// SPDX-License-Identifier: GPL-2.0-or-later /* * MMU context allocation for 64-bit kernels. * * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org> */ #include <linux/sched.h> #include <linux/kernel.h> #include <linux/errno.h> #include <linux/string.h> #include <linux/types.h> #include <linux/mm.h> #include <linux/pkeys.h> #include <linux/spinlock.h> #include <linux/idr.h> #include <linux/export.h> #include <linux/gfp.h> #include <linux/slab.h> #include <linux/cpu.h> #include <asm/mmu_context.h> #include <asm/pgalloc.h> #include "internal.h" static DEFINE_IDA(mmu_context_ida); static int alloc_context_id(int min_id, int max_id) { return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL); } #ifdef CONFIG_PPC_64S_HASH_MMU void __init hash__reserve_context_id(int id) { int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL); WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result); } int hash__alloc_context_id(void) { unsigned long max; if (mmu_has_feature(MMU_FTR_68_BIT_VA)) max = MAX_USER_CONTEXT; else max = MAX_USER_CONTEXT_65BIT_VA; return alloc_context_id(MIN_USER_CONTEXT, max); } EXPORT_SYMBOL_GPL(hash__alloc_context_id); #endif #ifdef CONFIG_PPC_64S_HASH_MMU static int realloc_context_ids(mm_context_t *ctx) { int i, id; /* * id 0 (aka. ctx->id) is special, we always allocate a new one, even if * there wasn't one allocated previously (which happens in the exec * case where ctx is newly allocated). * * We have to be a bit careful here. We must keep the existing ids in * the array, so that we can test if they're non-zero to decide if we * need to allocate a new one. However in case of error we must free the * ids we've allocated but *not* any of the existing ones (or risk a * UAF). That's why we decrement i at the start of the error handling * loop, to skip the id that we just tested but couldn't reallocate. */ for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) { if (i == 0 || ctx->extended_id[i]) { id = hash__alloc_context_id(); if (id < 0) goto error; ctx->extended_id[i] = id; } } /* The caller expects us to return id */ return ctx->id; error: for (i--; i >= 0; i--) { if (ctx->extended_id[i]) ida_free(&mmu_context_ida, ctx->extended_id[i]); } return id; } static int hash__init_new_context(struct mm_struct *mm) { int index; mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context), GFP_KERNEL); if (!mm->context.hash_context) return -ENOMEM; /* * The old code would re-promote on fork, we don't do that when using * slices as it could cause problem promoting slices that have been * forced down to 4K. * * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check * explicitly against context.id == 0. This ensures that we properly * initialize context slice details for newly allocated mm's (which will * have id == 0) and don't alter context slice inherited via fork (which * will have id != 0). * * We should not be calling init_new_context() on init_mm. Hence a * check against 0 is OK. */ if (mm->context.id == 0) { memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context)); slice_init_new_context_exec(mm); } else { /* This is fork. Copy hash_context details from current->mm */ memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context)); #ifdef CONFIG_PPC_SUBPAGE_PROT /* inherit subpage prot details if we have one. */ if (current->mm->context.hash_context->spt) { mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table), GFP_KERNEL); if (!mm->context.hash_context->spt) { kfree(mm->context.hash_context); return -ENOMEM; } } #endif } index = realloc_context_ids(&mm->context); if (index < 0) { #ifdef CONFIG_PPC_SUBPAGE_PROT kfree(mm->context.hash_context->spt); #endif kfree(mm->context.hash_context); return index; } pkey_mm_init(mm); return index; } void hash__setup_new_exec(void) { slice_setup_new_exec(); slb_setup_new_exec(); } #else static inline int hash__init_new_context(struct mm_struct *mm) { BUILD_BUG(); return 0; } #endif static int radix__init_new_context(struct mm_struct *mm) { unsigned long rts_field; int index, max_id; max_id = (1 << mmu_pid_bits) - 1; index = alloc_context_id(mmu_base_pid, max_id); if (index < 0) return index; /* * set the process table entry, */ rts_field = radix__get_tree_size(); process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE); /* * Order the above store with subsequent update of the PID * register (at which point HW can start loading/caching * the entry) and the corresponding load by the MMU from * the L2 cache. */ asm volatile("ptesync;isync" : : : "memory"); #ifdef CONFIG_PPC_64S_HASH_MMU mm->context.hash_context = NULL; #endif return index; } int init_new_context(struct task_struct *tsk, struct mm_struct *mm) { int index; if (radix_enabled()) index = radix__init_new_context(mm); else index = hash__init_new_context(mm); if (index < 0) return index; mm->context.id = index; mm->context.pte_frag = NULL; mm->context.pmd_frag = NULL; #ifdef CONFIG_SPAPR_TCE_IOMMU mm_iommu_init(mm); #endif atomic_set(&mm->context.active_cpus, 0); atomic_set(&mm->context.copros, 0); return 0; } void __destroy_context(int context_id) { ida_free(&mmu_context_ida, context_id); } EXPORT_SYMBOL_GPL(__destroy_context); static void destroy_contexts(mm_context_t *ctx) { if (radix_enabled()) { ida_free(&mmu_context_ida, ctx->id); } else { #ifdef CONFIG_PPC_64S_HASH_MMU int index, context_id; for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) { context_id = ctx->extended_id[index]; if (context_id) ida_free(&mmu_context_ida, context_id); } kfree(ctx->hash_context); #else BUILD_BUG(); // radix_enabled() should be constant true #endif } } static void pmd_frag_destroy(void *pmd_frag) { int count; struct ptdesc *ptdesc; ptdesc = virt_to_ptdesc(pmd_frag); /* drop all the pending references */ count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT; /* We allow PTE_FRAG_NR fragments from a PTE page */ if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) { pagetable_pmd_dtor(ptdesc); pagetable_free(ptdesc); } } static void destroy_pagetable_cache(struct mm_struct *mm) { void *frag; frag = mm->context.pte_frag; if (frag) pte_frag_destroy(frag); frag = mm->context.pmd_frag; if (frag) pmd_frag_destroy(frag); return; } void destroy_context(struct mm_struct *mm) { #ifdef CONFIG_SPAPR_TCE_IOMMU WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list)); #endif /* * For tasks which were successfully initialized we end up calling * arch_exit_mmap() which clears the process table entry. And * arch_exit_mmap() is called before the required fullmm TLB flush * which does a RIC=2 flush. Hence for an initialized task, we do clear * any cached process table entries. * * The condition below handles the error case during task init. We have * set the process table entry early and if we fail a task * initialization, we need to ensure the process table entry is zeroed. * We need not worry about process table entry caches because the task * never ran with the PID value. */ if (radix_enabled()) process_tb[mm->context.id].prtb0 = 0; else subpage_prot_free(mm); destroy_contexts(&mm->context); mm->context.id = MMU_NO_CONTEXT; } void arch_exit_mmap(struct mm_struct *mm) { destroy_pagetable_cache(mm); if (radix_enabled()) { /* * Radix doesn't have a valid bit in the process table * entries. However we know that at least P9 implementation * will avoid caching an entry with an invalid RTS field, * and 0 is invalid. So this will do. * * This runs before the "fullmm" tlb flush in exit_mmap, * which does a RIC=2 tlbie to clear the process table * entry. See the "fullmm" comments in tlb-radix.c. * * No barrier required here after the store because * this process will do the invalidate, which starts with * ptesync. */ process_tb[mm->context.id].prtb0 = 0; } } #ifdef CONFIG_PPC_RADIX_MMU void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next) { mtspr(SPRN_PID, next->context.id); isync(); } #endif /** * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined) * * This clears the CPU from mm_cpumask for all processes, and then flushes the * local TLB to ensure TLB coherency in case the CPU is onlined again. * * KVM guest translations are not necessarily flushed here. If KVM started * using mm_cpumask or the Linux APIs which do, this would have to be resolved. */ #ifdef CONFIG_HOTPLUG_CPU void cleanup_cpu_mmu_context(void) { int cpu = smp_processor_id(); clear_tasks_mm_cpumask(cpu); tlbiel_all(); } #endif