// SPDX-License-Identifier: GPL-2.0 /* * linux/arch/alpha/kernel/sys_alcor.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996 Jay A Estabrook * Copyright (C) 1998, 1999 Richard Henderson * * Code supporting the ALCOR and XLT (XL-300/366/433). */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/sched.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/reboot.h> #include <linux/bitops.h> #include <asm/ptrace.h> #include <asm/io.h> #include <asm/dma.h> #include <asm/mmu_context.h> #include <asm/irq.h> #include <asm/core_cia.h> #include <asm/tlbflush.h> #include "proto.h" #include "irq_impl.h" #include "pci_impl.h" #include "machvec_impl.h" /* Note mask bit is true for ENABLED irqs. */ static unsigned long cached_irq_mask; static inline void alcor_update_irq_hw(unsigned long mask) { *(vuip)GRU_INT_MASK = mask; mb(); } static inline void alcor_enable_irq(struct irq_data *d) { alcor_update_irq_hw(cached_irq_mask |= 1UL << (d->irq - 16)); } static void alcor_disable_irq(struct irq_data *d) { alcor_update_irq_hw(cached_irq_mask &= ~(1UL << (d->irq - 16))); } static void alcor_mask_and_ack_irq(struct irq_data *d) { alcor_disable_irq(d); /* On ALCOR/XLT, need to dismiss interrupt via GRU. */ *(vuip)GRU_INT_CLEAR = 1 << (d->irq - 16); mb(); *(vuip)GRU_INT_CLEAR = 0; mb(); } static void alcor_isa_mask_and_ack_irq(struct irq_data *d) { i8259a_mask_and_ack_irq(d); /* On ALCOR/XLT, need to dismiss interrupt via GRU. */ *(vuip)GRU_INT_CLEAR = 0x80000000; mb(); *(vuip)GRU_INT_CLEAR = 0; mb(); } static struct irq_chip alcor_irq_type = { .name = "ALCOR", .irq_unmask = alcor_enable_irq, .irq_mask = alcor_disable_irq, .irq_mask_ack = alcor_mask_and_ack_irq, }; static void alcor_device_interrupt(unsigned long vector) { unsigned long pld; unsigned int i; /* Read the interrupt summary register of the GRU */ pld = (*(vuip)GRU_INT_REQ) & GRU_INT_REQ_BITS; /* * Now for every possible bit set, work through them and call * the appropriate interrupt handler. */ while (pld) { i = ffz(~pld); pld &= pld - 1; /* clear least bit set */ if (i == 31) { isa_device_interrupt(vector); } else { handle_irq(16 + i); } } } static void __init alcor_init_irq(void) { long i; if (alpha_using_srm) alpha_mv.device_interrupt = srm_device_interrupt; *(vuip)GRU_INT_MASK = 0; mb(); /* all disabled */ *(vuip)GRU_INT_EDGE = 0; mb(); /* all are level */ *(vuip)GRU_INT_HILO = 0x80000000U; mb(); /* ISA only HI */ *(vuip)GRU_INT_CLEAR = 0; mb(); /* all clear */ for (i = 16; i < 48; ++i) { /* On Alcor, at least, lines 20..30 are not connected and can generate spurious interrupts if we turn them on while IRQ probing. */ if (i >= 16+20 && i <= 16+30) continue; irq_set_chip_and_handler(i, &alcor_irq_type, handle_level_irq); irq_set_status_flags(i, IRQ_LEVEL); } i8259a_irq_type.irq_ack = alcor_isa_mask_and_ack_irq; init_i8259a_irqs(); common_init_isa_dma(); if (request_irq(16 + 31, no_action, 0, "isa-cascade", NULL)) pr_err("Failed to register isa-cascade interrupt\n"); } /* * PCI Fixup configuration. * * Summary @ GRU_INT_REQ: * Bit Meaning * 0 Interrupt Line A from slot 2 * 1 Interrupt Line B from slot 2 * 2 Interrupt Line C from slot 2 * 3 Interrupt Line D from slot 2 * 4 Interrupt Line A from slot 1 * 5 Interrupt line B from slot 1 * 6 Interrupt Line C from slot 1 * 7 Interrupt Line D from slot 1 * 8 Interrupt Line A from slot 0 * 9 Interrupt Line B from slot 0 *10 Interrupt Line C from slot 0 *11 Interrupt Line D from slot 0 *12 Interrupt Line A from slot 4 *13 Interrupt Line B from slot 4 *14 Interrupt Line C from slot 4 *15 Interrupt Line D from slot 4 *16 