// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2020 Google LLC * Author: Quentin Perret <qperret@google.com> */ #include <linux/kvm_host.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/kvm_pgtable.h> #include <asm/kvm_pkvm.h> #include <asm/spectre.h> #include <nvhe/early_alloc.h> #include <nvhe/gfp.h> #include <nvhe/memory.h> #include <nvhe/mem_protect.h> #include <nvhe/mm.h> #include <nvhe/spinlock.h> struct kvm_pgtable pkvm_pgtable; hyp_spinlock_t pkvm_pgd_lock; struct memblock_region hyp_memory[HYP_MEMBLOCK_REGIONS]; unsigned int hyp_memblock_nr; static u64 __io_map_base; struct hyp_fixmap_slot { u64 addr; kvm_pte_t *ptep; }; static DEFINE_PER_CPU(struct hyp_fixmap_slot, fixmap_slots); static int __pkvm_create_mappings(unsigned long start, unsigned long size, unsigned long phys, enum kvm_pgtable_prot prot) { int err; hyp_spin_lock(&pkvm_pgd_lock); err = kvm_pgtable_hyp_map(&pkvm_pgtable, start, size, phys, prot); hyp_spin_unlock(&pkvm_pgd_lock); return err; } static int __pkvm_alloc_private_va_range(unsigned long start, size_t size) { unsigned long cur; hyp_assert_lock_held(&pkvm_pgd_lock); if (!start || start < __io_map_base) return -EINVAL; /* The allocated size is always a multiple of PAGE_SIZE */ cur = start + PAGE_ALIGN(size); /* Are we overflowing on the vmemmap ? */ if (cur > __hyp_vmemmap) return -ENOMEM; __io_map_base = cur; return 0; } /** * pkvm_alloc_private_va_range - Allocates a private VA range. * @size: The size of the VA range to reserve. * @haddr: The hypervisor virtual start address of the allocation. * * The private virtual address (VA) range is allocated above __io_map_base * and aligned based on the order of @size. * * Return: 0 on success or negative error code on failure. */ int pkvm_alloc_private_va_range(size_t size, unsigned long *haddr) { unsigned long addr; int ret; hyp_spin_lock(&pkvm_pgd_lock); addr = __io_map_base; ret = __pkvm_alloc_private_va_range(addr, size); hyp_spin_unlock(&pkvm_pgd_lock); *haddr = addr; return ret; } int __pkvm_create_private_mapping(phys_addr_t phys, size_t size, enum kvm_pgtable_prot prot, unsigned long *haddr) { unsigned long addr; int err; size = PAGE_ALIGN(size + offset_in_page(phys)); err = pkvm_alloc_private_va_range(size, &addr); if (err) return err; err = __pkvm_create_mappings(addr, size, phys, prot); if (err) return err; *haddr = addr + offset_in_page(phys); return err; } int pkvm_create_mappings_locked(void *from, void *to, enum kvm_pgtable_prot prot) { unsigned long start = (unsigned long)from; unsigned long end = (unsigned long)to; unsigned long virt_addr; phys_addr_t phys; hyp_assert_lock_held(&pkvm_pgd_lock); start = start & PAGE_MASK; end = PAGE_ALIGN(end); for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) { int err; phys = hyp_virt_to_phys((void *)virt_addr); err = kvm_pgtable_hyp_map(&pkvm_pgtable, virt_addr, PAGE_SIZE, phys, prot); if (err) return err; } return 0; } int pkvm_create_mappings(void *from, void *to, enum kvm_pgtable_prot prot) { int ret; hyp_spin_lock(&pkvm_pgd_lock); ret = pkvm_create_mappings_locked(from, to, prot); hyp_spin_unlock(&pkvm_pgd_lock); return ret; } int hyp_back_vmemmap(phys_addr_t back) { unsigned long i, start, size, end = 0; int ret; for (i = 0; i < hyp_memblock_nr; i++) { start = hyp_memory[i].base; start = ALIGN_DOWN((u64)hyp_phys_to_page(start), PAGE_SIZE); /* * The begining of the hyp_vmemmap region for the current * memblock may already be backed by the page backing the end * the previous region, so avoid mapping it twice. */ start = max(start, end); end = hyp_memory[i].base + hyp_memory[i].size; end = PAGE_ALIGN((u64)hyp_phys_to_page(end)); if (start >= end) continue; size = end - start; ret = __pkvm_create_mappings(start, size, back, PAGE_HYP); if (ret) return ret; memset(hyp_phys_to_virt(back), 0, size); back += size; } return 0; } static void *__hyp_bp_vect_base; int pkvm_cpu_set_vector(enum arm64_hyp_spectre_vector slot) { void *vector; switch (slot) { case HYP_VECTOR_DIRECT: { vector = __kvm_hyp_vector; break; } case HYP_VECTOR_SPECTRE_DIRECT: { vector = __bp_harden_hyp_vecs; break; } case HYP_VECTOR_INDIRECT: case HYP_VECTOR_SPECTRE_INDIRECT: { vector = (void *)__hyp_bp_vect_base; break; } default: return -EINVAL; } vector = __kvm_vector_slot2addr(vector, slot); *this_cpu_ptr(&kvm_hyp_vector) = (unsigned long)vector; return 0; } int hyp_map_vectors(void) { phys_addr_t phys; unsigned long bp_base; int ret; if (!kvm_system_needs_idmapped_vectors()) { __hyp_bp_vect_base = __bp_harden_hyp_vecs; return 0; } phys = __hyp_pa(__bp_harden_hyp_vecs); ret = __pkvm_create_private_mapping(phys, __BP_HARDEN_HYP_VECS_SZ, PAGE_HYP_EXEC, &bp_base); if (ret) return ret; __hyp_bp_vect_base = (void *)bp_base; return 0; } void *hyp_fixmap_map(phys_addr_t phys) { struct hyp_fixmap_slot *slot = this_cpu_ptr(&fixmap_slots); kvm_pte_t pte, *ptep = slot->ptep; pte = *ptep; pte &= ~kvm_phys_to_pte(KVM_PHYS_INVALID); pte |= kvm_phys_to_pte(phys) | KVM_PTE_VALID; WRITE_ONCE(*ptep, pte); dsb(ishst); return (void *)slot->addr; } static void fixmap_clear_slot(struct hyp_fixmap_slot *slot) { kvm_pte_t *ptep = slot->ptep; u64 addr = slot->addr; WRITE_ONCE(*ptep, *ptep & ~KVM_PTE_VALID); /* * Irritatingly, the architecture requires that we use inner-shareable * broadcast TLB invalidation here in case another CPU speculates * through our fixmap and decides to create an "amalagamation of the * values held in the TLB" due to the apparent lack of a * break-before-make sequence. * * https://lore.kernel.org/kvm/20221017115209.2099-1-will@kernel.org/T/#mf10dfbaf1eaef9274c581b81c53758918c1d0f03 */ dsb(ishst); __tlbi_level(vale2is, __TLBI_VADDR(addr, 0), (KVM_PGTABLE_MAX_LEVELS - 1)); dsb(ish); isb(); } void hyp_fixmap_unmap(void) { fixmap_clear_slot(this_cpu_ptr(&fixmap_slots)); } static int __create_fixmap_slot_cb(const struct kvm_pgtable_visit_ctx *ctx, enum kvm_pgtable_walk_flags visit) { struct hyp_fixmap_slot *slot = per_cpu_ptr(&fixmap_slots, (u64)ctx->arg); if (!kvm_pte_valid(ctx->old) || ctx->level != KVM_PGTABLE_MAX_LEVELS - 1) return -EINVAL; slot->addr = ctx->addr; slot->ptep = ctx->ptep; /* * Clear the PTE, but keep the page-table page refcount elevated to * prevent it from ever being freed. This lets us manipulate the PTEs * by hand safely without ever needing to allocate memory. */ fixmap_clear_slot(slot); return 0; } static int create_fixmap_slot(u64 addr, u64 