ len = *((u16 *)ptr); if (len > sizeof(u16)) { ptr += sizeof(u16); len -= sizeof(u16); if (rarray && rarraylen && *rarraylen > 0) { *rarraylen = (len > *rarraylen ? *rarraylen : len); memcpy(rarray, ptr, *rarraylen); } ptr += len; } /* check and possible copy reply var array */ len = *((u16 *)ptr); if (len > sizeof(u16)) { ptr += sizeof(u16); len -= sizeof(u16); if (varray && varraylen && *varraylen > 0) { *varraylen = (len > *varraylen ? *varraylen : len); memcpy(varray, ptr, *varraylen); } ptr += len; } out: free_cprbmem(mem, parmbsize, 0); return rc; } EXPORT_SYMBOL(cca_query_crypto_facility); static int cca_info_cache_fetch(u16 cardnr, u16 domain, struct cca_info *ci) { int rc = -ENOENT; struct cca_info_list_entry *ptr; spin_lock_bh(&cca_info_list_lock); list_for_each_entry(ptr, &cca_info_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { memcpy(ci, &ptr->info, sizeof(*ci)); rc = 0; break; } } spin_unlock_bh(&cca_info_list_lock); return rc; } static void cca_info_cache_update(u16 cardnr, u16 domain, const struct cca_info *ci) { int found = 0; struct cca_info_list_entry *ptr; spin_lock_bh(&cca_info_list_lock); list_for_each_entry(ptr, &cca_info_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { memcpy(&ptr->info, ci, sizeof(*ci)); found = 1; break; } } if (!found) { ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC); if (!ptr) { spin_unlock_bh(&cca_info_list_lock); return; } ptr->cardnr = cardnr; ptr->domain = domain; memcpy(&ptr->info, ci, sizeof(*ci)); list_add(&ptr->list, &cca_info_list); } spin_unlock_bh(&cca_info_list_lock); } static void cca_info_cache_scrub(u16 cardnr, u16 domain) { struct cca_info_list_entry *ptr; spin_lock_bh(&cca_info_list_lock); list_for_each_entry(ptr, &cca_info_list, list) { if (ptr->cardnr == cardnr && ptr->domain == domain) { list_del(&ptr->list); kfree(ptr); break; } } spin_unlock_bh(&cca_info_list_lock); } static void __exit mkvp_cache_free(void) { struct cca_info_list_entry *ptr, *pnext; spin_lock_bh(&cca_info_list_lock); list_for_each_entry_safe(ptr, pnext, &cca_info_list, list) { list_del(&ptr->list); kfree(ptr); } spin_unlock_bh(&cca_info_list_lock); } /* * Fetch cca_info values via query_crypto_facility from adapter. */ static int fetch_cca_info(u16 cardnr, u16 domain, struct cca_info *ci) { int rc, found = 0; size_t rlen, vlen; u8 *rarray, *varray, *pg; struct zcrypt_device_status_ext devstat; memset(ci, 0, sizeof(*ci)); /* get first info from zcrypt device driver about this apqn */ rc = zcrypt_device_status_ext(cardnr, domain, &devstat); if (rc) return rc; ci->hwtype = devstat.hwtype; /* prep page for rule array and var array use */ pg = (u8 *)__get_free_page(GFP_KERNEL); if (!pg) return -ENOMEM; rarray = pg; varray = pg + PAGE_SIZE / 2; rlen = vlen = PAGE_SIZE / 2; /* QF for this card/domain */ rc = cca_query_crypto_facility(cardnr, domain, "STATICSA", rarray, &rlen, varray, &vlen); if (rc == 0 && rlen >= 10 * 8 && vlen >= 204) { memcpy(ci->serial, rarray, 8); ci->new_asym_mk_state = (char)rarray[4 * 8]; ci->cur_asym_mk_state = (char)rarray[5 * 8]; ci->old_asym_mk_state = (char)rarray[6 * 8]; if (ci->old_asym_mk_state == '2') memcpy(ci->old_asym_mkvp, varray + 64, 16); if (ci->cur_asym_mk_state == '2') memcpy(ci->cur_asym_mkvp, varray + 84, 16); if (ci->new_asym_mk_state == '3') memcpy(ci->new_asym_mkvp, varray + 104, 16); ci->new_aes_mk_state = (char)rarray[7 * 