Interrupt Line D from slot 3 *17 Interrupt Line D from slot 3 *18 Interrupt Line D from slot 3 *19 Interrupt Line D from slot 3 *20-30 Reserved *31 EISA interrupt * * The device to slot mapping looks like: * * Slot Device * 6 built-in TULIP (XLT only) * 7 PCI on board slot 0 * 8 PCI on board slot 3 * 9 PCI on board slot 4 * 10 PCEB (PCI-EISA bridge) * 11 PCI on board slot 2 * 12 PCI on board slot 1 * * * This two layered interrupt approach means that we allocate IRQ 16 and * above for PCI interrupts. The IRQ relates to which bit the interrupt * comes in on. This makes interrupt processing much easier. */ static int alcor_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) { static char irq_tab[7][5] = { /*INT INTA INTB INTC INTD */ /* note: IDSEL 17 is XLT only */ {16+13, 16+13, 16+13, 16+13, 16+13}, /* IdSel 17, TULIP */ { 16+8, 16+8, 16+9, 16+10, 16+11}, /* IdSel 18, slot 0 */ {16+16, 16+16, 16+17, 16+18, 16+19}, /* IdSel 19, slot 3 */ {16+12, 16+12, 16+13, 16+14, 16+15}, /* IdSel 20, slot 4 */ { -1, -1, -1, -1, -1}, /* IdSel 21, PCEB */ { 16+0, 16+0, 16+1, 16+2, 16+3}, /* IdSel 22, slot 2 */ { 16+4, 16+4, 16+5, 16+6, 16+7}, /* IdSel 23, slot 1 */ }; const long min_idsel = 6, max_idsel = 12, irqs_per_slot = 5; return COMMON_TABLE_LOOKUP; } static void alcor_kill_arch(int mode) { cia_kill_arch(mode); #ifndef ALPHA_RESTORE_SRM_SETUP switch(mode) { case LINUX_REBOOT_CMD_RESTART: /* Who said DEC engineer's have no sense of humor? ;-) */ if (alpha_using_srm) { *(vuip) GRU_RESET = 0x0000dead; mb(); } break; case LINUX_REBOOT_CMD_HALT: break; case LINUX_REBOOT_CMD_POWER_OFF: break; } halt(); #endif } static void __init alcor_init_pci(void) { struct pci_dev *dev; cia_init_pci(); /* * Now we can look to see if we are really running on an XLT-type * motherboard, by looking for a 21040 TULIP in slot 6, which is * built into XLT and BRET/MAVERICK, but not available on ALCOR. */ dev = pci_get_device(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, NULL); if (dev && dev->devfn == PCI_DEVFN(6,0)) { alpha_mv.sys.cia.gru_int_req_bits = XLT_GRU_INT_REQ_BITS; printk(KERN_INFO "%s: Detected AS500 or XLT motherboard.\n", __func__); } pci_dev_put(dev); } /* * The System Vectors */ struct alpha_machine_vector alcor_mv __initmv = { .vector_name = "Alcor", DO_EV5_MMU, DO_DEFAULT_RTC, DO_CIA_IO, .machine_check = cia_machine_check, .max_isa_dma_address = ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS, .min_io_address = EISA_DEFAULT_IO_BASE, .min_mem_address = CIA_DEFAULT_MEM_BASE, .nr_irqs = 48, .device_interrupt = alcor_device_interrupt, .init_arch = cia_init_arch, .init_irq = alcor_init_irq, .init_rtc = common_init_rtc, .init_pci = alcor_init_pci, .kill_arch = alcor_kill_arch, .pci_map_irq = alcor_map_irq, .pci_swizzle = common_swizzle, .sys = { .cia = { .gru_int_req_bits = ALCOR_GRU_INT_REQ_BITS }} }; ALIAS_MV(alcor) struct alpha_machine_vector xlt_mv __initmv = { .vector_name = "XLT", DO_EV5_MMU, DO_DEFAULT_RTC, DO_CIA_IO, .machine_check = cia_machine_check, .max_isa_dma_address = ALPHA_MAX_ISA_DMA_ADDRESS, .min_io_address = EISA_DEFAULT_IO_BASE, .min_mem_address = CIA_DEFAULT_MEM_BASE, .nr_irqs = 48, .device_interrupt = alcor_device_interrupt, .init_arch = cia_init_arch, .init_irq = alcor_init_irq, .init_rtc = common_init_rtc, .init_pci = alcor_init_pci, .kill_arch = alcor_kill_arch, .pci_map_irq = alcor_map_irq, .pci_swizzle = common_swizzle, .sys = { .cia = { .gru_int_req_bits = XLT_GRU_INT_REQ_BITS }} }; /* No alpha_mv alias for XLT, since we compile it in unconditionally with ALCOR; setup_arch knows how to cope. */