#! /usr/bin/env perl
# SPDX-License-Identifier: GPL-2.0

# This code is taken from the OpenSSL project but the author (Andy Polyakov)
# has relicensed it under the GPLv2. Therefore this program is free software;
# you can redistribute it and/or modify it under the terms of the GNU General
# Public License version 2 as published by the Free Software Foundation.
#
# The original headers, including the original license headers, are
# included below for completeness.

# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# SHA256/512 for ARMv8.
#
# Performance in cycles per processed byte and improvement coefficient
# over code generated with "default" compiler:
#
#		SHA256-hw	SHA256(*)	SHA512
# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
# Denver	2.01		10.5 (+26%)	6.70 (+8%)
# X-Gene			20.0 (+100%)	12.8 (+300%(***))
# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
#
# (*)	Software SHA256 results are of lesser relevance, presented
#	mostly for informational purposes.
# (**)	The result is a trade-off: it's possible to improve it by
#	10% (or by 1 cycle per round), but at the cost of 20% loss
#	on Cortex-A53 (or by 4 cycles per round).
# (***)	Super-impressive coefficients over gcc-generated code are
#	indication of some compiler "pathology", most notably code
#	generated with -mgeneral-regs-only is significantly faster
#	and the gap is only 40-90%.
#
# October 2016.
#
# Originally it was reckoned that it makes no sense to implement NEON
# version of SHA256 for 64-bit processors. This is because performance
# improvement on most wide-spread Cortex-A5x processors was observed
# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
# observed that 32-bit NEON SHA256 performs significantly better than
# 64-bit scalar version on *some* of the more recent processors. As
# result 64-bit NEON version of SHA256 was added to provide best
# all-round performance. For example it executes ~30% faster on X-Gene
# and Mongoose. [For reference, NEON version of SHA512 is bound to
# deliver much less improvement, likely *negative* on Cortex-A5x.
# Which is why NEON support is limited to SHA256.]

$output=pop;
$flavour=pop;

if ($flavour && $flavour ne "void") {
    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
    die "can't locate arm-xlate.pl";

    open OUT,"| \"$^X\" $xlate $flavour $output";
    *STDOUT=*OUT;
} else {
    open STDOUT,">$output";
}

if ($output =~ /512/) {
	$BITS=512;
	$SZ=8;
	@Sigma0=(28,34,39);
	@Sigma1=(14,18,41);
	@sigma0=(1,  8, 7);
	@sigma1=(19,61, 6);
	$rounds=80;
	$reg_t="x";
} else {
	$BITS=256;
	$SZ=4;
	@Sigma0=( 2,13,22);
	@Sigma1=( 6,11,25);
	@sigma0=( 7,18, 3);
	@sigma1=(17,19,10);
	$rounds=64;
	$reg_t="w";
}

$func="sha${BITS}_block_data_order";

($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));

@X=map("$reg_t$_",(3..15,0..2));
@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));

sub BODY_00_xx {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
my $j=($i+1)&15;
my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
   $T0=@X[$i+3] if ($i<11);

