// SPDX-License-Identifier: GPL-2.0-only /* * RSB (Reduced Serial Bus) driver. * * Author: Chen-Yu Tsai <wens@csie.org> * * The RSB controller looks like an SMBus controller which only supports * byte and word data transfers. But, it differs from standard SMBus * protocol on several aspects: * - it uses addresses set at runtime to address slaves. Runtime addresses * are sent to slaves using their 12bit hardware addresses. Up to 15 * runtime addresses are available. * - it adds a parity bit every 8bits of data and address for read and * write accesses; this replaces the ack bit * - only one read access is required to read a byte (instead of a write * followed by a read access in standard SMBus protocol) * - there's no Ack bit after each read access * * This means this bus cannot be used to interface with standard SMBus * devices. Devices known to support this interface include the AXP223, * AXP809, and AXP806 PMICs, and the AC100 audio codec, all from X-Powers. * * A description of the operation and wire protocol can be found in the * RSB section of Allwinner's A80 user manual, which can be found at * * https://github.com/allwinner-zh/documents/tree/master/A80 * * This document is officially released by Allwinner. * * This driver is based on i2c-sun6i-p2wi.c, the P2WI bus driver. */ #include <linux/clk.h> #include <linux/clk/clk-conf.h> #include <linux/device.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_device.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/sunxi-rsb.h> #include <linux/types.h> /* RSB registers */ #define RSB_CTRL 0x0 /* Global control */ #define RSB_CCR 0x4 /* Clock control */ #define RSB_INTE 0x8 /* Interrupt controls */ #define RSB_INTS 0xc /* Interrupt status */ #define RSB_ADDR 0x10 /* Address to send with read/write command */ #define RSB_DATA 0x1c /* Data to read/write */ #define RSB_LCR 0x24 /* Line control */ #define RSB_DMCR 0x28 /* Device mode (init) control */ #define RSB_CMD 0x2c /* RSB Command */ #define RSB_DAR 0x30 /* Device address / runtime address */ /* CTRL fields */ #define RSB_CTRL_START_TRANS BIT(7) #define RSB_CTRL_ABORT_TRANS BIT(6) #define RSB_CTRL_GLOBAL_INT_ENB BIT(1) #define RSB_CTRL_SOFT_RST BIT(0) /* CLK CTRL fields */ #define RSB_CCR_SDA_OUT_DELAY(v) (((v) & 0x7) << 8) #define RSB_CCR_MAX_CLK_DIV 0xff #define RSB_CCR_CLK_DIV(v) ((v) & RSB_CCR_MAX_CLK_DIV) /* STATUS fields */ #define RSB_INTS_TRANS_ERR_ACK BIT(16) #define RSB_INTS_TRANS_ERR_DATA_BIT(v) (((v) >> 8) & 0xf) #define RSB_INTS_TRANS_ERR_DATA GENMASK(11, 8) #define RSB_INTS_LOAD_BSY BIT(2) #define RSB_INTS_TRANS_ERR BIT(1) #define RSB_INTS_TRANS_OVER BIT(0) /* LINE CTRL fields*/ #define RSB_LCR_SCL_STATE BIT(5) #define RSB_LCR_SDA_STATE BIT(4) #define RSB_LCR_SCL_CTL BIT(3) #define RSB_LCR_SCL_CTL_EN BIT(2) #define RSB_LCR_SDA_CTL BIT(1) #define RSB_LCR_SDA_CTL_EN BIT(0) /* DEVICE MODE CTRL field values */ #define RSB_DMCR_DEVICE_START BIT(31) #define RSB_DMCR_MODE_DATA (0x7c << 16) #define RSB_DMCR_MODE_REG (0x3e << 8) #define RSB_DMCR_DEV_ADDR 0x00 /* CMD values */ #define RSB_CMD_RD8 0x8b #define RSB_CMD_RD16 0x9c #define RSB_CMD_RD32 0xa6 #define RSB_CMD_WR8 0x4e #define RSB_CMD_WR16 0x59 #define RSB_CMD_WR32 0x63 #define RSB_CMD_STRA 0xe8 /* DAR fields */ #define RSB_DAR_RTA(v) (((v) & 0xff) << 16) #define RSB_DAR_DA(v) ((v) & 0xffff) #define RSB_MAX_FREQ 20000000 #define