// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2013 Davidlohr Bueso <davidlohr@hp.com> * * futex-requeue: Block a bunch of threads on futex1 and requeue them * on futex2, N at a time. * * This program is particularly useful to measure the latency of nthread * requeues without waking up any tasks (in the non-pi case) -- thus * mimicking a regular futex_wait. */ /* For the CLR_() macros */ #include <string.h> #include <pthread.h> #include <signal.h> #include "../util/mutex.h" #include "../util/stat.h" #include <subcmd/parse-options.h> #include <linux/compiler.h> #include <linux/kernel.h> #include <linux/time64.h> #include <errno.h> #include <perf/cpumap.h> #include "bench.h" #include "futex.h" #include <err.h> #include <stdlib.h> #include <sys/time.h> #include <sys/mman.h> static u_int32_t futex1 = 0, futex2 = 0; static pthread_t *worker; static bool done = false; static struct mutex thread_lock; static struct cond thread_parent, thread_worker; static struct stats requeuetime_stats, requeued_stats; static unsigned int threads_starting; static int futex_flag = 0; static struct bench_futex_parameters params = { /* * How many tasks to requeue at a time. * Default to 1 in order to make the kernel work more. */ .nrequeue = 1, }; static const struct option options[] = { OPT_UINTEGER('t', "threads", ¶ms.nthreads, "Specify amount of threads"), OPT_UINTEGER('q', "nrequeue", ¶ms.nrequeue, "Specify amount of threads to requeue at once"), OPT_BOOLEAN( 's', "silent", ¶ms.silent, "Silent mode: do not display data/details"), OPT_BOOLEAN( 'S', "shared", ¶ms.fshared, "Use shared futexes instead of private ones"), OPT_BOOLEAN( 'm', "mlockall", ¶ms.mlockall, "Lock all current and future memory"), OPT_BOOLEAN( 'B', "broadcast", ¶ms.broadcast, "Requeue all threads at once"), OPT_BOOLEAN( 'p', "pi", ¶ms.pi, "Use PI-aware variants of FUTEX_CMP_REQUEUE"), OPT_END() }; static const char * const bench_futex_requeue_usage[] = { "perf bench futex requeue <options>", NULL }; static void print_summary(void) { double requeuetime_avg = avg_stats(&requeuetime_stats); double requeuetime_stddev = stddev_stats(&requeuetime_stats); unsigned int requeued_avg = avg_stats(&requeued_stats); printf("Requeued %d of %d threads in %.4f ms (+-%.2f%%)\n", requeued_avg, params.nthreads, requeuetime_avg / USEC_PER_MSEC, rel_stddev_stats(requeuetime_stddev, requeuetime_avg)); } static void *workerfn(void *arg __maybe_unused) { int ret; mutex_lock(&thread_lock); threads_starting--; if (!threads_starting) cond_signal(&thread_parent); cond_wait(&thread_worker, &thread_lock); mutex_unlock(&thread_lock); while (1) { if (!params.pi) { ret = futex_wait(&futex1, 0, NULL, futex_flag); if (!ret) break; if (ret && errno != EAGAIN) { if (!params.silent) warnx("futex_wait"); break; } } else { ret = futex_wait_requeue_pi(&futex1, 0, &futex2, NULL, futex_flag); if (!ret) { /* got the lock at futex2 */ futex_unlock_pi(&futex2, futex_flag); break; } if (ret && errno != EAGAIN) { if (!params.silent) warnx("futex_wait_requeue_pi"); break; } } } return NULL; } static void block_threads(pthread_t *w, struct perf_cpu_map *cpu) { cpu_set_t *cpuset; unsigned int i; int nrcpus = perf_cpu_map__nr(cpu); size_t size; threads_starting = params.nthreads; cpuset = CPU_ALLOC(nrcpus); BUG_ON(!cpuset); size = CPU_ALLOC_SIZE(nrcpus); /* create and block all threads */ for (i = 0; i < params.nthreads; i++) { pthread_attr_t thread_attr; pthread_attr_init(&thread_attr); CPU_ZERO_S(size, cpuset); CPU_SET_S(perf_cpu_map__cpu(cpu, i % perf_cpu_map__nr(cpu)).cpu, size, cpuset); if (pthread_attr_setaffinity_np(&thread_attr, size, cpuset)) { CPU_FREE(cpuset); err(EXIT_FAILURE, "pthread_attr_setaffinity_np"); } if (pthread_create(&w[i], &thread_attr, workerfn, NULL)) { CPU_FREE(cpuset); err(EXIT_FAILURE, "pthread_create"); } pthread_attr_destroy(&thread_attr); } CPU_FREE(cpuset); } static void toggle_done(int sig __maybe_unused, siginfo_t *info __maybe_unused, void *uc __maybe_unused) { done = true; } int bench_futex_requeue(int argc, const char **argv) { int ret = 0; unsigned int i, j; struct sigaction act; struct perf_cpu_map *cpu; argc = parse_options(argc, argv, options, bench_futex_requeue_usage, 0); if (argc) goto err; cpu = perf_cpu_map__new(NULL); if (!cpu) err(EXIT_FAILURE, "cpu_map__new"); memset(&act, 0, sizeof(act)); sigfillset(&act.sa_mask); act.sa_sigaction = toggle_done; sigaction(SIGINT, &act, NULL); if (params.mlockall) { if (mlockall(MCL_CURRENT | MCL_FUTURE)) err(EXIT_FAILURE, "mlockall"); } if (!params.nthreads) params.nthreads = perf_cpu_map__nr(cpu); worker = calloc(params.nthreads, sizeof(*worker)); if (!worker) err(EXIT_FAILURE, "calloc"); if (!params.fshared) futex_flag = FUTEX_PRIVATE_FLAG; if (params.nrequeue > params.nthreads) params.nrequeue = params.nthreads; if (params.broadcast) params.nrequeue = params.nthreads; printf("Run summary [PID %d]: Requeuing %d threads (from [%s] %p to %s%p), " "%d at a time.\n\n", getpid(), params.nthreads, params.fshared ? "shared":"private", &futex1, params.pi ? "PI ": "", &futex2, params.nrequeue); init_stats(&requeued_stats); init_stats(&requeuetime_stats); mutex_init(&thread_lock); cond_init(&thread_parent); cond_init(&thread_worker); for (j = 0; j < bench_repeat && !done; j++) { unsigned int nrequeued = 0, wakeups = 0; struct timeval start, end, runtime; /* create, launch & block all threads */ block_threads(worker, cpu); /* make sure all threads are already blocked */ mutex_lock(&thread_lock); while (threads_starting) cond_wait(&thread_parent, &thread_lock); cond_broadcast(&thread_worker); mutex_unlock(&thread_lock); usleep(100000); /* Ok, all threads are patiently blocked, start requeueing */ gettimeofday(&start, NULL); while (nrequeued < params.nthreads) { int r; /* * For the regular non-pi case, do not wakeup any tasks * blocked on futex1, allowing us to really measure * futex_wait functionality. For the PI case the first * waiter is always awoken. */ if (!params.pi) { r = futex_cmp_requeue(&futex1, 0, &futex2, 0, params.nrequeue, futex_flag); } else { r = futex_cmp_requeue_pi(&futex1, 0, &futex2, params.nrequeue, futex_flag); wakeups++; /* assume no error */ } if (r < 0) err(EXIT_FAILURE, "couldn't requeue from %p to %p", &futex1, &futex2); nrequeued += r; } gettimeofday(&end, NULL); timersub(&end, &start, &runtime); update_stats(&requeued_stats, nrequeued); update_stats(&requeuetime_stats, runtime.tv_usec); if (!params.silent) { if (!params.pi) printf("[Run %d]: Requeued %d of %d threads in " "%.4f ms\n", j + 1, nrequeued, params.nthreads, runtime.tv_usec / (double)USEC_PER_MSEC); else { nrequeued -= wakeups; printf("[Run %d]: Awoke and Requeued (%d+%d) of " "%d threads in %.4f ms\n", j + 1, wakeups, nrequeued, params.nthreads, runtime.tv_usec / (double)USEC_PER_MSEC); } } if (!params.pi) { /* everybody should be blocked on futex2, wake'em up */ nrequeued = futex_wake(&futex2, nrequeued, futex_flag); if (params.nthreads != nrequeued) warnx("couldn't wakeup all tasks (%d/%d)", nrequeued, params.nthreads); } for (i = 0; i < params.nthreads; i++) { ret = pthread_join(worker[i], NULL); if (ret) err(EXIT_FAILURE, "pthread_join"); } } /* cleanup & report results */ cond_destroy(&thread_parent); cond_destroy(&thread_worker); mutex_destroy(&thread_lock); print_summary(); free(worker); perf_cpu_map__put(cpu); return ret; err: usage_with_options(bench_futex_requeue_usage, options); exit(EXIT_FAILURE); }