$code.=<<___	if ($i<16);
#ifndef	__AARCH64EB__
	rev	@X[$i],@X[$i]			// $i
#endif
___
$code.=<<___	if ($i<13 && ($i&1));
	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
___
$code.=<<___	if ($i==13);
	ldp	@X[14],@X[15],[$inp]
___
$code.=<<___	if ($i>=14);
	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
___
$code.=<<___	if ($i>0 && $i<16);
	add	$a,$a,$t1			// h+=Sigma0(a)
___
$code.=<<___	if ($i>=11);
	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
___
# While ARMv8 specifies merged rotate-n-logical operation such as
# 'eor x,y,z,ror#n', it was found to negatively affect performance
# on Apple A7. The reason seems to be that it requires even 'y' to
# be available earlier. This means that such merged instruction is
# not necessarily best choice on critical path... On the other hand
# Cortex-A5x handles merged instructions much better than disjoint
# rotate and logical... See (**) footnote above.
$code.=<<___	if ($i<15);
	ror	$t0,$e,#$Sigma1[0]
	add	$h,$h,$t2			// h+=K[i]
	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
	and	$t1,$f,$e
	bic	$t2,$g,$e
	add	$h,$h,@X[$i&15]			// h+=X[i]
	orr	$t1,$t1,$t2			// Ch(e,f,g)
	eor	$t2,$a,$b			// a^b, b^c in next round
	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
	ror	$T0,$a,#$Sigma0[0]
	add	$h,$h,$t1			// h+=Ch(e,f,g)
	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
	add	$h,$h,$t0			// h+=Sigma1(e)
	and	$t3,$t3,$t2			// (b^c)&=(a^b)
	add	$d,$d,$h			// d+=h
	eor	$t3,$t3,$b			// Maj(a,b,c)
	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
	add	$h,$h,$t3			// h+=Maj(a,b,c)
	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
	//add	$h,$h,$t1			// h+=Sigma0(a)
___
$code.=<<___	if ($i>=15);
	ror	$t0,$e,#$Sigma1[0]
	add	$h,$h,$t2			// h+=K[i]
	ror	$T1,@X[($j+1)&15],#$sigma0[0]
	and	$t1,$f,$e
	ror	$T2,@X[($j+14)&15],#$sigma1[0]
	bic	$t2,$g,$e
	ror	$T0,$a,#$Sigma0[0]
	add	$h,$h,@X[$i&15]			// h+=X[i]
	eor	$t0,$t0,$e,ror#$Sigma1[1]
	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
	orr	$t1,$t1,$t2			// Ch(e,f,g)
	eor	$t2,$a,$b			// a^b, b^c in next round
	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
	eor	$T0,$T0,$a,ror#$Sigma0[1]
	add	$h,$h,$t1			// h+=Ch(e,f,g)
	and	$t3,$t3,$t2			// (b^c)&=(a^b)
	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
	add	$h,$h,$t0			// h+=Sigma1(e)
	eor	$t3,$t3,$b			// Maj(a,b,c)
	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
	add	@X[$j],@X[$j],@X[($j+9)&15]
	add	$d,$d,$h			// d+=h
	add	$h,$h,$t3			// h+=Maj(a,b,c)
	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
	add	@X[$j],@X[$j],$T1
	add	$h,$h,$t1			// h+=Sigma0(a)
	add	@X[$j],@X[$j],$T2
___
	($t2,$t3)=($t3,$t2);
}

$code.=<<___;
#ifndef	__KERNEL__
# include "arm_arch.h"
#endif

.text

.extern	OPENSSL_armcap_P
.globl	$func
.type	$func,%function
.align	6
$func:
___
$code.=<<___	if ($SZ==4);
#ifndef	__KERNEL__
# ifdef	__ILP32__
	ldrsw	x16,.LOPENSSL_armcap_P
# else
	ldr	x16,.LOPENSSL_armcap_P
# endif
	adr	x17,.LOPENSSL_armcap_P
	add	x16,x16,x17
	ldr	w16,[x16]
	tst	w16,#ARMV8_SHA256
	b.ne	.Lv8_entry
	tst	w16,#ARMV7_NEON
	b.ne	.Lneon_entry
#endif
___
$code.=<<___;
	stp	x29,x30,[sp,#-128]!
	add	x29,sp,#0

	stp	x19,x20,[sp,#16]
	stp	x21,x22,[sp,#32]
	stp	x23,x24,[sp,#48]
	stp	x25,x26,[sp,#64]
	stp	x27,x28,[sp,#80]
	sub	sp,sp,#4*$SZ

	ldp	$A,$B,[$ctx]				// load context
	ldp	$C,$D,[$ctx,#2*$SZ]
	ldp	$E,$F,[$ctx,#4*$SZ]
	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
	ldp	$G,$H,[$ctx,#6*$SZ]
	adr	$Ktbl,.LK$BITS
	stp	$ctx,$num,[x29,#96]

.Loop:
	ldp	@X[0],@X[1],[$inp],#2*$SZ
	ldr	$t2,[$Ktbl],#$SZ			// *K++
	eor	$t3,$B,$C				// magic seed
	str	$inp,[x29,#112]
___
for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
$code.=".Loop_16_xx:\n";
for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
$code.=<<___;
	cbnz	$t2,.Loop_16_xx

	ldp	$ctx,$num,[x29,#96]
	ldr	$inp,[x29,#112]
	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind

	ldp	@X[0],@X[1],[$ctx]
	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
	add	$inp,$inp,#14*$SZ			// advance input pointer
	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
	add	$A,$A,@X[0]
	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
	add	$B,$B,@X[1]
	add	$C,$C,@X[2]
	add	$D,$D,@X[3]
	stp	$A,$B,[$ctx]
	add	$E,$E,@X[4]
	add	$F,$F,@X[5]
	stp	$C,$D,[$ctx,#2*$SZ]
	add	$G,$G,@X[6]
	add	$H,$H,@X[7]
	cmp	$inp,$num
	stp	$E,$F,[$ctx,#4*$SZ]
	stp	$G,$H,[$ctx,#6*$SZ]
	b.ne	.Loop

	ldp	x19,x20,[x29,#16]
	add	sp,sp,#4*$SZ
	ldp	x21,x22,[x29,#32]
	ldp	x23,x24,[x29,#48]
	ldp	x25,x26,[x29,#64]
	ldp	x27,x28,[x29,#80]
	ldp	x29,x30,[sp],#128
	ret
.size	$func,.-$func

