// SPDX-License-Identifier: GPL-2.0+ /* * IBM Hot Plug Controller Driver * * Written By: Tong Yu, IBM Corporation * * Copyright (C) 2001,2003 Greg Kroah-Hartman (greg@kroah.com) * Copyright (C) 2001-2003 IBM Corp. * * All rights reserved. * * Send feedback to <gregkh@us.ibm.com> * */ #include <linux/module.h> #include <linux/errno.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/pci.h> #include <linux/list.h> #include <linux/init.h> #include "ibmphp.h" /* * POST builds data blocks(in this data block definition, a char-1 * byte, short(or word)-2 byte, long(dword)-4 byte) in the Extended * BIOS Data Area which describe the configuration of the hot-plug * controllers and resources used by the PCI Hot-Plug devices. * * This file walks EBDA, maps data block from physical addr, * reconstruct linked lists about all system resource(MEM, PFM, IO) * already assigned by POST, as well as linked lists about hot plug * controllers (ctlr#, slot#, bus&slot features...) */ /* Global lists */ LIST_HEAD(ibmphp_ebda_pci_rsrc_head); LIST_HEAD(ibmphp_slot_head); /* Local variables */ static struct ebda_hpc_list *hpc_list_ptr; static struct ebda_rsrc_list *rsrc_list_ptr; static struct rio_table_hdr *rio_table_ptr = NULL; static LIST_HEAD(ebda_hpc_head); static LIST_HEAD(bus_info_head); static LIST_HEAD(rio_vg_head); static LIST_HEAD(rio_lo_head); static LIST_HEAD(opt_vg_head); static LIST_HEAD(opt_lo_head); static void __iomem *io_mem; /* Local functions */ static int ebda_rsrc_controller(void); static int ebda_rsrc_rsrc(void); static int ebda_rio_table(void); static struct ebda_hpc_list * __init alloc_ebda_hpc_list(void) { return kzalloc(sizeof(struct ebda_hpc_list), GFP_KERNEL); } static struct controller *alloc_ebda_hpc(u32 slot_count, u32 bus_count) { struct controller *controller; struct ebda_hpc_slot *slots; struct ebda_hpc_bus *buses; controller = kzalloc(sizeof(struct controller), GFP_KERNEL); if (!controller) goto error; slots = kcalloc(slot_count, sizeof(struct ebda_hpc_slot), GFP_KERNEL); if (!slots) goto error_contr; controller->slots = slots; buses = kcalloc(bus_count, sizeof(struct ebda_hpc_bus), GFP_KERNEL); if (!buses) goto error_slots; controller->buses = buses; return controller; error_slots: kfree(controller->slots); error_contr: kfree(controller); error: return NULL; } static void free_ebda_hpc(struct controller *controller) { kfree(controller->slots); kfree(controller->buses); kfree(controller); } static struct ebda_rsrc_list * __init alloc_ebda_rsrc_list(void) { return kzalloc(sizeof(struct ebda_rsrc_list), GFP_KERNEL); } static struct ebda_pci_rsrc *alloc_ebda_pci_rsrc(void) { return kzalloc(sizeof(struct ebda_pci_rsrc), GFP_KERNEL); } static void __init print_bus_info(void) { struct bus_info *ptr; list_for_each_entry(ptr, &bus_info_head, bus_info_list) { debug("%s - slot_min = %x\n", __func__, ptr->slot_min); debug("%s - slot_max = %x\n", __func__, ptr->slot_max); debug("%s - slot_count = %x\n", __func__, ptr->slot_count); debug("%s - bus# = %x\n", __func__, ptr->busno); debug("%s - current_speed = %x\n", __func__, ptr->current_speed); debug("%s - controller_id = %x\n", __func__, ptr->controller_id); debug("%s - slots_at_33_conv = %x\n", __func__, ptr->slots_at_33_conv); debug("%s - slots_at_66_conv = %x\n", __func__, ptr->slots_at_66_conv); debug("%s - slots_at_66_pcix = %x\n", __func__, ptr->slots_at_66_pcix); debug("%s - slots_at_100_pcix = %x\n", __func__, ptr->slots_at_100_pcix); debug("%s - slots_at_133_pcix = %x\n", __func__, ptr->slots_at_133_pcix); } } static void print_lo_info(void) { struct rio_detail *ptr; debug("print_lo_info ----\n"); list_for_each_entry(ptr, &rio_lo_head, rio_detail_list) { debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id); debug("%s - rio_type = %x\n", __func__, ptr->rio_type); debug("%s - owner_id = %x\n", __func__, ptr->owner_id); debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num); debug("%s - wpindex = %x\n", __func__, ptr->wpindex); debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num); } } static void print_vg_info(void) { struct rio_detail *ptr; debug("%s ---\n", __func__); list_for_each_entry(ptr, &rio_vg_head, rio_detail_list) { debug("%s - rio_node_id = %x\n", __func__, ptr->rio_node_id); debug("%s - rio_type = %x\n", __func__, ptr->rio_type); debug("%s - owner_id = %x\n", __func__, ptr->owner_id); debug("%s - first_slot_num = %x\n", __func__, ptr->first_slot_num); debug("%s - wpindex = %x\n", __func__, ptr->wpindex); debug("%s - chassis_num = %x\n", __func__, ptr->chassis_num); } } static void __init print_ebda_pci_rsrc(void) { struct ebda_pci_rsrc *ptr; list_for_each_entry(ptr, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) { debug("%s - rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", __func__, ptr->rsrc_type, ptr->bus_num, ptr->dev_fun, ptr->start_addr, ptr->end_addr); } } static void __init print_ibm_slot(void) { struct slot *ptr; list_for_each_entry(ptr, &ibmphp_slot_head, ibm_slot_list) { debug("%s - slot_number: %x\n", __func__, ptr->number); } } static void __init print_opt_vg(void) { struct opt_rio *ptr; debug("%s ---\n", __func__); list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) { debug("%s - rio_type %x\n", __func__, ptr->rio_type); debug("%s - chassis_num: %x\n", __func__, ptr->chassis_num); debug("%s - first_slot_num: %x\n", __func__, ptr->first_slot_num); debug("%s - middle_num: %x\n", __func__, ptr->middle_num); } } static void __init print_ebda_hpc(void) { struct controller *hpc_ptr; u16 index; list_for_each_entry(hpc_ptr, &ebda_hpc_head, ebda_hpc_list) { for (index = 0; index < hpc_ptr->slot_count; index++) { debug("%s - physical slot#: %x\n", __func__, hpc_ptr->slots[index].slot_num); debug("%s - pci bus# of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_bus_num); debug("%s - index into ctlr addr: %x\n", __func__, hpc_ptr->slots[index].ctl_index); debug("%s - cap of the slot: %x\n", __func__, hpc_ptr->slots[index].slot_cap); } for (index = 0; index < hpc_ptr->bus_count; index++) debug("%s - bus# of each bus controlled by this ctlr: %x\n", __func__, hpc_ptr->buses[index].bus_num); debug("%s - type of hpc: %x\n", __func__, hpc_ptr->ctlr_type); switch (hpc_ptr->ctlr_type) { case 1: debug("%s - bus: %x\n", __func__, hpc_ptr->u.pci_ctlr.bus); debug("%s - dev_fun: %x\n", __func__, hpc_ptr->u.pci_ctlr.dev_fun); debug("%s - irq: %x\n", __func__, hpc_ptr->irq); break; case 0: debug("%s - io_start: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_start); debug("%s - io_end: %x\n", __func__, hpc_ptr->u.isa_ctlr.io_end); debug("%s - irq: %x\n", __func__, hpc_ptr->irq); break; case 2: case 4: debug("%s - wpegbbar: %lx\n", __func__, hpc_ptr->u.wpeg_ctlr.wpegbbar); debug("%s - i2c_addr: %x\n", __func__, hpc_ptr->u.wpeg_ctlr.i2c_addr); debug("%s - irq: %x\n", __func__, hpc_ptr->irq); break; } } } int __init ibmphp_access_ebda(void) { u8 format, num_ctlrs, rio_complete, hs_complete, ebda_sz; u16 ebda_seg, num_entries, next_offset, offset, blk_id, sub_addr, re, rc_id, re_id, base; int rc = 0; rio_complete = 0; hs_complete = 0; io_mem = ioremap((0x40 << 4) + 0x0e, 2); if (!io_mem) return -ENOMEM; ebda_seg = readw(io_mem); iounmap(io_mem); debug("returned ebda segment: %x\n", ebda_seg); io_mem = ioremap(ebda_seg<<4, 1); if (!io_mem) return -ENOMEM; ebda_sz = readb(io_mem); iounmap(io_mem); debug("ebda size: %d(KiB)\n", ebda_sz); if (ebda_sz == 0) return -ENOMEM; io_mem = ioremap(ebda_seg<<4, (ebda_sz * 1024)); if (!io_mem) return -ENOMEM; next_offset = 0x180; for (;;) { offset = next_offset; /* Make sure what we read is still