// SPDX-License-Identifier: GPL-2.0 /* * SuperH KGDB support * * Copyright (C) 2008 - 2012 Paul Mundt * * Single stepping taken from the old stub by Henry Bell and Jeremy Siegel. */ #include <linux/kgdb.h> #include <linux/kdebug.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <asm/cacheflush.h> #include <asm/traps.h> /* Macros for single step instruction identification */ #define OPCODE_BT(op) (((op) & 0xff00) == 0x8900) #define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00) #define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \ (((op) & 0x7f ) << 1)) #define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00) #define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00) #define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000) #define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ (((op) & 0x7ff) << 1)) #define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023) #define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8) #define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000) #define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \ (((op) & 0x7ff) << 1)) #define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003) #define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf) #define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b) #define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf) #define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b) #define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf) #define OPCODE_RTS(op) ((op) == 0xb) #define OPCODE_RTE(op) ((op) == 0x2b) #define SR_T_BIT_MASK 0x1 #define STEP_OPCODE 0xc33d /* Calculate the new address for after a step */ static short *get_step_address(struct pt_regs *linux_regs) { insn_size_t op = __raw_readw(linux_regs->pc); long addr; /* BT */ if (OPCODE_BT(op)) { if (linux_regs->sr & SR_T_BIT_MASK) addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); else addr = linux_regs->pc + 2; } /* BTS */ else if (OPCODE_BTS(op)) { if (linux_regs->sr & SR_T_BIT_MASK) addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); else addr = linux_regs->pc + 4; /* Not in delay slot */ } /* BF */ else if (OPCODE_BF(op)) { if (!(linux_regs->sr & SR_T_BIT_MASK)) addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); else addr = linux_regs->pc + 2; } /* BFS */ else if (OPCODE_BFS(op)) { if (!(linux_regs->sr & SR_T_BIT_MASK)) addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op); else addr = linux_regs->pc + 4; /* Not in delay slot */ } /* BRA */ else if (OPCODE_BRA(op)) addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op); /* BRAF */ else if (OPCODE_BRAF(op)) addr = linux_regs->pc + 4 + linux_regs->regs[OPCODE_BRAF_REG(op)]; /* BSR */ else if (OPCODE_BSR(op)) addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op); /* BSRF */ else if (OPCODE_BSRF(op)) addr = linux_regs->pc + 4 + linux_regs->regs[OPCODE_BSRF_REG(op)]; /* JMP */ else if (OPCODE_JMP(op)) addr = linux_regs->regs[OPCODE_JMP_REG(op)]; /* JSR */ else if (OPCODE_JSR(op)) addr = linux_regs->regs[OPCODE_JSR_REG(op)]; /* RTS */ else if (OPCODE_RTS(op)) addr = linux_regs->pr; /* RTE */ else if (OPCODE_RTE(op)) addr = linux_regs->regs[15]; /* Other */ else addr = linux_regs->pc + instruction_size(op); flush_icache_range(addr, addr + instruction_size(op)); return (short *)addr; } /* * Replace the instruction immediately after the current instruction * (i.e. next in the expected flow of control) with a trap instruction, * so that returning will cause only a single instruction to be executed. * Note that this model is slightly broken for instructions with delay * slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the * instruction in the delay slot will be executed. */ static unsigned long stepped_address; static insn_size_t stepped_opcode; static void do_single_step(struct pt_regs *linux_regs) { /* Determine where the target instruction will send us to */ unsigned short *addr = get_step_address(linux_regs); stepped_address = (int)addr; /* Replace it */ stepped_opcode = __raw_readw((long)addr); *addr = STEP_OPCODE; /* Flush and return */ flush_icache_range((long)addr, (long)addr + instruction_size(stepped_opcode)); } /* Undo a single step */ static void undo_single_step(struct pt_regs *linux_regs) { /* If we have stepped, put back the old instruction */ /* Use stepped_address in case we stopped elsewhere */ if (stepped_opcode != 0) { __raw_writew(stepped_opcode, stepped_address); flush_icache_range(stepped_address, stepped_address + 2); } stepped_opcode = 0; } struct dbg_reg_def_t