// SPDX-License-Identifier: GPL-2.0 #include <test_progs.h> #include <bpf/btf.h> static int duration = 0; void btf_dump_printf(void *ctx, const char *fmt, va_list args) { vfprintf(ctx, fmt, args); } static struct btf_dump_test_case { const char *name; const char *file; bool known_ptr_sz; } btf_dump_test_cases[] = { {"btf_dump: syntax", "btf_dump_test_case_syntax", true}, {"btf_dump: ordering", "btf_dump_test_case_ordering", false}, {"btf_dump: padding", "btf_dump_test_case_padding", true}, {"btf_dump: packing", "btf_dump_test_case_packing", true}, {"btf_dump: bitfields", "btf_dump_test_case_bitfields", true}, {"btf_dump: multidim", "btf_dump_test_case_multidim", false}, {"btf_dump: namespacing", "btf_dump_test_case_namespacing", false}, }; static int btf_dump_all_types(const struct btf *btf, void *ctx) { size_t type_cnt = btf__type_cnt(btf); struct btf_dump *d; int err = 0, id; d = btf_dump__new(btf, btf_dump_printf, ctx, NULL); err = libbpf_get_error(d); if (err) return err; for (id = 1; id < type_cnt; id++) { err = btf_dump__dump_type(d, id); if (err) goto done; } done: btf_dump__free(d); return err; } static int test_btf_dump_case(int n, struct btf_dump_test_case *t) { char test_file[256], out_file[256], diff_cmd[1024]; struct btf *btf = NULL; int err = 0, fd = -1; FILE *f = NULL; snprintf(test_file, sizeof(test_file), "%s.bpf.o", t->file); btf = btf__parse_elf(test_file, NULL); if (!ASSERT_OK_PTR(btf, "btf_parse_elf")) { err = -PTR_ERR(btf); btf = NULL; goto done; } /* tests with t->known_ptr_sz have no "long" or "unsigned long" type, * so it's impossible to determine correct pointer size; but if they * do, it should be 8 regardless of host architecture, becaues BPF * target is always 64-bit */ if (!t->known_ptr_sz) { btf__set_pointer_size(btf, 8); } else { CHECK(btf__pointer_size(btf) != 8, "ptr_sz", "exp %d, got %zu\n", 8, btf__pointer_size(btf)); } snprintf(out_file, sizeof(out_file), "/tmp/%s.output.XXXXXX", t->file); fd = mkstemp(out_file); if (!ASSERT_GE(fd, 0, "create_tmp")) { err = fd; goto done; } f = fdopen(fd, "w"); if (CHECK(f == NULL, "open_tmp", "failed to open file: %s(%d)\n", strerror(errno), errno)) { close(fd); goto done; } err = btf_dump_all_types(btf, f); fclose(f); close(fd); if (CHECK(err, "btf_dump", "failure during C dumping: %d\n", err)) { goto done; } snprintf(test_file, sizeof(test_file), "progs/%s.c", t->file); if (access(test_file, R_OK) == -1) /* * When the test is run with O=, kselftest copies TEST_FILES * without preserving the directory structure. */ snprintf(test_file, sizeof(test_file), "%s.c", t->file); /* * Diff test output and expected test output, contained between * START-EXPECTED-OUTPUT and END-EXPECTED-OUTPUT lines in test case. * For expected output lines, everything before '*' is stripped out. * Also lines containing comment start and comment end markers are * ignored. */ snprintf(diff_cmd, sizeof(diff_cmd), "awk '/START-EXPECTED-OUTPUT/{out=1;next} " "/END-EXPECTED-OUTPUT/{out=0} " "/\\/\\*|\\*\\//{next} " /* ignore comment start/end lines */ "out {sub(/^[ \\t]*\\*/, \"\"); print}' '%s' | diff -u - '%s'", test_file, out_file); err = system(diff_cmd); if (CHECK(err, "diff", "differing test output, output=%s, err=%d, diff cmd:\n%s\n", out_file, err, diff_cmd)) goto done; remove(out_file); done: btf__free(btf); return err; } static char *dump_buf; static size_t dump_buf_sz; static FILE *dump_buf_file; static void test_btf_dump_incremental(void) { struct btf *btf = NULL; struct btf_dump *d = NULL; int id, err, i; dump_buf_file = open_memstream(&dump_buf, &dump_buf_sz); if (!ASSERT_OK_PTR(dump_buf_file, "dump_memstream")) return; btf = btf__new_empty(); if (!ASSERT_OK_PTR(btf, "new_empty")) goto err_out; d = btf_dump__new(btf, btf_dump_printf, dump_buf_file, NULL); if (!ASSERT_OK(libbpf_get_error(d), "btf_dump__new")) goto err_out; /* First, generate BTF corresponding to the following C code: * * enum x; * * enum x { X = 1 }; * * enum { Y = 1 }; * * struct s; * * struct s { int x; }; * */ id = btf__add_enum(btf, "x", 4); ASSERT_EQ(id, 1, "enum_declaration_id"); id = btf__add_enum(btf, "x", 4); ASSERT_EQ(id, 2, "named_enum_id"); err = btf__add_enum_value(btf, "X", 