RSB_CTRL_NAME "sunxi-rsb" struct sunxi_rsb_addr_map { u16 hwaddr; u8 rtaddr; }; struct sunxi_rsb { struct device *dev; void __iomem *regs; struct clk *clk; struct reset_control *rstc; struct completion complete; struct mutex lock; unsigned int status; u32 clk_freq; }; /* bus / slave device related functions */ static struct bus_type sunxi_rsb_bus; static int sunxi_rsb_device_match(struct device *dev, struct device_driver *drv) { return of_driver_match_device(dev, drv); } static int sunxi_rsb_device_probe(struct device *dev) { const struct sunxi_rsb_driver *drv = to_sunxi_rsb_driver(dev->driver); struct sunxi_rsb_device *rdev = to_sunxi_rsb_device(dev); int ret; if (!drv->probe) return -ENODEV; if (!rdev->irq) { int irq = -ENOENT; if (dev->of_node) irq = of_irq_get(dev->of_node, 0); if (irq == -EPROBE_DEFER) return irq; if (irq < 0) irq = 0; rdev->irq = irq; } ret = of_clk_set_defaults(dev->of_node, false); if (ret < 0) return ret; return drv->probe(rdev); } static void sunxi_rsb_device_remove(struct device *dev) { const struct sunxi_rsb_driver *drv = to_sunxi_rsb_driver(dev->driver); drv->remove(to_sunxi_rsb_device(dev)); } static int sunxi_rsb_device_modalias(const struct device *dev, struct kobj_uevent_env *env) { return of_device_uevent_modalias(dev, env); } static struct bus_type sunxi_rsb_bus = { .name = RSB_CTRL_NAME, .match = sunxi_rsb_device_match, .probe = sunxi_rsb_device_probe, .remove = sunxi_rsb_device_remove, .uevent = sunxi_rsb_device_modalias, }; static void sunxi_rsb_dev_release(struct device *dev) { struct sunxi_rsb_device *rdev = to_sunxi_rsb_device(dev); kfree(rdev); } /** * sunxi_rsb_device_create() - allocate and add an RSB device * @rsb: RSB controller * @node: RSB slave device node * @hwaddr: RSB slave hardware address * @rtaddr: RSB slave runtime address */ static struct sunxi_rsb_device *sunxi_rsb_device_create(struct sunxi_rsb *rsb, struct device_node *node, u16 hwaddr, u8 rtaddr) { int err; struct sunxi_rsb_device *rdev; rdev = kzalloc(sizeof(*rdev), GFP_KERNEL); if (!rdev) return ERR_PTR(-ENOMEM); rdev->rsb = rsb; rdev->hwaddr = hwaddr; rdev->rtaddr = rtaddr; rdev->dev.bus = &sunxi_rsb_bus; rdev->dev.parent = rsb->dev; rdev->dev.of_node = node; rdev->dev.release = sunxi_rsb_dev_release; dev_set_name(&rdev->dev, "%s-%x", RSB_CTRL_NAME, hwaddr); err = device_register(&rdev->dev); if (err < 0) { dev_err(&rdev->dev, "Can't add %s, status %d\n", dev_name(&rdev->dev), err); goto err_device_add; } dev_dbg(&rdev->dev, "device %s registered\n", dev_name(&rdev->dev)); return rdev; err_device_add: put_device(&rdev->dev); return ERR_PTR(err); } /** * sunxi_rsb_device_unregister(): unregister an RSB device * @rdev: rsb_device to be removed */ static void sunxi_rsb_device_unregister(struct sunxi_rsb_device *rdev) { device_unregister(&rdev->dev); } static int sunxi_rsb_remove_devices(struct device *dev, void *data) { struct sunxi_rsb_device *rdev = to_sunxi_rsb_device(dev); if (dev->bus == &sunxi_rsb_bus) sunxi_rsb_device_unregister(rdev); return 0; } /** * sunxi_rsb_driver_register() - Register device driver with RSB core * @rdrv: device driver to be associated with slave-device. * * This API will register the client driver with the RSB framework. * It is typically called from the driver's module-init function. */ int sunxi_rsb_driver_register(struct sunxi_rsb_driver *rdrv) { rdrv->driver.bus = &sunxi_rsb_bus; return driver_register(&rdrv->driver); } EXPORT_SYMBOL_GPL(sunxi_rsb_driver_register); /* common code that starts a transfer */ static int _sunxi_rsb_run_xfer(struct sunxi_rsb *rsb) { u32 int_mask, status; bool timeout; if (readl(rsb->regs + RSB_CTRL) & RSB_CTRL_START_TRANS) { dev_dbg(rsb->dev, "RSB transfer still in progress\n"); return -EBUSY; } reinit_completion(&rsb->complete); int_mask = RSB_INTS_LOAD_BSY | RSB_INTS_TRANS_ERR | RSB_INTS_TRANS_OVER; writel(int_mask, rsb->regs + RSB_INTE); writel(RSB_CTRL_START_TRANS | RSB_CTRL_GLOBAL_INT_ENB, rsb->regs + RSB_CTRL); if (irqs_disabled()) { timeout = readl_poll_timeout_atomic(rsb->regs + RSB_INTS, status, (status & int_mask), 10, 100000); writel(status, rsb->regs + RSB_INTS); } else { timeout = !wait_for_completion_io_timeout(&rsb->complete, msecs_to_jiffies(100)); status = rsb->status; } if (timeout) { dev_dbg(rsb->dev, "RSB timeout\n"); /* abort the transfer */ writel(RSB_CTRL_ABORT_TRANS, rsb->regs + RSB_CTRL); /* clear any interrupt flags */ writel(readl(rsb->regs + RSB_INTS), rsb->regs + RSB_INTS); return -ETIMEDOUT; } if (status & RSB_INTS_LOAD_BSY) { dev_dbg(rsb->dev, "RSB busy\n"); return -EBUSY; } if (status & RSB_INTS_TRANS_ERR) { if (status & RSB_INTS_TRANS_ERR_ACK) { dev_dbg(rsb->dev, "RSB slave nack\n"); return -EINVAL; } if (status & RSB_INTS_TRANS_ERR_DATA) { dev_dbg(rsb->dev, "RSB transfer data error\n"); return -EIO; } } return 0; } static int sunxi_rsb_read(struct sunxi_rsb *rsb, u8 rtaddr, u8 addr, u32 *buf, size_t len) { u32 cmd; int ret; if (!buf) return -EINVAL; switch (len) { case 1: cmd = RSB_CMD_RD8; break; case 2: cmd = RSB_CMD_RD16; break; case 4: cmd = RSB_CMD_RD32; break; default: dev_err(rsb->dev, "Invalid access width: %zd\n", len); return -EINVAL; } ret = pm_runtime_resume_and_get(rsb->dev); if (ret) return ret; mutex_lock(&rsb->lock); writel(addr, rsb->regs + RSB_ADDR); writel(RSB_DAR_RTA(rtaddr), rsb->regs + RSB_DAR); writel(cmd, rsb->regs + RSB_CMD); ret = _sunxi_rsb_run_xfer(rsb); if (ret) goto unlock; *buf = readl(rsb->regs + RSB_DATA) & GENMASK(len * 8 - 1, 0); unlock: mutex_unlock(&rsb->lock); pm_runtime_mark_last_busy(rsb->dev); pm_runtime_put_autosuspend(rsb->dev); return ret; } static int sunxi_rsb_write(struct sunxi_rsb *rsb, u8 rtaddr, u8 addr, const u32 *buf, size_t len) { u32 cmd; int ret; if (!buf) return -EINVAL; switch (len) { case 1: cmd = RSB_CMD_WR8; break; case 2: cmd = RSB_CMD_WR16; break; case 4: cmd = RSB_CMD_WR32; break; default: dev_err(rsb->dev, "Invalid access width: %zd\n", len); return -EINVAL; } ret = pm_runtime_resume_and_get(rsb->dev); if (ret) return ret; mutex_lock(&rsb->lock); writel(addr, rsb->regs + RSB_ADDR); writel(RSB_DAR_RTA(rtaddr), rsb->regs + RSB_DAR); writel(*buf, rsb->regs + RSB_DATA); writel(cmd, rsb->regs + RSB_CMD); ret = _sunxi_rsb_run_xfer(rsb); mutex_unlock(&rsb->lock); pm_runtime_mark_last_busy(rsb->dev); pm_runtime_put_autosuspend(rsb->dev); return ret; } /* RSB regmap functions */ struct sunxi_rsb_ctx { struct sunxi_rsb_device *rdev; int size; }; static int regmap_sunxi_rsb_reg_read(void *context, unsigned int reg, unsigned int *val) { struct sunxi_rsb_ctx *ctx = context; struct sunxi_rsb_device *rdev = ctx->rdev; if (reg > 0xff) return -EINVAL; return sunxi_rsb_read(rdev->rsb, rdev->rtaddr, reg, val, ctx->size); } static int