dbg_reg_def[DBG_MAX_REG_NUM] = { { "r0", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[0]) }, { "r1", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[1]) }, { "r2", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[2]) }, { "r3", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[3]) }, { "r4", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[4]) }, { "r5", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[5]) }, { "r6", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[6]) }, { "r7", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[7]) }, { "r8", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[8]) }, { "r9", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[9]) }, { "r10", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[10]) }, { "r11", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[11]) }, { "r12", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[12]) }, { "r13", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[13]) }, { "r14", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[14]) }, { "r15", GDB_SIZEOF_REG, offsetof(struct pt_regs, regs[15]) }, { "pc", GDB_SIZEOF_REG, offsetof(struct pt_regs, pc) }, { "pr", GDB_SIZEOF_REG, offsetof(struct pt_regs, pr) }, { "sr", GDB_SIZEOF_REG, offsetof(struct pt_regs, sr) }, { "gbr", GDB_SIZEOF_REG, offsetof(struct pt_regs, gbr) }, { "mach", GDB_SIZEOF_REG, offsetof(struct pt_regs, mach) }, { "macl", GDB_SIZEOF_REG, offsetof(struct pt_regs, macl) }, { "vbr", GDB_SIZEOF_REG, -1 }, }; int dbg_set_reg(int regno, void *mem, struct pt_regs *regs) { if (regno < 0 || regno >= DBG_MAX_REG_NUM) return -EINVAL; if (dbg_reg_def[regno].offset != -1) memcpy((void *)regs + dbg_reg_def[regno].offset, mem, dbg_reg_def[regno].size); return 0; } char *dbg_get_reg(int regno, void *mem, struct pt_regs *regs) { if (regno >= DBG_MAX_REG_NUM || regno < 0) return NULL; if (dbg_reg_def[regno].size != -1) memcpy(mem, (void *)regs + dbg_reg_def[regno].offset, dbg_reg_def[regno].size); switch (regno) { case GDB_VBR: __asm__ __volatile__ ("stc vbr, %0" : "=r" (mem)); break; } return dbg_reg_def[regno].name; } void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) { struct pt_regs *thread_regs = task_pt_regs(p); int reg; /* Initialize to zero */ for (reg = 0; reg < DBG_MAX_REG_NUM; reg++) gdb_regs[reg] = 0; /* * Copy out GP regs 8 to 14. * * switch_to() relies on SR.RB toggling, so regs 0->7 are banked * and need privileged instructions to get to. The r15 value we * fetch from the thread info directly. */ for (reg = GDB_R8; reg < GDB_R15; reg++) gdb_regs[reg] = thread_regs->regs[reg]; gdb_regs[GDB_R15] = p->thread.sp; gdb_regs[GDB_PC] = p->thread.pc; /* * Additional registers we have context for */ gdb_regs[GDB_PR] = thread_regs->pr; gdb_regs[GDB_GBR] = thread_regs->gbr; } int kgdb_arch_handle_exception(int e_vector, int signo, int err_code, char *remcomInBuffer, char *remcomOutBuffer, struct pt_regs *linux_regs) { unsigned long addr; char *ptr; /* Undo any stepping we may have done */ undo_single_step(linux_regs); switch (remcomInBuffer[0]) { case 'c': case 's': /* try to read optional parameter, pc unchanged if no parm */ ptr = &remcomInBuffer[1]; if (kgdb_hex2long(&ptr, &addr)) linux_regs->pc = addr; fallthrough; case 'D': case 'k': atomic_set(&kgdb_cpu_doing_single_step, -1); if (remcomInBuffer[0] == 's') { do_single_step(linux_regs); kgdb_single_step = 1; atomic_set(&kgdb_cpu_doing_single_step, raw_smp_processor_id()); } return 0; } /* this means that we do not want to exit from the handler: */ return -1; } unsigned long kgdb_arch_pc(int exception, struct pt_regs *regs) { if (exception == 60) return instruction_pointer(regs) - 2; return instruction_pointer(regs); } void kgdb_arch_set_pc(struct pt_regs *regs, unsigned long ip) { regs->pc = ip; } /* * The primary entry points for the kgdb debug trap table entries. */ BUILD_TRAP_HANDLER(singlestep) { unsigned long flags; TRAP_HANDLER_DECL; local_irq_save(flags); regs->pc -= instruction_size(__raw_readw(regs->pc - 4)); kgdb_handle_exception(0, SIGTRAP, 0, regs); local_irq_restore(flags); } static int __kgdb_notify(struct die_args *args, unsigned long cmd) { int ret; switch (cmd) { case DIE_BREAKPOINT: /* * This means a user thread is single stepping * a system call which should be ignored */ if (test_thread_flag(TIF_SINGLESTEP)) return NOTIFY_DONE; ret = kgdb_handle_exception(args->trapnr & 0xff, args->signr, args->err, args->regs); if (ret) return NOTIFY_DONE; break; } return NOTIFY_STOP; } static int kgdb_notify(struct notifier_block *self, unsigned long cmd, void *ptr) { unsigned long flags; int ret; local_irq_save(flags); ret = __kgdb_notify(ptr, cmd); local_irq_restore(flags); return ret; } static struct notifier_block kgdb_notifier = { .notifier_call = kgdb_notify, /* * Lowest-prio notifier priority, we want to be notified last: */ .priority = -INT_MAX, }; int kgdb_arch_init(void) { return register_die_notifier(&kgdb_notifier); } void kgdb_arch_exit(void) { unregister_die_notifier(&kgdb_notifier); } const struct kgdb_arch arch_kgdb_ops = { /* Breakpoint instruction: trapa #0x3c */ #ifdef CONFIG_CPU_LITTLE_ENDIAN .gdb_bpt_instr = { 0x3c, 0xc3 }, #else .gdb_bpt_instr = { 0xc3, 0x3c }, #endif };