1); ASSERT_OK(err, "named_enum_val_ok"); id = btf__add_enum(btf, NULL, 4); ASSERT_EQ(id, 3, "anon_enum_id"); err = btf__add_enum_value(btf, "Y", 1); ASSERT_OK(err, "anon_enum_val_ok"); id = btf__add_int(btf, "int", 4, BTF_INT_SIGNED); ASSERT_EQ(id, 4, "int_id"); id = btf__add_fwd(btf, "s", BTF_FWD_STRUCT); ASSERT_EQ(id, 5, "fwd_id"); id = btf__add_struct(btf, "s", 4); ASSERT_EQ(id, 6, "struct_id"); err = btf__add_field(btf, "x", 4, 0, 0); ASSERT_OK(err, "field_ok"); for (i = 1; i < btf__type_cnt(btf); i++) { err = btf_dump__dump_type(d, i); ASSERT_OK(err, "dump_type_ok"); } fflush(dump_buf_file); dump_buf[dump_buf_sz] = 0; /* some libc implementations don't do this */ ASSERT_STREQ(dump_buf, "enum x;\n" "\n" "enum x {\n" " X = 1,\n" "};\n" "\n" "enum {\n" " Y = 1,\n" "};\n" "\n" "struct s;\n" "\n" "struct s {\n" " int x;\n" "};\n\n", "c_dump1"); /* Now, after dumping original BTF, append another struct that embeds * anonymous enum. It also has a name conflict with the first struct: * * struct s___2 { * enum { VAL___2 = 1 } x; * struct s s; * }; * * This will test that btf_dump'er maintains internal state properly. * Note that VAL___2 enum value. It's because we've already emitted * that enum as a global anonymous enum, so btf_dump will ensure that * enum values don't conflict; * */ fseek(dump_buf_file, 0, SEEK_SET); id = btf__add_struct(btf, "s", 4); ASSERT_EQ(id, 7, "struct_id"); err = btf__add_field(btf, "x", 2, 0, 0); ASSERT_OK(err, "field_ok"); err = btf__add_field(btf, "y", 3, 32, 0); ASSERT_OK(err, "field_ok"); err = btf__add_field(btf, "s", 6, 64, 0); ASSERT_OK(err, "field_ok"); for (i = 1; i < btf__type_cnt(btf); i++) { err = btf_dump__dump_type(d, i); ASSERT_OK(err, "dump_type_ok"); } fflush(dump_buf_file); dump_buf[dump_buf_sz] = 0; /* some libc implementations don't do this */ ASSERT_STREQ(dump_buf, "struct s___2 {\n" " enum x x;\n" " enum {\n" " Y___2 = 1,\n" " } y;\n" " struct s s;\n" "};\n\n" , "c_dump1"); err_out: fclose(dump_buf_file); free(dump_buf); btf_dump__free(d); btf__free(btf); } #define STRSIZE 4096 static void btf_dump_snprintf(void *ctx, const char *fmt, va_list args) { char *s = ctx, new[STRSIZE]; vsnprintf(new, STRSIZE, fmt, args); if (strlen(s) < STRSIZE) strncat(s, new, STRSIZE - strlen(s) - 1); } static int btf_dump_data(struct btf *btf, struct btf_dump *d, char *name, char *prefix, __u64 flags, void *ptr, size_t ptr_sz, char *str, const char *expected_val) { DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts); size_t type_sz; __s32 type_id; int ret = 0; if (flags & BTF_F_COMPACT) opts.compact = true; if (flags & BTF_F_NONAME) opts.skip_names = true; if (flags & BTF_F_ZERO) opts.emit_zeroes = true; if (prefix) { ASSERT_STRNEQ(name, prefix, strlen(prefix), "verify prefix match"); name += strlen(prefix) + 1; } type_id = btf__find_by_name(btf, name); if (!ASSERT_GE(type_id, 0, "find type id")) return -ENOENT; type_sz = btf__resolve_size(btf, type_id); str[0] = '\0'; ret = btf_dump__dump_type_data(d, type_id, ptr, ptr_sz, &opts); if (type_sz <= ptr_sz) { if (!ASSERT_EQ(ret, type_sz, "failed/unexpected type_sz")) return -EINVAL; } else { if (!ASSERT_EQ(ret, -E2BIG, "failed to return -E2BIG")) return -EINVAL; } if (!ASSERT_STREQ(str, expected_val, "ensure expected/actual match")) return -EFAULT; return 0; } #define TEST_BTF_DUMP_DATA(_b, _d, _prefix, _str, _type, _flags, \ _expected, ...) \ do { \ char __ptrtype[64] = #_type; \ char *_ptrtype = (char *)__ptrtype; \ _type _ptrdata = __VA_ARGS__; \ void *_ptr = &_ptrdata; \ \ (void) btf_dump_data(_b, _d, _ptrtype, _prefix, _flags, \ _ptr, sizeof(_type), _str, \ _expected); \ } while (0) /* Use where expected data string matches its stringified declaration */ #define TEST_BTF_DUMP_DATA_C(_b, _d, _prefix, _str, _type, _flags, \ ...) \ TEST_BTF_DUMP_DATA(_b, _d, _prefix, _str, _type, _flags, \ "(" #_type ")" #__VA_ARGS__, __VA_ARGS__) /* overflow test; pass typesize < expected type size, ensure E2BIG returned */ #define TEST_BTF_DUMP_DATA_OVER(_b, _d, _prefix, _str, _type, _type_sz, \ _expected, ...) \ do { \ char __ptrtype[64] = #_type; \ char *_ptrtype = (char *)__ptrtype; \ _type _ptrdata = __VA_ARGS__; \ void *_ptr = &_ptrdata; \ \ (void) btf_dump_data(_b, _d, _ptrtype, _prefix, 0, \ _ptr, _type_sz, _str, _expected); \ } while (0) #define TEST_BTF_DUMP_VAR(_b, _d, _prefix, _str, _var, _type, _flags, \ _expected, ...) \ do { \ _type _ptrdata = __VA_ARGS__; \ void *_ptr = &_ptrdata; \ \ (void) btf_dump_data(_b, _d, _var, _prefix, _flags, \ _ptr, sizeof(_type), _str, \ _expected); \ } while (0) static void test_btf_dump_int_data(struct btf *btf, struct btf_dump *d, char *str) { #ifdef __SIZEOF_INT128__ unsigned __int128 i = 0xffffffffffffffff; /* this dance is required because we cannot directly initialize * a 128-bit value to anything larger than a 64-bit value. */ i = (i << 64) | (i - 1); #endif /* simple int */ TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, int, BTF_F_COMPACT, 1234); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME, "1234", 1234); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, 0, "(int)1234", 1234); /* zero value should be printed at toplevel */ TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT, "(int)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME, "0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_ZERO, "(int)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "0", 0); TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, int, BTF_F_COMPACT, -4567); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, BTF_F_COMPACT | BTF_F_NONAME, "-4567", -4567); TEST_BTF_DUMP_DATA(btf, d, NULL, str, int, 0, "(int)-4567", -4567); TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, int, sizeof(int)-1, "", 1); #ifdef __SIZEOF_INT128__ /* gcc encode unsigned __int128 type with name "__int128 unsigned" in dwarf, * and clang encode it with name "unsigned __int128" in dwarf. * Do an availability test for either variant before doing actual test. */ if (btf__find_by_name(btf, "unsigned __int128") > 0) { TEST_BTF_DUMP_DATA(btf, d, NULL, str, unsigned __int128, BTF_F_COMPACT, "(unsigned __int128)0xffffffffffffffff", 0xffffffffffffffff); ASSERT_OK(btf_dump_data(btf, d, "unsigned __int128", NULL, 0, &i, 16, str, "(unsigned __int128)0xfffffffffffffffffffffffffffffffe"), "dump unsigned __int128"); } else if (btf__find_by_name(btf, "__int128 unsigned") > 0) { TEST_BTF_DUMP_DATA(btf, d, NULL, str, __int128 unsigned, BTF_F_COMPACT, "(__int128 unsigned)0xffffffffffffffff", 0xffffffffffffffff); ASSERT_OK(btf_dump_data(btf, d, "__int128 unsigned", NULL, 0, &i, 16, str, "(__int128 unsigned)0xfffffffffffffffffffffffffffffffe"), "dump unsigned __int128"); } else { ASSERT_TRUE(false, "unsigned_int128_not_found"); } #endif } static void test_btf_dump_float_data(struct btf *btf, struct btf_dump *d, char *str) { float t1 = 1.234567; float t2 = -1.234567; float t3 = 0.0; double t4 = 5.678912; double t5 = -5.678912; double t6 = 0.0; long double t7 = 9.876543; long double t8 = -9.876543; long double t9 = 0.0; /* since the kernel does not likely have any float types in its BTF, we * will need to add some of various sizes. */ ASSERT_GT(btf__add_float(btf, "test_float", 4), 0, "add float"); ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t1, 4, str, "(test_float)1.234567"), "dump float"); ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t2, 4, str, "(test_float)-1.234567"), "dump float"); ASSERT_OK(btf_dump_data(btf, d, "test_float", NULL, 0, &t3, 4, str, "(test_float)0.000000"), "dump float"); ASSERT_GT(btf__add_float(btf, "test_double", 8), 0, "add_double"); ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t4, 8, str, "(test_double)5.678912"), "dump double"); ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t5, 8, str, "(test_double)-5.678912"), "dump double"); ASSERT_OK(btf_dump_data(btf, d, "test_double", NULL, 0, &t6, 8, str, "(test_double)0.000000"), "dump double"); ASSERT_GT(btf__add_float(btf, "test_long_double", 16), 0, "add long double"); ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t7, 16, str, "(test_long_double)9.876543"), "dump long_double"); ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t8, 16, str, "(test_long_double)-9.876543"), "dump long_double"); ASSERT_OK(btf_dump_data(btf, d, "test_long_double", NULL, 0, &t9, 16, str, "(test_long_double)0.000000"), "dump long_double"); } static