.align	6
.type	.LK$BITS,%object
.LK$BITS:
___
$code.=<<___ if ($SZ==8);
	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
	.quad	0x3956c25bf348b538,0x59f111f1b605d019
	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
	.quad	0xd807aa98a3030242,0x12835b0145706fbe
	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
	.quad	0x06ca6351e003826f,0x142929670a0e6e70
	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
	.quad	0x81c2c92e47edaee6,0x92722c851482353b
	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
	.quad	0xd192e819d6ef5218,0xd69906245565a910
	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
	.quad	0x90befffa23631e28,0xa4506cebde82bde9
	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
	.quad	0xca273eceea26619c,0xd186b8c721c0c207
	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
	.quad	0x113f9804bef90dae,0x1b710b35131c471b
	.quad	0x28db77f523047d84,0x32caab7b40c72493
	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
	.quad	0	// terminator
___
$code.=<<___ if ($SZ==4);
	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
	.long	0	//terminator
___
$code.=<<___;
.size	.LK$BITS,.-.LK$BITS
#ifndef	__KERNEL__
.align	3
.LOPENSSL_armcap_P:
# ifdef	__ILP32__
	.long	OPENSSL_armcap_P-.
# else
	.quad	OPENSSL_armcap_P-.
# endif
#endif
.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align	2
___

if ($SZ==4) {
my $Ktbl="x3";

my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
my @MSG=map("v$_.16b",(4..7));
my ($W0,$W1)=("v16.4s","v17.4s");
my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");

$code.=<<___;
#ifndef	__KERNEL__
.type	sha256_block_armv8,%function
.align	6
sha256_block_armv8:
.Lv8_entry:
	stp		x29,x30,[sp,#-16]!
	add		x29,sp,#0

	ld1.32		{$ABCD,$EFGH},[$ctx]
	adr		$Ktbl,.LK256

.Loop_hw:
	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
	sub		$num,$num,#1
	ld1.32		{$W0},[$Ktbl],#16
	rev32		@MSG[0],@MSG[0]
	rev32		@MSG[1],@MSG[1]
	rev32		@MSG[2],@MSG[2]
	rev32		@MSG[3],@MSG[3]
	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
	orr		$EFGH_SAVE,$EFGH,$EFGH
___
for($i=0;$i<12;$i++) {
$code.=<<___;
	ld1.32		{$W1},[$Ktbl],#16
	add.i32		$W0,$W0,@MSG[0]
	sha256su0	@MSG[0],@MSG[1]
	orr		$abcd,$ABCD,$ABCD
	sha256h		$ABCD,$EFGH,$W0
	sha256h2	$EFGH,$abcd,$W0
	sha256su1	@MSG[0],@MSG[2],@MSG[3]
___
	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
}
$code.=<<___;
	ld1.32		{$W1},[$Ktbl],#16
	add.i32		$W0,$W0,@MSG[0]
	orr		$abcd,$ABCD,$ABCD
	sha256h		$ABCD,$EFGH,$W0
	sha256h2	$EFGH,$abcd,$W0

	ld1.32		{$W0},[$Ktbl],#16
	add.i32		$W1,$W1,@MSG[1]
	orr		$abcd,$ABCD,$ABCD
	sha256h		$ABCD,$EFGH,$W1
	sha256h2	$EFGH,$abcd,$W1

	ld1.32		{$W1},[$Ktbl]
	add.i32		$W0,$W0,@MSG[2]
	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
	orr		$abcd,$ABCD,$ABCD
	sha256h		$ABCD,$EFGH,$W0
	sha256h2	$EFGH,$abcd,$W0

	add.i32		$W1,$W1,@MSG[3]
	orr		$abcd,$ABCD,$ABCD
	sha256h		$ABCD,$EFGH,$W1
	sha256h2	$EFGH,$abcd,$W1