regmap_sunxi_rsb_reg_write(void *context, unsigned int reg, unsigned int val) { struct sunxi_rsb_ctx *ctx = context; struct sunxi_rsb_device *rdev = ctx->rdev; return sunxi_rsb_write(rdev->rsb, rdev->rtaddr, reg, &val, ctx->size); } static void regmap_sunxi_rsb_free_ctx(void *context) { struct sunxi_rsb_ctx *ctx = context; kfree(ctx); } static struct regmap_bus regmap_sunxi_rsb = { .reg_write = regmap_sunxi_rsb_reg_write, .reg_read = regmap_sunxi_rsb_reg_read, .free_context = regmap_sunxi_rsb_free_ctx, .reg_format_endian_default = REGMAP_ENDIAN_NATIVE, .val_format_endian_default = REGMAP_ENDIAN_NATIVE, }; static struct sunxi_rsb_ctx *regmap_sunxi_rsb_init_ctx(struct sunxi_rsb_device *rdev, const struct regmap_config *config) { struct sunxi_rsb_ctx *ctx; switch (config->val_bits) { case 8: case 16: case 32: break; default: return ERR_PTR(-EINVAL); } ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); if (!ctx) return ERR_PTR(-ENOMEM); ctx->rdev = rdev; ctx->size = config->val_bits / 8; return ctx; } struct regmap *__devm_regmap_init_sunxi_rsb(struct sunxi_rsb_device *rdev, const struct regmap_config *config, struct lock_class_key *lock_key, const char *lock_name) { struct sunxi_rsb_ctx *ctx = regmap_sunxi_rsb_init_ctx(rdev, config); if (IS_ERR(ctx)) return ERR_CAST(ctx); return __devm_regmap_init(&rdev->dev, ®map_sunxi_rsb, ctx, config, lock_key, lock_name); } EXPORT_SYMBOL_GPL(__devm_regmap_init_sunxi_rsb); /* RSB controller driver functions */ static irqreturn_t sunxi_rsb_irq(int irq, void *dev_id) { struct sunxi_rsb *rsb = dev_id; u32 status; status = readl(rsb->regs + RSB_INTS); rsb->status = status; /* Clear interrupts */ status &= (RSB_INTS_LOAD_BSY | RSB_INTS_TRANS_ERR | RSB_INTS_TRANS_OVER); writel(status, rsb->regs + RSB_INTS); complete(&rsb->complete); return IRQ_HANDLED; } static int sunxi_rsb_init_device_mode(struct sunxi_rsb *rsb) { int ret = 0; u32 reg; /* send init sequence */ writel(RSB_DMCR_DEVICE_START | RSB_DMCR_MODE_DATA | RSB_DMCR_MODE_REG | RSB_DMCR_DEV_ADDR, rsb->regs + RSB_DMCR); readl_poll_timeout(rsb->regs + RSB_DMCR, reg, !(reg & RSB_DMCR_DEVICE_START), 100, 250000); if (reg & RSB_DMCR_DEVICE_START) ret = -ETIMEDOUT; /* clear interrupt status bits */ writel(readl(rsb->regs + RSB_INTS), rsb->regs + RSB_INTS); return ret; } /* * There are 15 valid runtime addresses, though Allwinner typically * skips the first, for unknown reasons, and uses the following three. * * 0x17, 0x2d, 0x3a, 0x4e, 0x59, 0x63, 0x74, 0x8b, * 0x9c, 0xa6, 0xb1, 0xc5, 0xd2, 0xe8, 0xff * * No designs with 2 RSB slave devices sharing identical hardware * addresses on the same bus have been seen in the wild. All designs * use 0x2d for the primary PMIC, 0x3a for the secondary PMIC if * there is one, and 0x45 for peripheral ICs. * * The hardware does not seem to support re-setting runtime addresses. * Attempts to do so result in the slave devices returning a NACK. * Hence we just hardcode the mapping here, like Allwinner does. */ static const struct sunxi_rsb_addr_map sunxi_rsb_addr_maps[] = { { 0x3a3, 0x2d }, /* Primary PMIC: AXP223, AXP809, AXP81X, ... */ { 0x745, 0x3a }, /* Secondary PMIC: AXP806, ... */ { 0xe89, 0x4e }, /* Peripheral IC: AC100, ... */ }; static u8 sunxi_rsb_get_rtaddr(u16 hwaddr) { int i; for (i = 0; i < ARRAY_SIZE(sunxi_rsb_addr_maps); i++) if (hwaddr == sunxi_rsb_addr_maps[i].hwaddr) return