// SPDX-License-Identifier: GPL-2.0-or-later /* * IBM PowerNV platform sensors for temperature/fan/voltage/power * Copyright (C) 2014 IBM */ #define DRVNAME "ibmpowernv" #define pr_fmt(fmt) DRVNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/of.h> #include <linux/slab.h> #include <linux/platform_device.h> #include <asm/opal.h> #include <linux/err.h> #include <asm/cputhreads.h> #include <asm/smp.h> #define MAX_ATTR_LEN 32 #define MAX_LABEL_LEN 64 /* Sensor suffix name from DT */ #define DT_FAULT_ATTR_SUFFIX "faulted" #define DT_DATA_ATTR_SUFFIX "data" #define DT_THRESHOLD_ATTR_SUFFIX "thrs" /* * Enumerates all the types of sensors in the POWERNV platform and does index * into 'struct sensor_group' */ enum sensors { FAN, TEMP, POWER_SUPPLY, POWER_INPUT, CURRENT, ENERGY, MAX_SENSOR_TYPE, }; #define INVALID_INDEX (-1U) /* * 'compatible' string properties for sensor types as defined in old * PowerNV firmware (skiboot). These are ordered as 'enum sensors'. */ static const char * const legacy_compatibles[] = { "ibm,opal-sensor-cooling-fan", "ibm,opal-sensor-amb-temp", "ibm,opal-sensor-power-supply", "ibm,opal-sensor-power" }; static struct sensor_group { const char *name; /* matches property 'sensor-type' */ struct attribute_group group; u32 attr_count; u32 hwmon_index; } sensor_groups[] = { { "fan" }, { "temp" }, { "in" }, { "power" }, { "curr" }, { "energy" }, }; struct sensor_data { u32 id; /* An opaque id of the firmware for each sensor */ u32 hwmon_index; u32 opal_index; enum sensors type; char label[MAX_LABEL_LEN]; char name[MAX_ATTR_LEN]; struct device_attribute dev_attr; struct sensor_group_data *sgrp_data; }; struct sensor_group_data { struct mutex mutex; u32 gid; bool enable; }; struct platform_data { const struct attribute_group *attr_groups[MAX_SENSOR_TYPE + 1]; struct sensor_group_data *sgrp_data; u32 sensors_count; /* Total count of sensors from each group */ u32 nr_sensor_groups; /* Total number of sensor groups */ }; static ssize_t show_sensor(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_data *sdata = container_of(devattr, struct sensor_data, dev_attr); ssize_t ret; u64 x; if (sdata->sgrp_data && !sdata->sgrp_data->enable) return -ENODATA; ret = opal_get_sensor_data_u64(sdata->id, &x); if (ret) return ret; /* Convert temperature to milli-degrees */ if (sdata->type == TEMP) x *= 1000; /* Convert power to micro-watts */ else if (sdata->type == POWER_INPUT) x *= 1000000; return sprintf(buf, "%llu\n", x); } static ssize_t show_enable(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_data *sdata = container_of(devattr, struct sensor_data, dev_attr); return sprintf(buf, "%u\n", sdata->sgrp_data->enable); } static ssize_t store_enable(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_data *sdata = container_of(devattr, struct sensor_data, dev_attr); struct sensor_group_data *sgrp_data = sdata->sgrp_data; int ret; bool data; ret = kstrtobool(buf, &data); if (ret) return ret; ret = mutex_lock_interruptible(&sgrp_data->mutex); if (ret) return ret; if (data != sgrp_data->enable) { ret = sensor_group_enable(sgrp_data->gid, data); if (!ret) sgrp_data->enable = data; } if (!ret) ret = count; mutex_unlock(&sgrp_data->mutex); return ret; } static ssize_t show_label(struct device *dev, struct device_attribute *devattr, char *buf) { struct sensor_data *sdata = container_of(devattr, struct sensor_data, dev_attr); return sprintf(buf, "%s\n", sdata->label); } static int get_logical_cpu(int hwcpu) { int cpu; for_each_possible_cpu(cpu) if (get_hard_smp_processor_id(cpu) == hwcpu) return cpu; return -ENOENT; } static void make_sensor_label(struct device_node *np, struct sensor_data *sdata, const char *label) { u32 id; size_t n; n = scnprintf(sdata->label, sizeof(sdata->label), "%s", label); /* * Core temp pretty print */ if (!of_property_read_u32(np, "ibm,pir", &id)) { int cpuid = get_logical_cpu(id); if (cpuid >= 0) /* * The digital thermal sensors are associated * with a core. */ n += scnprintf(sdata->label + n, sizeof(sdata->label) - n, " %d", cpuid); else n += scnprintf(sdata->label + n, sizeof(sdata->label) - n, " phy%d", id); } /* * Membuffer pretty print */ if (!of_property_read_u32(np, "ibm,chip-id", &id)) n += scnprintf(sdata->label + n, sizeof(sdata->label) - n, " %d", id & 0xffff); } static int get_sensor_index_attr(const char *name, u32 *index, char *attr) { char *hash_pos = strchr(name, '#'); char buf[8] = { 0 }; char *dash_pos; u32 copy_len; int err; if (!hash_pos) return -EINVAL; dash_pos = strchr(hash_pos, '-'); if (!dash_pos) return -EINVAL; copy_len = dash_pos - hash_pos - 1; if (copy_len >= sizeof(buf)) return -EINVAL; strncpy(buf, hash_pos + 1, copy_len); err = kstrtou32(buf, 10, index); if (err) return err; strscpy(attr, dash_pos + 1, MAX_ATTR_LEN); return 0; } static const char *convert_opal_attr_name(enum sensors type, const char *opal_attr) { const char *attr_name = NULL; if (!strcmp(opal_attr, DT_FAULT_ATTR_SUFFIX)) { attr_name = "fault"; } else if (!strcmp(opal_attr, DT_DATA_ATTR_SUFFIX)) { attr_name = "input"; } else if (!strcmp(opal_attr, DT_THRESHOLD_ATTR_SUFFIX)) { if (type == TEMP) attr_name = "max"; else if (type == FAN) attr_name = "min"; } return attr_name; } /* * This function translates the DT node name into the 'hwmon' attribute name. * IBMPOWERNV device node appear like cooling-fan#2-data, amb-temp#1-thrs etc. * which need to be mapped as fan2_input, temp1_max respectively before * populating them inside hwmon device class. */ static const char *parse_opal_node_name(const char *node_name, enum sensors type, u32 *index) { char attr_suffix[MAX_ATTR_LEN]; const char *attr_name; int err; err = get_sensor_index_attr(node_name, index, attr_suffix); if (err) return ERR_PTR(err); attr_name = convert_opal_attr_name(type, attr_suffix); if (!attr_name) return ERR_PTR(-ENOENT); return attr_name; } static int get_sensor_type(struct device_node *np) { enum sensors type; const char *str; for (type = 0; type < ARRAY_SIZE(legacy_compatibles); type++) { if (of_device_is_compatible(np, legacy_compatibles[type])) return type; } /* * Let's check if we have a newer device tree */ if (!of_device_is_compatible(np, "ibm,opal-sensor")) return MAX_SENSOR_TYPE; if (of_property_read_string(np, "sensor-type", &str)) return MAX_SENSOR_TYPE; for (type = 0; type < MAX_SENSOR_TYPE; type++) if (!strcmp(str, sensor_groups[type].name)) return type; return MAX_SENSOR_TYPE; } static u32 get_sensor_hwmon_index(struct sensor_data *sdata, struct sensor_data *sdata_table, int count) { int i; /* * We don't use the OPAL index on newer device trees */ if (sdata->opal_index != INVALID_INDEX) { for (i = 0; i < count; i++) if (sdata_table[i].opal_index == sdata->opal_index && sdata_table[i].type == sdata->type) return sdata_table[i].hwmon_index; } return ++sensor_groups[sdata->type].hwmon_index; } static int init_sensor_group_data(struct platform_device *pdev, struct platform_data *pdata) { struct sensor_group_data *sgrp_data; struct device_node *groups, *sgrp; int count = 0, ret = 0; enum sensors type; groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group"); if (!groups) return ret; for_each_child_of_node(groups, sgrp) { type = get_sensor_type(sgrp); if (type != MAX_SENSOR_TYPE) pdata->nr_sensor_groups++; } if (!pdata->nr_sensor_groups) goto out; sgrp_data = devm_kcalloc(&pdev->dev, pdata->nr_sensor_groups, sizeof(*sgrp_data), GFP_KERNEL); if (!sgrp_data) { ret = -ENOMEM; goto out; } for_each_child_of_node(groups, sgrp) { u32 gid; type = get_sensor_type(sgrp); if (type == MAX_SENSOR_TYPE) continue; if (of_property_read_u32(sgrp, "sensor-group-id", &gid)) continue; if (of_count_phandle_with_args(sgrp, "sensors", NULL) <= 0) continue; sensor_groups[type].attr_count++; sgrp_data[count].gid = gid; mutex_init(&sgrp_data[count].mutex); sgrp_data[count++].enable = false; } pdata->sgrp_data = sgrp_data; out: of_node_put(groups); return ret; } static struct sensor_group_data *get_sensor_group(struct platform_data *pdata, struct device_node *node, enum sensors gtype) { struct sensor_group_data *sgrp_data = pdata->sgrp_data; struct device_node *groups, *sgrp; groups = of_find_compatible_node(NULL, NULL, "ibm,opal-sensor-group"); if (!groups) return NULL; for_each_child_of_node(groups, sgrp) { struct of_phandle_iterator it; u32 gid; int rc, i; enum sensors type; type = get_sensor_type(sgrp); if (type != gtype) continue; if (of_property_read_u32(sgrp, "sensor-group-id", &gid)) continue; of_for_each_phandle(&it, rc, sgrp, "sensors", NULL, 0) if (it.phandle == node->phandle) { of_node_put(it.node); break; } if (rc) continue; for (i = 0; i < pdata->nr_sensor_groups; i++) if (gid == sgrp_data[i].gid) { of_node_put(sgrp); of_node_put(groups); return &sgrp_data[i]; } } of_node_put(groups); return NULL; } static int populate_attr_groups(struct platform_device *pdev) { struct platform_data *pdata = platform_get_drvdata(pdev); const struct attribute_group **pgroups = pdata->attr_groups; struct device_node *opal, *np; enum sensors type; int ret; ret = init_sensor_group_data(pdev, pdata); if (ret) return ret; opal = of_find_node_by_path("/ibm,opal/sensors"); for_each_child_of_node(opal, np) { const char *label; type = get_sensor_type(np); if (type == MAX_SENSOR_TYPE) continue; sensor_groups[type].attr_count++; /* * add attributes for labels, min and max */ if (!of_property_read_string(np, "label", &label)) sensor_groups[type].attr_count++; if (of_property_present(np, "sensor-data-min")) sensor_groups[type].attr_count++; if (of_property_present(np, "sensor-data-max")) sensor_groups[type].attr_count++; } of_node_put(opal); for (type = 0; type < MAX_SENSOR_TYPE; type++) { sensor_groups[type].group.attrs = devm_kcalloc(&pdev->dev, sensor_groups[type].attr_count + 1, sizeof(struct attribute *), GFP_KERNEL); if (!sensor_groups[type].group.attrs) return -ENOMEM; pgroups[type] = &sensor_groups[type].group; pdata->sensors_count += sensor_groups[type].attr_count; sensor_groups[type].attr_count = 0; } return 0; } static void create_hwmon_attr(struct sensor_data *sdata, const char *attr_name, ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)) { snprintf(sdata->name, MAX_ATTR_LEN, "%s%d_%s", sensor_groups[sdata->type].name, sdata->hwmon_index, attr_name); sysfs_attr_init(&sdata->dev_attr.attr); sdata->dev_attr.attr.name = sdata->name; sdata->dev_attr.show = show; if (store) { sdata->dev_attr.store = store; sdata->dev_attr.attr.mode = 0664; } else { sdata->dev_attr.attr.mode = 0444; } } static void populate_sensor(struct sensor_data *sdata, int od, int hd, int sid, const char *attr_name, enum sensors type, const struct attribute_group *pgroup, struct sensor_group_data *sgrp_data, ssize_t (*show)(struct device *dev, struct device_attribute *attr, char *buf), ssize_t (*store)(struct device *dev, struct device_attribute *attr, const char *buf, size_t count)) { sdata->id = sid; sdata->type = type; sdata->opal_index = od; sdata->hwmon_index = hd; create_hwmon_attr(sdata, attr_name, show, store); pgroup->attrs[sensor_groups[type].attr_count++] = &sdata->dev_attr.attr; sdata->sgrp_data = sgrp_data; } static char *get_max_attr(enum sensors type) { switch (type) { case POWER_INPUT: return "input_highest"; default: return "highest"; } } static char *get_min_attr(enum sensors type) { switch (type) { case POWER_INPUT: return "input_lowest"; default: return "lowest"; } } /* * Iterate through the device tree for each child of 'sensors' node, create * a sysfs attribute file, the file is named by translating the DT node name * to the name required by the higher 'hwmon' driver like fan1_input, temp1_max * etc.. */ static int create_device_attrs(struct platform_device *pdev) { struct platform_data *pdata = platform_get_drvdata(pdev); const struct attribute_group **pgroups = pdata->attr_groups; struct device_node *opal, *np; struct sensor_data *sdata; u32 count = 0; u32 group_attr_id[MAX_SENSOR_TYPE] = {0}; sdata = devm_kcalloc(&pdev->dev, pdata->sensors_count, sizeof(*sdata), GFP_KERNEL); if (!sdata) return -ENOMEM; opal = of_find_node_by_path("/ibm,opal/sensors"); for_each_child_of_node(opal, np) { struct sensor_group_data *sgrp_data; const char *attr_name; u32 opal_index, hw_id; u32 sensor_id; const char *label; enum sensors type; type = get_sensor_type(np); if (type == MAX_SENSOR_TYPE) continue; /* * Newer device trees use a "sensor-data" property * name for input. */ if (of_property_read_u32(np, "sensor-id", &sensor_id) && of_property_read_u32(np, "sensor-data", &sensor_id)) { dev_info(&pdev->dev, "'sensor-id' missing in the node '%pOFn'\n", np); continue; } sdata[count].id = sensor_id; sdata[count].type = type; /* * If we can not parse the node name, it means we are * running on a newer device tree. We can just forget * about the OPAL index and use a defaut value for the * hwmon attribute name */ attr_name = parse_opal_node_name(np->name, type, &opal_index); if (IS_ERR(attr_name)) { attr_name = "input"; opal_index = INVALID_INDEX; } hw_id = get_sensor_hwmon_index(&sdata[count], sdata, count); sgrp_data = get_sensor_group(pdata, np, type); populate_sensor(&sdata[count], opal_index, hw_id, sensor_id, attr_name, type, pgroups[type], sgrp_data, show_sensor, NULL); count++; if (!of_property_read_string(np, "label", &label)) { /* * For the label attribute, we can reuse the * "properties" of the previous "input" * attribute. They are related to the same * sensor. */ make_sensor_label(np, &sdata[count], label); populate_sensor(&sdata[count], opal_index, hw_id, sensor_id, "label", type, pgroups[type], NULL, show_label, NULL); count++; } if (!of_property_read_u32(np, "sensor-data-max", &sensor_id)) { attr_name = get_max_attr(type); populate_sensor(&sdata[count], opal_index, hw_id, sensor_id, attr_name, type, pgroups[type], sgrp_data, show_sensor, NULL); count++; } if (!of_property_read_u32(np, "sensor-data-min", &sensor_id)) { attr_name = get_min_attr(type); populate_sensor(&sdata[count], opal_index, hw_id, sensor_id, attr_name, type, pgroups[type], sgrp_data, show_sensor, NULL); count++; } if (sgrp_data && !sgrp_data->enable) { sgrp_data->enable = true; hw_id = ++group_attr_id[type]; populate_sensor(&sdata[count], opal_index, hw_id, sgrp_data->gid, "enable", type, pgroups[type], sgrp_data, show_enable, store_enable); count++; } } of_node_put(opal); return 0; } static int ibmpowernv_probe(struct platform_device *pdev) { struct platform_data *pdata; struct device *hwmon_dev; int err; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; platform_set_drvdata(pdev, pdata); pdata->sensors_count = 0; pdata->nr_sensor_groups = 0; err = populate_attr_groups(pdev); if (err) return err; /* Create sysfs attribute data for each sensor found in the DT */ err = create_device_attrs(pdev); if (err) return err; /* Finally, register with hwmon */ hwmon_dev = devm_hwmon_device_register_with_groups(&pdev->dev, DRVNAME, pdata, pdata->attr_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct platform_device_id opal_sensor_driver_ids[] = { { .name = "opal-sensor", }, { } }; MODULE_DEVICE_TABLE(platform, opal_sensor_driver_ids); static const struct of_device_id opal_sensor_match[] = { { .compatible = "ibm,opal-sensor" }, { }, }; MODULE_DEVICE_TABLE(of, opal_sensor_match); static struct platform_driver ibmpowernv_driver = { .probe = ibmpowernv_probe, .id_table = opal_sensor_driver_ids, .driver = { .name = DRVNAME, .of_match_table = opal_sensor_match, }, }; module_platform_driver(ibmpowernv_driver); MODULE_AUTHOR("Neelesh Gupta <neelegup@linux.vnet.ibm.com>"); MODULE_DESCRIPTION("IBM POWERNV platform sensors"); MODULE_LICENSE("GPL");