	add.i32		$ABCD,$ABCD,$ABCD_SAVE
	add.i32		$EFGH,$EFGH,$EFGH_SAVE

	cbnz		$num,.Loop_hw

	st1.32		{$ABCD,$EFGH},[$ctx]

	ldr		x29,[sp],#16
	ret
.size	sha256_block_armv8,.-sha256_block_armv8
#endif
___
}

if ($SZ==4) {	######################################### NEON stuff #
# You'll surely note a lot of similarities with sha256-armv4 module,
# and of course it's not a coincidence. sha256-armv4 was used as
# initial template, but was adapted for ARMv8 instruction set and
# extensively re-tuned for all-round performance.

my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
my $Ktbl="x16";
my $Xfer="x17";
my @X = map("q$_",(0..3));
my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
my $j=0;

sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
  my $arg = pop;
    $arg = "#$arg" if ($arg*1 eq $arg);
    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
}

sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }

sub Xupdate()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);
  my ($a,$b,$c,$d,$e,$f,$g,$h);

	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
	 eval(shift(@insns));
	 eval(shift(@insns));
	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
	 eval(shift(@insns));
	 eval(shift(@insns));
	&ushr_32	($T2,$T0,$sigma0[0]);
	 eval(shift(@insns));
	&ushr_32	($T1,$T0,$sigma0[2]);
	 eval(shift(@insns));
	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
	 eval(shift(@insns));
	&sli_32		($T2,$T0,32-$sigma0[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&ushr_32	($T3,$T0,$sigma0[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&eor_8		($T1,$T1,$T2);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&sli_32		($T3,$T0,32-$sigma0[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &ushr_32	($T4,$T7,$sigma1[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &sli_32	($T4,$T7,32-$sigma1[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &ushr_32	($T5,$T7,$sigma1[2]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &ushr_32	($T3,$T7,$sigma1[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &sli_u32	($T3,$T7,32-$sigma1[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &eor_8	($T5,$T5,$T4);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &ushr_32	($T6,@X[0],$sigma1[0]);
	 eval(shift(@insns));
	  &ushr_32	($T7,@X[0],$sigma1[2]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &sli_32	($T6,@X[0],32-$sigma1[0]);
	 eval(shift(@insns));
	  &ushr_32	($T5,@X[0],$sigma1[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &eor_8	($T7,$T7,$T6);
	 eval(shift(@insns));
	 eval(shift(@insns));
	  &sli_32	($T5,@X[0],32-$sigma1[1]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&ld1_32		("{$T0}","[$Ktbl], #16");
	 eval(shift(@insns));
	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
	 eval(shift(@insns));
	 eval(shift(@insns));
	&eor_8		($T5,$T5,$T5);
	 eval(shift(@insns));
	 eval(shift(@insns));
	&mov		(&Dhi($T5), &Dlo($T7));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&add_32		($T0,$T0,@X[0]);
	 while($#insns>=1) { eval(shift(@insns)); }
	&st1_32		("{$T0}","[$Xfer], #16");
	 eval(shift(@insns));

	push(@X,shift(@X));		# "rotate" X[]
}

sub Xpreload()
{ use integer;
  my $body = shift;
  my @insns = (&$body,&$body,&$body,&$body);
  my ($a,$b,$c,$d,$e,$f,$g,$h);

	 eval(shift(@insns));
	 eval(shift(@insns));
	&ld1_8		("{@X[0]}","[$inp],#16");
	 eval(shift(@insns));
	 eval(shift(@insns));
	&ld1_32		("{$T0}","[$Ktbl],#16");
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&rev32		(@X[0],@X[0]);
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	 eval(shift(@insns));
	&add_32		($T0,$T0,@X[0]);
	 foreach (@insns) { eval; }	# remaining instructions
	&st1_32		("{$T0}","[$Xfer], #16");

	push(@X,shift(@X));		# "rotate" X[]
}

sub body_00_15 () {
	(
	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
	'&and	($t1,$f,$e)',
	'&bic	($t4,$g,$e)',
	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
	'&ror	($t0,$t0,"#$Sigma1[0]")',
	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
	'&ror	($t4,$t4,"#$Sigma0[0]")',
	'&add	($d,$d,$h)',			# d+=h
	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
	)
}