8]; ci->cur_aes_mk_state = (char)rarray[8 * 8]; ci->old_aes_mk_state = (char)rarray[9 * 8]; if (ci->old_aes_mk_state == '2') memcpy(&ci->old_aes_mkvp, varray + 172, 8); if (ci->cur_aes_mk_state == '2') memcpy(&ci->cur_aes_mkvp, varray + 184, 8); if (ci->new_aes_mk_state == '3') memcpy(&ci->new_aes_mkvp, varray + 196, 8); found++; } if (!found) goto out; rlen = vlen = PAGE_SIZE / 2; rc = cca_query_crypto_facility(cardnr, domain, "STATICSB", rarray, &rlen, varray, &vlen); if (rc == 0 && rlen >= 13 * 8 && vlen >= 240) { ci->new_apka_mk_state = (char)rarray[10 * 8]; ci->cur_apka_mk_state = (char)rarray[11 * 8]; ci->old_apka_mk_state = (char)rarray[12 * 8]; if (ci->old_apka_mk_state == '2') memcpy(&ci->old_apka_mkvp, varray + 208, 8); if (ci->cur_apka_mk_state == '2') memcpy(&ci->cur_apka_mkvp, varray + 220, 8); if (ci->new_apka_mk_state == '3') memcpy(&ci->new_apka_mkvp, varray + 232, 8); found++; } out: free_page((unsigned long)pg); return found == 2 ? 0 : -ENOENT; } /* * Fetch cca information about a CCA queue. */ int cca_get_info(u16 card, u16 dom, struct cca_info *ci, int verify) { int rc; rc = cca_info_cache_fetch(card, dom, ci); if (rc || verify) { rc = fetch_cca_info(card, dom, ci); if (rc == 0) cca_info_cache_update(card, dom, ci); } return rc; } EXPORT_SYMBOL(cca_get_info); /* * Search for a matching crypto card based on the * Master Key Verification Pattern given. */ static int findcard(u64 mkvp, u16 *pcardnr, u16 *pdomain, int verify, int minhwtype) { struct zcrypt_device_status_ext *device_status; u16 card, dom; struct cca_info ci; int i, rc, oi = -1; /* mkvp must not be zero, minhwtype needs to be >= 0 */ if (mkvp == 0 || minhwtype < 0) return -EINVAL; /* fetch status of all crypto cards */ device_status = kvmalloc_array(MAX_ZDEV_ENTRIES_EXT, sizeof(struct zcrypt_device_status_ext), GFP_KERNEL); if (!device_status) return -ENOMEM; zcrypt_device_status_mask_ext(device_status); /* walk through all crypto cards */ for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) { card = AP_QID_CARD(device_status[i].qid); dom = AP_QID_QUEUE(device_status[i].qid); if (device_status[i].online && device_status[i].functions & 0x04) { /* enabled CCA card, check current mkvp from cache */ if (cca_info_cache_fetch(card, dom, &ci) == 0 && ci.hwtype >= minhwtype && ci.cur_aes_mk_state == '2' && ci.cur_aes_mkvp == mkvp) { if (!verify) break; /* verify: refresh card info */ if (fetch_cca_info(card, dom, &ci) == 0) { cca_info_cache_update(card, dom, &ci); if (ci.hwtype >= minhwtype && ci.cur_aes_mk_state == '2' && ci.cur_aes_mkvp == mkvp) break; } } } else { /* Card is offline and/or not a CCA card. */ /* del mkvp entry from cache if it exists */ cca_info_cache_scrub(card, dom); } } if (i >= MAX_ZDEV_ENTRIES_EXT) { /* nothing found, so this time without cache */ for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) { if (!(device_status[i].online && device_status[i].functions & 0x04)) continue; card = AP_QID_CARD(device_status[i].qid); dom = AP_QID_QUEUE(device_status[i].qid); /* fresh fetch mkvp from adapter */ if (fetch_cca_info(card, dom, &ci) == 0) { cca_info_cache_update(card, dom, &ci); if (ci.hwtype >= minhwtype && ci.cur_aes_mk_state == '2' && ci.cur_aes_mkvp == mkvp) break; if (ci.hwtype >= minhwtype && ci.old_aes_mk_state == '2' && ci.old_aes_mkvp == mkvp && oi < 0) oi = i; } } if (i >= MAX_ZDEV_ENTRIES_EXT && oi >= 0) { /* old mkvp matched, use this card then */ card = AP_QID_CARD(device_status[oi].qid); dom = AP_QID_QUEUE(device_status[oi].qid); } } if (i < MAX_ZDEV_ENTRIES_EXT || oi >= 0) { if (pcardnr) *pcardnr = card; if (pdomain) *pdomain = dom; rc = (i < MAX_ZDEV_ENTRIES_EXT ? 