cpu) { struct kvm_pgtable_walker walker = { .cb = __create_fixmap_slot_cb, .flags = KVM_PGTABLE_WALK_LEAF, .arg = (void *)cpu, }; return kvm_pgtable_walk(&pkvm_pgtable, addr, PAGE_SIZE, &walker); } int hyp_create_pcpu_fixmap(void) { unsigned long addr, i; int ret; for (i = 0; i < hyp_nr_cpus; i++) { ret = pkvm_alloc_private_va_range(PAGE_SIZE, &addr); if (ret) return ret; ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr, PAGE_SIZE, __hyp_pa(__hyp_bss_start), PAGE_HYP); if (ret) return ret; ret = create_fixmap_slot(addr, i); if (ret) return ret; } return 0; } int hyp_create_idmap(u32 hyp_va_bits) { unsigned long start, end; start = hyp_virt_to_phys((void *)__hyp_idmap_text_start); start = ALIGN_DOWN(start, PAGE_SIZE); end = hyp_virt_to_phys((void *)__hyp_idmap_text_end); end = ALIGN(end, PAGE_SIZE); /* * One half of the VA space is reserved to linearly map portions of * memory -- see va_layout.c for more details. The other half of the VA * space contains the trampoline page, and needs some care. Split that * second half in two and find the quarter of VA space not conflicting * with the idmap to place the IOs and the vmemmap. IOs use the lower * half of the quarter and the vmemmap the upper half. */ __io_map_base = start & BIT(hyp_va_bits - 2); __io_map_base ^= BIT(hyp_va_bits - 2); __hyp_vmemmap = __io_map_base | BIT(hyp_va_bits - 3); return __pkvm_create_mappings(start, end - start, start, PAGE_HYP_EXEC); } int pkvm_create_stack(phys_addr_t phys, unsigned long *haddr) { unsigned long addr, prev_base; size_t size; int ret; hyp_spin_lock(&pkvm_pgd_lock); prev_base = __io_map_base; /* * Efficient stack verification using the PAGE_SHIFT bit implies * an alignment of our allocation on the order of the size. */ size = PAGE_SIZE * 2; addr = ALIGN(__io_map_base, size); ret = __pkvm_alloc_private_va_range(addr, size); if (!ret) { /* * Since the stack grows downwards, map the stack to the page * at the higher address and leave the lower guard page * unbacked. * * Any valid stack address now has the PAGE_SHIFT bit as 1 * and addresses corresponding to the guard page have the * PAGE_SHIFT bit as 0 - this is used for overflow detection. */ ret = kvm_pgtable_hyp_map(&pkvm_pgtable, addr + PAGE_SIZE, PAGE_SIZE, phys, PAGE_HYP); if (ret) __io_map_base = prev_base; } hyp_spin_unlock(&pkvm_pgd_lock); *haddr = addr + size; return ret; } static void *admit_host_page(void *arg) { struct kvm_hyp_memcache *host_mc = arg; if (!host_mc->nr_pages) return NULL; /* * The host still owns the pages in its memcache, so we need to go * through a full host-to-hyp donation cycle to change it. Fortunately, * __pkvm_host_donate_hyp() takes care of races for us, so if it * succeeds we're good to go. */ if (__pkvm_host_donate_hyp(hyp_phys_to_pfn(host_mc->head), 1)) return NULL; return pop_hyp_memcache(host_mc, hyp_phys_to_virt); } /* Refill our local memcache by poping pages from the one provided by the host. */ int refill_memcache(struct kvm_hyp_memcache *mc, unsigned long min_pages, struct kvm_hyp_memcache *host_mc) { struct kvm_hyp_memcache tmp = *host_mc; int ret; ret = __topup_hyp_memcache(mc, min_pages, admit_host_page, hyp_virt_to_phys, &tmp); *host_mc = tmp; return ret; }