$code.=<<___;
#ifdef	__KERNEL__
.globl	sha256_block_neon
#endif
.type	sha256_block_neon,%function
.align	4
sha256_block_neon:
.Lneon_entry:
	stp	x29, x30, [sp, #-16]!
	mov	x29, sp
	sub	sp,sp,#16*4

	adr	$Ktbl,.LK256
	add	$num,$inp,$num,lsl#6	// len to point at the end of inp

	ld1.8	{@X[0]},[$inp], #16
	ld1.8	{@X[1]},[$inp], #16
	ld1.8	{@X[2]},[$inp], #16
	ld1.8	{@X[3]},[$inp], #16
	ld1.32	{$T0},[$Ktbl], #16
	ld1.32	{$T1},[$Ktbl], #16
	ld1.32	{$T2},[$Ktbl], #16
	ld1.32	{$T3},[$Ktbl], #16
	rev32	@X[0],@X[0]		// yes, even on
	rev32	@X[1],@X[1]		// big-endian
	rev32	@X[2],@X[2]
	rev32	@X[3],@X[3]
	mov	$Xfer,sp
	add.32	$T0,$T0,@X[0]
	add.32	$T1,$T1,@X[1]
	add.32	$T2,$T2,@X[2]
	st1.32	{$T0-$T1},[$Xfer], #32
	add.32	$T3,$T3,@X[3]
	st1.32	{$T2-$T3},[$Xfer]
	sub	$Xfer,$Xfer,#32

	ldp	$A,$B,[$ctx]
	ldp	$C,$D,[$ctx,#8]
	ldp	$E,$F,[$ctx,#16]
	ldp	$G,$H,[$ctx,#24]
	ldr	$t1,[sp,#0]
	mov	$t2,wzr
	eor	$t3,$B,$C
	mov	$t4,wzr
	b	.L_00_48

.align	4
.L_00_48:
___
	&Xupdate(\&body_00_15);
	&Xupdate(\&body_00_15);
	&Xupdate(\&body_00_15);
	&Xupdate(\&body_00_15);
$code.=<<___;
	cmp	$t1,#0				// check for K256 terminator
	ldr	$t1,[sp,#0]
	sub	$Xfer,$Xfer,#64
	bne	.L_00_48

	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
	cmp	$inp,$num
	mov	$Xfer, #64
	csel	$Xfer, $Xfer, xzr, eq
	sub	$inp,$inp,$Xfer			// avoid SEGV
	mov	$Xfer,sp
___
	&Xpreload(\&body_00_15);
	&Xpreload(\&body_00_15);
	&Xpreload(\&body_00_15);
	&Xpreload(\&body_00_15);
$code.=<<___;
	add	$A,$A,$t4			// h+=Sigma0(a) from the past
	ldp	$t0,$t1,[$ctx,#0]
	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
	ldp	$t2,$t3,[$ctx,#8]
	add	$A,$A,$t0			// accumulate
	add	$B,$B,$t1
	ldp	$t0,$t1,[$ctx,#16]
	add	$C,$C,$t2
	add	$D,$D,$t3
	ldp	$t2,$t3,[$ctx,#24]
	add	$E,$E,$t0
	add	$F,$F,$t1
	 ldr	$t1,[sp,#0]
	stp	$A,$B,[$ctx,#0]
	add	$G,$G,$t2
	 mov	$t2,wzr
	stp	$C,$D,[$ctx,#8]
	add	$H,$H,$t3
	stp	$E,$F,[$ctx,#16]
	 eor	$t3,$B,$C
	stp	$G,$H,[$ctx,#24]
	 mov	$t4,wzr
	 mov	$Xfer,sp
	b.ne	.L_00_48

	ldr	x29,[x29]
	add	sp,sp,#16*4+16
	ret
.size	sha256_block_neon,.-sha256_block_neon
___
}

$code.=<<___;
#ifndef	__KERNEL__
.comm	OPENSSL_armcap_P,4,4
#endif
___

{   my  %opcode = (
	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);

    sub unsha256 {
	my ($mnemonic,$arg)=@_;

	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
	&&
	sprintf ".inst\t0x%08x\t//%s %s",
			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
			$mnemonic,$arg;
    }
}

open SELF,$0;
while(<SELF>) {
        next if (/^#!/);
        last if (!s/^#/\/\// and !/^$/);
        print;
}
close SELF;

foreach(split("\n",$code)) {

	s/\`([^\`]*)\`/eval($1)/ge;

	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;

	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers

	s/\.[ui]?8(\s)/$1/;
	s/\.\w?32\b//		and s/\.16b/\.4s/g;
	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;

	print $_,"\n";
}

close STDOUT;