0 : 1); } else { rc = -ENODEV; } kvfree(device_status); return rc; } /* * Search for a matching crypto card based on the Master Key * Verification Pattern provided inside a secure key token. */ int cca_findcard(const u8 *key, u16 *pcardnr, u16 *pdomain, int verify) { u64 mkvp; int minhwtype = 0; const struct keytoken_header *hdr = (struct keytoken_header *)key; if (hdr->type != TOKTYPE_CCA_INTERNAL) return -EINVAL; switch (hdr->version) { case TOKVER_CCA_AES: mkvp = ((struct secaeskeytoken *)key)->mkvp; break; case TOKVER_CCA_VLSC: mkvp = ((struct cipherkeytoken *)key)->mkvp0; minhwtype = AP_DEVICE_TYPE_CEX6; break; default: return -EINVAL; } return findcard(mkvp, pcardnr, pdomain, verify, minhwtype); } EXPORT_SYMBOL(cca_findcard); int cca_findcard2(u32 **apqns, u32 *nr_apqns, u16 cardnr, u16 domain, int minhwtype, int mktype, u64 cur_mkvp, u64 old_mkvp, int verify) { struct zcrypt_device_status_ext *device_status; u32 *_apqns = NULL, _nr_apqns = 0; int i, card, dom, curmatch, oldmatch, rc = 0; struct cca_info ci; /* fetch status of all crypto cards */ device_status = kvmalloc_array(MAX_ZDEV_ENTRIES_EXT, sizeof(struct zcrypt_device_status_ext), GFP_KERNEL); if (!device_status) return -ENOMEM; zcrypt_device_status_mask_ext(device_status); /* allocate 1k space for up to 256 apqns */ _apqns = kmalloc_array(256, sizeof(u32), GFP_KERNEL); if (!_apqns) { kvfree(device_status); return -ENOMEM; } /* walk through all the crypto apqnss */ for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) { card = AP_QID_CARD(device_status[i].qid); dom = AP_QID_QUEUE(device_status[i].qid); /* check online state */ if (!device_status[i].online) continue; /* check for cca functions */ if (!(device_status[i].functions & 0x04)) continue; /* check cardnr */ if (cardnr != 0xFFFF && card != cardnr) continue; /* check domain */ if (domain != 0xFFFF && dom != domain) continue; /* get cca info on this apqn */ if (cca_get_info(card, dom, &ci, verify)) continue; /* current master key needs to be valid */ if (mktype == AES_MK_SET && ci.cur_aes_mk_state != '2') continue; if (mktype == APKA_MK_SET && ci.cur_apka_mk_state != '2') continue; /* check min hardware type */ if (minhwtype > 0 && minhwtype > ci.hwtype) continue; if (cur_mkvp || old_mkvp) { /* check mkvps */ curmatch = oldmatch = 0; if (mktype == AES_MK_SET) { if (cur_mkvp && cur_mkvp == ci.cur_aes_mkvp) curmatch = 1; if (old_mkvp && ci.old_aes_mk_state == '2' && old_mkvp == ci.old_aes_mkvp) oldmatch = 1; } else { if (cur_mkvp && cur_mkvp == ci.cur_apka_mkvp) curmatch = 1; if (old_mkvp && ci.old_apka_mk_state == '2' && old_mkvp == ci.old_apka_mkvp) oldmatch = 1; } if (curmatch + oldmatch < 1) continue; } /* apqn passed all filtering criterons, add to the array */ if (_nr_apqns < 256) _apqns[_nr_apqns++] = (((u16)card) << 16) | ((u16)dom); } /* nothing found ? */ if (!_nr_apqns) { kfree(_apqns); rc = -ENODEV; } else { /* no re-allocation, simple return the _apqns array */ *apqns = _apqns; *nr_apqns = _nr_apqns; rc = 0; } kvfree(device_status); return rc; } EXPORT_SYMBOL(cca_findcard2); void __exit zcrypt_ccamisc_exit(void) { mkvp_cache_free(); }