in the mapped section */ if (WARN(offset > (ebda_sz * 1024 - 4), "ibmphp_ebda: next read is beyond ebda_sz\n")) break; next_offset = readw(io_mem + offset); /* offset of next blk */ offset += 2; if (next_offset == 0) /* 0 indicate it's last blk */ break; blk_id = readw(io_mem + offset); /* this blk id */ offset += 2; /* check if it is hot swap block or rio block */ if (blk_id != 0x4853 && blk_id != 0x4752) continue; /* found hs table */ if (blk_id == 0x4853) { debug("now enter hot swap block---\n"); debug("hot blk id: %x\n", blk_id); format = readb(io_mem + offset); offset += 1; if (format != 4) goto error_nodev; debug("hot blk format: %x\n", format); /* hot swap sub blk */ base = offset; sub_addr = base; re = readw(io_mem + sub_addr); /* next sub blk */ sub_addr += 2; rc_id = readw(io_mem + sub_addr); /* sub blk id */ sub_addr += 2; if (rc_id != 0x5243) goto error_nodev; /* rc sub blk signature */ num_ctlrs = readb(io_mem + sub_addr); sub_addr += 1; hpc_list_ptr = alloc_ebda_hpc_list(); if (!hpc_list_ptr) { rc = -ENOMEM; goto out; } hpc_list_ptr->format = format; hpc_list_ptr->num_ctlrs = num_ctlrs; hpc_list_ptr->phys_addr = sub_addr; /* offset of RSRC_CONTROLLER blk */ debug("info about hpc descriptor---\n"); debug("hot blk format: %x\n", format); debug("num of controller: %x\n", num_ctlrs); debug("offset of hpc data structure entries: %x\n ", sub_addr); sub_addr = base + re; /* re sub blk */ /* FIXME: rc is never used/checked */ rc = readw(io_mem + sub_addr); /* next sub blk */ sub_addr += 2; re_id = readw(io_mem + sub_addr); /* sub blk id */ sub_addr += 2; if (re_id != 0x5245) goto error_nodev; /* signature of re */ num_entries = readw(io_mem + sub_addr); sub_addr += 2; /* offset of RSRC_ENTRIES blk */ rsrc_list_ptr = alloc_ebda_rsrc_list(); if (!rsrc_list_ptr) { rc = -ENOMEM; goto out; } rsrc_list_ptr->format = format; rsrc_list_ptr->num_entries = num_entries; rsrc_list_ptr->phys_addr = sub_addr; debug("info about rsrc descriptor---\n"); debug("format: %x\n", format); debug("num of rsrc: %x\n", num_entries); debug("offset of rsrc data structure entries: %x\n ", sub_addr); hs_complete = 1; } else { /* found rio table, blk_id == 0x4752 */ debug("now enter io table ---\n"); debug("rio blk id: %x\n", blk_id); rio_table_ptr = kzalloc(sizeof(struct rio_table_hdr), GFP_KERNEL); if (!rio_table_ptr) { rc = -ENOMEM; goto out; } rio_table_ptr->ver_num = readb(io_mem + offset); rio_table_ptr->scal_count = readb(io_mem + offset + 1); rio_table_ptr->riodev_count = readb(io_mem + offset + 2); rio_table_ptr->offset = offset + 3 ; debug("info about rio table hdr ---\n"); debug("ver_num: %x\nscal_count: %x\nriodev_count: %x\noffset of rio table: %x\n ", rio_table_ptr->ver_num, rio_table_ptr->scal_count, rio_table_ptr->riodev_count, rio_table_ptr->offset); rio_complete = 1; } } if (!hs_complete && !rio_complete) goto error_nodev; if (rio_table_ptr) { if (rio_complete && rio_table_ptr->ver_num == 3) { rc = ebda_rio_table(); if (rc) goto out; } } rc = ebda_rsrc_controller(); if (rc) goto out; rc = ebda_rsrc_rsrc(); goto out; error_nodev: rc = -ENODEV; out: iounmap(io_mem); return rc; } /* * map info of scalability details and rio details from physical address */ static int __init ebda_rio_table(void) { u16 offset; u8 i; struct rio_detail *rio_detail_ptr; offset = rio_table_ptr->offset; offset += 12 * rio_table_ptr->scal_count; // we do concern about rio details for (i = 0; i < rio_table_ptr->riodev_count; i++) { rio_detail_ptr = kzalloc(sizeof(struct rio_detail), GFP_KERNEL); if (!rio_detail_ptr) return -ENOMEM; rio_detail_ptr->rio_node_id = readb(io_mem + offset); rio_detail_ptr->bbar = readl(io_mem + offset + 1); rio_detail_ptr->rio_type = readb(io_mem + offset + 5); rio_detail_ptr->owner_id = readb(io_mem + offset + 