sunxi_rsb_addr_maps[i].rtaddr; return 0; /* 0 is an invalid runtime address */ } static int of_rsb_register_devices(struct sunxi_rsb *rsb) { struct device *dev = rsb->dev; struct device_node *child, *np = dev->of_node; u32 hwaddr; u8 rtaddr; int ret; if (!np) return -EINVAL; /* Runtime addresses for all slaves should be set first */ for_each_available_child_of_node(np, child) { dev_dbg(dev, "setting child %pOF runtime address\n", child); ret = of_property_read_u32(child, "reg", &hwaddr); if (ret) { dev_err(dev, "%pOF: invalid 'reg' property: %d\n", child, ret); continue; } rtaddr = sunxi_rsb_get_rtaddr(hwaddr); if (!rtaddr) { dev_err(dev, "%pOF: unknown hardware device address\n", child); continue; } /* * Since no devices have been registered yet, we are the * only ones using the bus, we can skip locking the bus. */ /* setup command parameters */ writel(RSB_CMD_STRA, rsb->regs + RSB_CMD); writel(RSB_DAR_RTA(rtaddr) | RSB_DAR_DA(hwaddr), rsb->regs + RSB_DAR); /* send command */ ret = _sunxi_rsb_run_xfer(rsb); if (ret) dev_warn(dev, "%pOF: set runtime address failed: %d\n", child, ret); } /* Then we start adding devices and probing them */ for_each_available_child_of_node(np, child) { struct sunxi_rsb_device *rdev; dev_dbg(dev, "adding child %pOF\n", child); ret = of_property_read_u32(child, "reg", &hwaddr); if (ret) continue; rtaddr = sunxi_rsb_get_rtaddr(hwaddr); if (!rtaddr) continue; rdev = sunxi_rsb_device_create(rsb, child, hwaddr, rtaddr); if (IS_ERR(rdev)) dev_err(dev, "failed to add child device %pOF: %ld\n", child, PTR_ERR(rdev)); } return 0; } static int sunxi_rsb_hw_init(struct sunxi_rsb *rsb) { struct device *dev = rsb->dev; unsigned long p_clk_freq; u32 clk_delay, reg; int clk_div, ret; ret = clk_prepare_enable(rsb->clk); if (ret) { dev_err(dev, "failed to enable clk: %d\n", ret); return ret; } ret = reset_control_deassert(rsb->rstc); if (ret) { dev_err(dev, "failed to deassert reset line: %d\n", ret); goto err_clk_disable; } /* reset the controller */ writel(RSB_CTRL_SOFT_RST, rsb->regs + RSB_CTRL); readl_poll_timeout(rsb->regs + RSB_CTRL, reg, !(reg & RSB_CTRL_SOFT_RST), 1000, 100000); /* * Clock frequency and delay calculation code is from * Allwinner U-boot sources. * * From A83 user manual: * bus clock frequency = parent clock frequency / (2 * (divider + 1)) */ p_clk_freq = clk_get_rate(rsb->clk); clk_div = p_clk_freq / rsb->clk_freq / 2; if (!clk_div) clk_div = 1; else if (clk_div > RSB_CCR_MAX_CLK_DIV + 1) clk_div = RSB_CCR_MAX_CLK_DIV + 1; clk_delay = clk_div >> 1; if (!clk_delay) clk_delay = 1; dev_info(dev, "RSB running at %lu Hz\n", p_clk_freq / clk_div / 2); writel(RSB_CCR_SDA_OUT_DELAY(clk_delay) | RSB_CCR_CLK_DIV(clk_div - 1), rsb->regs + RSB_CCR); return 0; err_clk_disable: clk_disable_unprepare(rsb->clk); return ret; } static void sunxi_rsb_hw_exit(struct sunxi_rsb *rsb) { reset_control_assert(rsb->rstc); /* Keep the clock and PM reference counts consistent. */ if (!pm_runtime_status_suspended(rsb->dev)) clk_disable_unprepare(rsb->clk); } static int __maybe_unused sunxi_rsb_runtime_suspend(struct device *dev) { struct sunxi_rsb *rsb = dev_get_drvdata(dev); clk_disable_unprepare(rsb->clk); return 0; } static int __maybe_unused sunxi_rsb_runtime_resume(struct device *dev) { struct sunxi_rsb *rsb = dev_get_drvdata(dev); return clk_prepare_enable(rsb->clk); } static int __maybe_unused