6); rio_detail_ptr->port0_node_connect = readb(io_mem + offset + 7); rio_detail_ptr->port0_port_connect = readb(io_mem + offset + 8); rio_detail_ptr->port1_node_connect = readb(io_mem + offset + 9); rio_detail_ptr->port1_port_connect = readb(io_mem + offset + 10); rio_detail_ptr->first_slot_num = readb(io_mem + offset + 11); rio_detail_ptr->status = readb(io_mem + offset + 12); rio_detail_ptr->wpindex = readb(io_mem + offset + 13); rio_detail_ptr->chassis_num = readb(io_mem + offset + 14); // debug("rio_node_id: %x\nbbar: %x\nrio_type: %x\nowner_id: %x\nport0_node: %x\nport0_port: %x\nport1_node: %x\nport1_port: %x\nfirst_slot_num: %x\nstatus: %x\n", rio_detail_ptr->rio_node_id, rio_detail_ptr->bbar, rio_detail_ptr->rio_type, rio_detail_ptr->owner_id, rio_detail_ptr->port0_node_connect, rio_detail_ptr->port0_port_connect, rio_detail_ptr->port1_node_connect, rio_detail_ptr->port1_port_connect, rio_detail_ptr->first_slot_num, rio_detail_ptr->status); //create linked list of chassis if (rio_detail_ptr->rio_type == 4 || rio_detail_ptr->rio_type == 5) list_add(&rio_detail_ptr->rio_detail_list, &rio_vg_head); //create linked list of expansion box else if (rio_detail_ptr->rio_type == 6 || rio_detail_ptr->rio_type == 7) list_add(&rio_detail_ptr->rio_detail_list, &rio_lo_head); else // not in my concern kfree(rio_detail_ptr); offset += 15; } print_lo_info(); print_vg_info(); return 0; } /* * reorganizing linked list of chassis */ static struct opt_rio *search_opt_vg(u8 chassis_num) { struct opt_rio *ptr; list_for_each_entry(ptr, &opt_vg_head, opt_rio_list) { if (ptr->chassis_num == chassis_num) return ptr; } return NULL; } static int __init combine_wpg_for_chassis(void) { struct opt_rio *opt_rio_ptr = NULL; struct rio_detail *rio_detail_ptr = NULL; list_for_each_entry(rio_detail_ptr, &rio_vg_head, rio_detail_list) { opt_rio_ptr = search_opt_vg(rio_detail_ptr->chassis_num); if (!opt_rio_ptr) { opt_rio_ptr = kzalloc(sizeof(struct opt_rio), GFP_KERNEL); if (!opt_rio_ptr) return -ENOMEM; opt_rio_ptr->rio_type = rio_detail_ptr->rio_type; opt_rio_ptr->chassis_num = rio_detail_ptr->chassis_num; opt_rio_ptr->first_slot_num = rio_detail_ptr->first_slot_num; opt_rio_ptr->middle_num = rio_detail_ptr->first_slot_num; list_add(&opt_rio_ptr->opt_rio_list, &opt_vg_head); } else { opt_rio_ptr->first_slot_num = min(opt_rio_ptr->first_slot_num, rio_detail_ptr->first_slot_num); opt_rio_ptr->middle_num = max(opt_rio_ptr->middle_num, rio_detail_ptr->first_slot_num); } } print_opt_vg(); return 0; } /* * reorganizing linked list of expansion box */ static struct opt_rio_lo *search_opt_lo(u8 chassis_num) { struct opt_rio_lo *ptr; list_for_each_entry(ptr, &opt_lo_head, opt_rio_lo_list) { if (ptr->chassis_num == chassis_num) return ptr; } return NULL; } static int combine_wpg_for_expansion(void) { struct opt_rio_lo *opt_rio_lo_ptr = NULL; struct rio_detail *rio_detail_ptr = NULL; list_for_each_entry(rio_detail_ptr, &rio_lo_head, rio_detail_list) { opt_rio_lo_ptr = search_opt_lo(rio_detail_ptr->chassis_num); if (!opt_rio_lo_ptr) { opt_rio_lo_ptr = kzalloc(sizeof(struct opt_rio_lo), GFP_KERNEL); if (!opt_rio_lo_ptr) return -ENOMEM; opt_rio_lo_ptr->rio_type = rio_detail_ptr->rio_type; opt_rio_lo_ptr->chassis_num = rio_detail_ptr->chassis_num; opt_rio_lo_ptr->first_slot_num = rio_detail_ptr->first_slot_num; opt_rio_lo_ptr->middle_num = rio_detail_ptr->first_slot_num; opt_rio_lo_ptr->pack_count = 1; list_add(&opt_rio_lo_ptr->opt_rio_lo_list, &opt_lo_head); } else { opt_rio_lo_ptr->first_slot_num = min(opt_rio_lo_ptr->first_slot_num, rio_detail_ptr->first_slot_num); opt_rio_lo_ptr->middle_num = max(opt_rio_lo_ptr->middle_num, rio_detail_ptr->first_slot_num); opt_rio_lo_ptr->pack_count = 2; } } return 0; } /* Since we don't know the max slot number per each chassis, hence go * through the list of all chassis to find out the range * Arguments: slot_num, 1st slot number of the chassis we think we are on, * var (0 = chassis, 1 = expansion box) */ static int first_slot_num(u8 slot_num, u8 first_slot, u8 var) { struct opt_rio *opt_vg_ptr = NULL; struct opt_rio_lo *opt_lo_ptr = NULL; int rc = 0; if (!var) { list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) { if ((first_slot < opt_vg_ptr->first_slot_num) && (slot_num >= opt_vg_ptr->first_slot_num)) { rc = -ENODEV; break; } } } else { list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) { if ((first_slot < opt_lo_ptr->first_slot_num) && (slot_num >= opt_lo_ptr->first_slot_num)) { rc = -ENODEV; break; } } } return rc; } static struct opt_rio_lo *find_rxe_num(u8 slot_num) { struct opt_rio_lo *opt_lo_ptr; list_for_each_entry(opt_lo_ptr, &opt_lo_head, opt_rio_lo_list) { //check to see if this slot_num belongs to expansion box if ((slot_num >= opt_lo_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_lo_ptr->first_slot_num, 1))) return opt_lo_ptr; } return NULL; } static struct opt_rio *find_chassis_num(u8 slot_num) { struct opt_rio *opt_vg_ptr; list_for_each_entry(opt_vg_ptr, &opt_vg_head, opt_rio_list) { //check to see if this slot_num belongs to chassis if ((slot_num >= opt_vg_ptr->first_slot_num) && (!first_slot_num(slot_num, opt_vg_ptr->first_slot_num, 0))) return opt_vg_ptr; } return NULL; } /* This routine will find out how many slots are in the chassis, so that * the slot numbers for rxe100 would start from 1, and not from 7, or 6 etc */ static u8 calculate_first_slot(u8 slot_num) { u8 first_slot = 1; struct slot *slot_cur; list_for_each_entry(slot_cur, &ibmphp_slot_head, ibm_slot_list) { if (slot_cur->ctrl) { if ((slot_cur->ctrl->ctlr_type != 4) && (slot_cur->ctrl->ending_slot_num > first_slot) && (slot_num > slot_cur->ctrl->ending_slot_num)) first_slot = slot_cur->ctrl->ending_slot_num; } } return first_slot + 1; } #define SLOT_NAME_SIZE 30 static char *create_file_name(struct slot *slot_cur) { struct opt_rio *opt_vg_ptr = NULL; struct opt_rio_lo *opt_lo_ptr = NULL; static char str[SLOT_NAME_SIZE]; int which = 0; /* rxe = 1, chassis = 0 */ u8 number = 1; /* either chassis or rxe # */ u8 first_slot = 1; u8 slot_num; u8 flag = 0; if (!slot_cur) { err("Structure passed is empty\n"); return NULL; } slot_num = slot_cur->number; memset(str, 0, sizeof(str)); if (rio_table_ptr) { if (rio_table_ptr->ver_num == 3) { opt_vg_ptr = find_chassis_num(slot_num); opt_lo_ptr = find_rxe_num(slot_num); } } if (opt_vg_ptr) { if (opt_lo_ptr) { if ((slot_num - opt_vg_ptr->first_slot_num) > (slot_num - opt_lo_ptr->first_slot_num)) { number = opt_lo_ptr->chassis_num; first_slot = opt_lo_ptr->first_slot_num; which = 1; /* it is RXE */ } else { first_slot = opt_vg_ptr->first_slot_num; number = opt_vg_ptr->chassis_num; which = 0; } } else { first_slot = opt_vg_ptr->first_slot_num; number = opt_vg_ptr->chassis_num; which = 0; } ++flag; } else if (opt_lo_ptr) { number = opt_lo_ptr->chassis_num; first_slot = opt_lo_ptr->first_slot_num; which = 1; ++flag; } else if (rio_table_ptr) { if (rio_table_ptr->ver_num == 3) { /* if both NULL and we DO have correct RIO table in BIOS */ return NULL; } } if (!flag) { if (slot_cur->ctrl->ctlr_type == 4) { first_slot = calculate_first_slot(slot_num); which = 1; } else { which = 0; } } sprintf(str, "%s%dslot%d", which == 0 ? "chassis" : "rxe", number, slot_num - first_slot + 1); return str; } static int fillslotinfo(struct hotplug_slot *hotplug_slot) { struct slot *slot; int rc = 0; slot = to_slot(hotplug_slot); rc = ibmphp_hpc_readslot(slot, READ_ALLSTAT, NULL); return rc; } static struct pci_driver ibmphp_driver; /* * map info (ctlr-id, slot count, slot#.. bus count, bus#, ctlr type...) of * each hpc from physical address to