sunxi_rsb_suspend(struct device *dev) { struct sunxi_rsb *rsb = dev_get_drvdata(dev); sunxi_rsb_hw_exit(rsb); return 0; } static int __maybe_unused sunxi_rsb_resume(struct device *dev) { struct sunxi_rsb *rsb = dev_get_drvdata(dev); return sunxi_rsb_hw_init(rsb); } static int sunxi_rsb_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct sunxi_rsb *rsb; u32 clk_freq = 3000000; int irq, ret; of_property_read_u32(np, "clock-frequency", &clk_freq); if (clk_freq > RSB_MAX_FREQ) { dev_err(dev, "clock-frequency (%u Hz) is too high (max = 20MHz)\n", clk_freq); return -EINVAL; } rsb = devm_kzalloc(dev, sizeof(*rsb), GFP_KERNEL); if (!rsb) return -ENOMEM; rsb->dev = dev; rsb->clk_freq = clk_freq; platform_set_drvdata(pdev, rsb); rsb->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(rsb->regs)) return PTR_ERR(rsb->regs); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; rsb->clk = devm_clk_get(dev, NULL); if (IS_ERR(rsb->clk)) { ret = PTR_ERR(rsb->clk); dev_err(dev, "failed to retrieve clk: %d\n", ret); return ret; } rsb->rstc = devm_reset_control_get(dev, NULL); if (IS_ERR(rsb->rstc)) { ret = PTR_ERR(rsb->rstc); dev_err(dev, "failed to retrieve reset controller: %d\n", ret); return ret; } init_completion(&rsb->complete); mutex_init(&rsb->lock); ret = devm_request_irq(dev, irq, sunxi_rsb_irq, 0, RSB_CTRL_NAME, rsb); if (ret) { dev_err(dev, "can't register interrupt handler irq %d: %d\n", irq, ret); return ret; } ret = sunxi_rsb_hw_init(rsb); if (ret) return ret; /* initialize all devices on the bus into RSB mode */ ret = sunxi_rsb_init_device_mode(rsb); if (ret) dev_warn(dev, "Initialize device mode failed: %d\n", ret); pm_suspend_ignore_children(dev, true); pm_runtime_set_active(dev); pm_runtime_set_autosuspend_delay(dev, MSEC_PER_SEC); pm_runtime_use_autosuspend(dev); pm_runtime_enable(dev); of_rsb_register_devices(rsb); return 0; } static int sunxi_rsb_remove(struct platform_device *pdev) { struct sunxi_rsb *rsb = platform_get_drvdata(pdev); device_for_each_child(rsb->dev, NULL, sunxi_rsb_remove_devices); pm_runtime_disable(&pdev->dev); sunxi_rsb_hw_exit(rsb); return 0; } static const struct dev_pm_ops sunxi_rsb_dev_pm_ops = { SET_RUNTIME_PM_OPS(sunxi_rsb_runtime_suspend, sunxi_rsb_runtime_resume, NULL) SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(sunxi_rsb_suspend, sunxi_rsb_resume) }; static const struct of_device_id sunxi_rsb_of_match_table[] = { { .compatible = "allwinner,sun8i-a23-rsb" }, {} }; MODULE_DEVICE_TABLE(of, sunxi_rsb_of_match_table); static struct platform_driver sunxi_rsb_driver = { .probe = sunxi_rsb_probe, .remove = sunxi_rsb_remove, .driver = { .name = RSB_CTRL_NAME, .of_match_table = sunxi_rsb_of_match_table, .pm = &sunxi_rsb_dev_pm_ops, }, }; static int __init sunxi_rsb_init(void) { int ret; ret = bus_register(&sunxi_rsb_bus); if (ret) { pr_err("failed to register sunxi sunxi_rsb bus: %d\n", ret); return ret; } ret = platform_driver_register(&sunxi_rsb_driver); if (ret) { bus_unregister(&sunxi_rsb_bus); return ret; } return 0; } module_init(sunxi_rsb_init); static void __exit sunxi_rsb_exit(void) { platform_driver_unregister(&sunxi_rsb_driver); bus_unregister(&sunxi_rsb_bus); } module_exit(sunxi_rsb_exit); MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>"); MODULE_DESCRIPTION("Allwinner sunXi Reduced Serial Bus controller driver"); MODULE_LICENSE("GPL v2");