a list of hot plug controllers based on * hpc descriptors. */ static int __init ebda_rsrc_controller(void) { u16 addr, addr_slot, addr_bus; u8 ctlr_id, temp, bus_index; u16 ctlr, slot, bus; u16 slot_num, bus_num, index; struct controller *hpc_ptr; struct ebda_hpc_bus *bus_ptr; struct ebda_hpc_slot *slot_ptr; struct bus_info *bus_info_ptr1, *bus_info_ptr2; int rc; struct slot *tmp_slot; char name[SLOT_NAME_SIZE]; addr = hpc_list_ptr->phys_addr; for (ctlr = 0; ctlr < hpc_list_ptr->num_ctlrs; ctlr++) { bus_index = 1; ctlr_id = readb(io_mem + addr); addr += 1; slot_num = readb(io_mem + addr); addr += 1; addr_slot = addr; /* offset of slot structure */ addr += (slot_num * 4); bus_num = readb(io_mem + addr); addr += 1; addr_bus = addr; /* offset of bus */ addr += (bus_num * 9); /* offset of ctlr_type */ temp = readb(io_mem + addr); addr += 1; /* init hpc structure */ hpc_ptr = alloc_ebda_hpc(slot_num, bus_num); if (!hpc_ptr) { return -ENOMEM; } hpc_ptr->ctlr_id = ctlr_id; hpc_ptr->ctlr_relative_id = ctlr; hpc_ptr->slot_count = slot_num; hpc_ptr->bus_count = bus_num; debug("now enter ctlr data structure ---\n"); debug("ctlr id: %x\n", ctlr_id); debug("ctlr_relative_id: %x\n", hpc_ptr->ctlr_relative_id); debug("count of slots controlled by this ctlr: %x\n", slot_num); debug("count of buses controlled by this ctlr: %x\n", bus_num); /* init slot structure, fetch slot, bus, cap... */ slot_ptr = hpc_ptr->slots; for (slot = 0; slot < slot_num; slot++) { slot_ptr->slot_num = readb(io_mem + addr_slot); slot_ptr->slot_bus_num = readb(io_mem + addr_slot + slot_num); slot_ptr->ctl_index = readb(io_mem + addr_slot + 2*slot_num); slot_ptr->slot_cap = readb(io_mem + addr_slot + 3*slot_num); // create bus_info lined list --- if only one slot per bus: slot_min = slot_max bus_info_ptr2 = ibmphp_find_same_bus_num(slot_ptr->slot_bus_num); if (!bus_info_ptr2) { bus_info_ptr1 = kzalloc(sizeof(struct bus_info), GFP_KERNEL); if (!bus_info_ptr1) { rc = -ENOMEM; goto error_no_slot; } bus_info_ptr1->slot_min = slot_ptr->slot_num; bus_info_ptr1->slot_max = slot_ptr->slot_num; bus_info_ptr1->slot_count += 1; bus_info_ptr1->busno = slot_ptr->slot_bus_num; bus_info_ptr1->index = bus_index++; bus_info_ptr1->current_speed = 0xff; bus_info_ptr1->current_bus_mode = 0xff; bus_info_ptr1->controller_id = hpc_ptr->ctlr_id; list_add_tail(&bus_info_ptr1->bus_info_list, &bus_info_head); } else { bus_info_ptr2->slot_min = min(bus_info_ptr2->slot_min, slot_ptr->slot_num); bus_info_ptr2->slot_max = max(bus_info_ptr2->slot_max, slot_ptr->slot_num); bus_info_ptr2->slot_count += 1; } // end of creating the bus_info linked list slot_ptr++; addr_slot += 1; } /* init bus structure */ bus_ptr = hpc_ptr->buses; for (bus = 0; bus < bus_num; bus++) { bus_ptr->bus_num = readb(io_mem + addr_bus + bus); bus_ptr->slots_at_33_conv = readb(io_mem + addr_bus + bus_num + 8 * bus); bus_ptr->slots_at_66_conv = readb(io_mem + addr_bus + bus_num + 8 * bus + 1); bus_ptr->slots_at_66_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 2); bus_ptr->slots_at_100_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 3); bus_ptr->slots_at_133_pcix = readb(io_mem + addr_bus + bus_num + 8 * bus + 4); bus_info_ptr2 = ibmphp_find_same_bus_num(bus_ptr->bus_num); if (bus_info_ptr2) { bus_info_ptr2->slots_at_33_conv = bus_ptr->slots_at_33_conv; bus_info_ptr2->slots_at_66_conv = bus_ptr->slots_at_66_conv; bus_info_ptr2->slots_at_66_pcix = bus_ptr->slots_at_66_pcix; bus_info_ptr2->slots_at_100_pcix = bus_ptr->slots_at_100_pcix; bus_info_ptr2->slots_at_133_pcix = bus_ptr->slots_at_133_pcix; } bus_ptr++; } hpc_ptr->ctlr_type = temp; switch (hpc_ptr->ctlr_type) { case 1: hpc_ptr->u.pci_ctlr.bus = readb(io_mem + addr); hpc_ptr->u.pci_ctlr.dev_fun = readb(io_mem + addr + 1); hpc_ptr->irq = readb(io_mem + addr + 2); addr += 3; debug("ctrl bus = %x, ctlr devfun = %x, irq = %x\n", hpc_ptr->u.pci_ctlr.bus, hpc_ptr->u.pci_ctlr.dev_fun, hpc_ptr->irq); break; case 0: hpc_ptr->u.isa_ctlr.io_start = readw(io_mem + addr); hpc_ptr->u.isa_ctlr.io_end = readw(io_mem + addr + 2); if (!request_region(hpc_ptr->u.isa_ctlr.io_start, (hpc_ptr->u.isa_ctlr.io_end - hpc_ptr->u.isa_ctlr.io_start + 1), "ibmphp")) { rc = -ENODEV; goto error_no_slot; } hpc_ptr->irq = readb(io_mem + addr + 4); addr += 5; break; case 2: case 4: hpc_ptr->u.wpeg_ctlr.wpegbbar = readl(io_mem + addr); hpc_ptr->u.wpeg_ctlr.i2c_addr = readb(io_mem + addr + 4); hpc_ptr->irq = readb(io_mem + addr + 5); addr += 6; break; default: rc = -ENODEV; goto error_no_slot; } //reorganize chassis' linked list combine_wpg_for_chassis(); combine_wpg_for_expansion(); hpc_ptr->revision = 0xff; hpc_ptr->options = 0xff; hpc_ptr->starting_slot_num = hpc_ptr->slots[0].slot_num; hpc_ptr->ending_slot_num = hpc_ptr->slots[slot_num-1].slot_num; // register slots with hpc core as well as create linked list of ibm slot for (index = 0; index < hpc_ptr->slot_count; index++) { tmp_slot = kzalloc(sizeof(*tmp_slot), GFP_KERNEL); if (!tmp_slot) { rc = -ENOMEM; goto error_no_slot; } tmp_slot->flag = 1; tmp_slot->capabilities = hpc_ptr->slots[index].slot_cap; if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_133_MAX) == EBDA_SLOT_133_MAX) tmp_slot->supported_speed = 3; else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_100_MAX) == EBDA_SLOT_100_MAX) tmp_slot->supported_speed = 2; else if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_66_MAX) == EBDA_SLOT_66_MAX) tmp_slot->supported_speed = 1; if ((hpc_ptr->slots[index].slot_cap & EBDA_SLOT_PCIX_CAP) == EBDA_SLOT_PCIX_CAP) tmp_slot->supported_bus_mode = 1; else tmp_slot->supported_bus_mode = 0; tmp_slot->bus = hpc_ptr->slots[index].slot_bus_num; bus_info_ptr1 = ibmphp_find_same_bus_num(hpc_ptr->slots[index].slot_bus_num); if (!bus_info_ptr1) { rc = -ENODEV; goto error; } tmp_slot->bus_on = bus_info_ptr1; bus_info_ptr1 = NULL; tmp_slot->ctrl = hpc_ptr; tmp_slot->ctlr_index = hpc_ptr->slots[index].ctl_index; tmp_slot->number = hpc_ptr->slots[index].slot_num; rc = fillslotinfo(&tmp_slot->hotplug_slot); if (rc) goto error; rc = ibmphp_init_devno(&tmp_slot); if (rc) goto error; tmp_slot->hotplug_slot.ops = &ibmphp_hotplug_slot_ops; // end of registering ibm slot with hotplug core list_add(&tmp_slot->ibm_slot_list, &ibmphp_slot_head); } print_bus_info(); list_add(&hpc_ptr->ebda_hpc_list, &ebda_hpc_head); } /* each hpc */ list_for_each_entry(tmp_slot, &ibmphp_slot_head, ibm_slot_list) { snprintf(name, SLOT_NAME_SIZE, "%s", create_file_name(tmp_slot)); pci_hp_register(&tmp_slot->hotplug_slot, pci_find_bus(0, tmp_slot->bus), tmp_slot->device, name); } print_ebda_hpc(); print_ibm_slot(); return 0; error: kfree(tmp_slot); error_no_slot: free_ebda_hpc(hpc_ptr); return rc; } /* * map info (bus, devfun, start addr, end addr..) of i/o, memory, * pfm from the physical addr to a list of resource. */ static int __init ebda_rsrc_rsrc(void) { u16 addr; short rsrc; u8 type, rsrc_type; struct ebda_pci_rsrc *rsrc_ptr; addr = rsrc_list_ptr->phys_addr; debug("now entering rsrc land\n"); debug("offset of rsrc: %x\n", rsrc_list_ptr->phys_addr); for (rsrc = 0; rsrc < rsrc_list_ptr->num_entries; rsrc++) { type = readb(io_mem + addr); addr += 1; rsrc_type = type & EBDA_RSRC_TYPE_MASK; if (rsrc_type == EBDA_IO_RSRC_TYPE) { rsrc_ptr = alloc_ebda_pci_rsrc(); if (!rsrc_ptr) { iounmap(io_mem); return -ENOMEM; } rsrc_ptr->rsrc_type = type; rsrc_ptr->bus_num = readb(io_mem + addr); rsrc_ptr->dev_fun = readb(io_mem + addr + 1); rsrc_ptr->start_addr = readw(io_mem + addr + 2); rsrc_ptr->end_addr = readw(io_mem + addr + 4); addr += 6; debug("rsrc from io type ----\n"); debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr); list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head); } if (rsrc_type == EBDA_MEM_RSRC_TYPE || rsrc_type == EBDA_PFM_RSRC_TYPE) { rsrc_ptr = alloc_ebda_pci_rsrc(); if (!rsrc_ptr) { iounmap(io_mem); return -ENOMEM; } rsrc_ptr->rsrc_type = type; rsrc_ptr->bus_num = readb(io_mem + addr); rsrc_ptr->dev_fun = readb(io_mem + addr + 1); rsrc_ptr->start_addr = readl(io_mem + addr + 2); rsrc_ptr->end_addr = readl(io_mem + addr + 6); addr += 10; debug("rsrc from mem or pfm ---\n"); debug("rsrc type: %x bus#: %x dev_func: %x start addr: %x end addr: %x\n", rsrc_ptr->rsrc_type, rsrc_ptr->bus_num, rsrc_ptr->dev_fun, rsrc_ptr->start_addr, rsrc_ptr->end_addr); list_add(&rsrc_ptr->ebda_pci_rsrc_list, &ibmphp_ebda_pci_rsrc_head); } } kfree(rsrc_list_ptr); rsrc_list_ptr = NULL; print_ebda_pci_rsrc(); return 0; } u16 ibmphp_get_total_controllers(void) { return hpc_list_ptr->num_ctlrs; } struct slot *ibmphp_get_slot_from_physical_num(u8 physical_num) { struct slot *slot; list_for_each_entry(slot, &ibmphp_slot_head, ibm_slot_list) { if (slot->number == physical_num) return slot; } return NULL; } /* To find: * - the smallest slot number * - the largest slot number * - the total number of the slots based on each bus * (if only one slot per bus slot_min = slot_max ) */ struct bus_info *ibmphp_find_same_bus_num(u32 num) { struct bus_info *ptr; list_for_each_entry(ptr, &bus_info_head, bus_info_list) { if (ptr->busno == num) return ptr; } return NULL; } /* Finding relative bus number, in order to map corresponding * bus register */ int ibmphp_get_bus_index(u8 num) { struct bus_info *ptr; list_for_each_entry(ptr, &bus_info_head, bus_info_list) { if (ptr->busno == num) return ptr->index; } return -ENODEV; } void ibmphp_free_bus_info_queue(void) { struct bus_info *bus_info, *next; list_for_each_entry_safe(bus_info, next, &bus_info_head, bus_info_list) { kfree (bus_info); } } void ibmphp_free_ebda_hpc_queue(void) { struct controller *controller = NULL, *next; int pci_flag = 0; list_for_each_entry_safe(controller, next, &ebda_hpc_head, ebda_hpc_list) { if (controller->ctlr_type == 0) release_region(controller->u.isa_ctlr.io_start, (controller->u.isa_ctlr.io_end - controller->u.isa_ctlr.io_start + 1)); else if ((controller->ctlr_type == 1) && (!pci_flag)) { ++pci_flag; pci_unregister_driver(&ibmphp_driver); } free_ebda_hpc(controller); } } void ibmphp_free_ebda_pci_rsrc_queue(void) { struct ebda_pci_rsrc *resource, *next; list_for_each_entry_safe(resource, next, &ibmphp_ebda_pci_rsrc_head, ebda_pci_rsrc_list) { kfree (resource); resource = NULL; } } static const struct pci_device_id id_table[] = { { .vendor = PCI_VENDOR_ID_IBM, .device = HPC_DEVICE_ID, .subvendor = PCI_VENDOR_ID_IBM, .subdevice = HPC_SUBSYSTEM_ID, .class = ((PCI_CLASS_SYSTEM_PCI_HOTPLUG << 8) | 0x00), }, {} }; MODULE_DEVICE_TABLE(pci, id_table); static int ibmphp_probe(struct pci_dev *, const struct pci_device_id *); static struct pci_driver ibmphp_driver = { .name = "ibmphp", .id_table = id_table, .probe = ibmphp_probe, }; int ibmphp_register_pci(void) { struct controller *ctrl; int rc = 0; list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) { if (ctrl->ctlr_type == 1) { rc = pci_register_driver(&ibmphp_driver); break; } } return rc; } static int ibmphp_probe(struct pci_dev *dev, const struct pci_device_id *ids) { struct controller *ctrl; debug("inside ibmphp_probe\n"); list_for_each_entry(ctrl, &ebda_hpc_head, ebda_hpc_list) { if (ctrl->ctlr_type == 1) { if ((dev->devfn == ctrl->u.pci_ctlr.dev_fun) && (dev->bus->number == ctrl->u.pci_ctlr.bus)) { ctrl->ctrl_dev = dev; debug("found device!!!\n"); debug("dev->device = %x, dev->subsystem_device = %x\n", dev->device, dev->subsystem_device); return 0; } } } return -ENODEV; }