void test_btf_dump_char_data(struct btf *btf, struct btf_dump *d, char *str) { /* simple char */ TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, char, BTF_F_COMPACT, 100); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME, "100", 100); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, 0, "(char)100", 100); /* zero value should be printed at toplevel */ TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT, "(char)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME, "0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_ZERO, "(char)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, char, 0, "(char)0", 0); TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, char, sizeof(char)-1, "", 100); } static void test_btf_dump_typedef_data(struct btf *btf, struct btf_dump *d, char *str) { /* simple typedef */ TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, uint64_t, BTF_F_COMPACT, 100); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_NONAME, "1", 1); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, 0, "(u64)1", 1); /* zero value should be printed at toplevel */ TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT, "(u64)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_NONAME, "0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_ZERO, "(u64)0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "0", 0); TEST_BTF_DUMP_DATA(btf, d, NULL, str, u64, 0, "(u64)0", 0); /* typedef struct */ TEST_BTF_DUMP_DATA_C(btf, d, NULL, str, atomic_t, BTF_F_COMPACT, {.counter = (int)1,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_NONAME, "{1,}", { .counter = 1 }); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, 0, "(atomic_t){\n" " .counter = (int)1,\n" "}", {.counter = 1,}); /* typedef with 0 value should be printed at toplevel */ TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT, "(atomic_t){}", {.counter = 0,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_NONAME, "{}", {.counter = 0,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, 0, "(atomic_t){\n" "}", {.counter = 0,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_ZERO, "(atomic_t){.counter = (int)0,}", {.counter = 0,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "{0,}", {.counter = 0,}); TEST_BTF_DUMP_DATA(btf, d, NULL, str, atomic_t, BTF_F_ZERO, "(atomic_t){\n" " .counter = (int)0,\n" "}", { .counter = 0,}); /* overflow should show type but not value since it overflows */ TEST_BTF_DUMP_DATA_OVER(btf, d, NULL, str, atomic_t, sizeof(atomic_t)-1, "(atomic_t){\n", { .counter = 1}); } static void test_btf_dump_enum_data(struct btf *btf, struct btf_dump *d, char *str) { /* enum where enum value does (and does not) exist */ TEST_BTF_DUMP_DATA_C(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT, BPF_MAP_CREATE); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT, "(enum bpf_cmd)BPF_MAP_CREATE", 0); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT | BTF_F_NONAME, "BPF_MAP_CREATE", BPF_MAP_CREATE); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, 0, "(enum bpf_cmd)BPF_MAP_CREATE", BPF_MAP_CREATE); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "BPF_MAP_CREATE", 0); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT | BTF_F_ZERO, "(enum bpf_cmd)BPF_MAP_CREATE", BPF_MAP_CREATE); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "BPF_MAP_CREATE", BPF_MAP_CREATE); TEST_BTF_DUMP_DATA_C(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT, 2000); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, BTF_F_COMPACT | BTF_F_NONAME, "2000", 2000); TEST_BTF_DUMP_DATA(btf, d, "enum", str, enum bpf_cmd, 0, "(enum bpf_cmd)2000", 2000); TEST_BTF_DUMP_DATA_OVER(btf, d, "enum", str, enum bpf_cmd, sizeof(enum bpf_cmd) - 1, "", BPF_MAP_CREATE); } static void test_btf_dump_struct_data(struct btf *btf, struct btf_dump *d, char *str) { DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts); char zero_data[512] = { }; char type_data[512]; void *fops = type_data; void *skb = type_data; size_t type_sz; __s32 type_id; char *cmpstr; int ret; memset(type_data, 255, sizeof(type_data)); /* simple struct */ TEST_BTF_DUMP_DATA_C(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT, {.name_off = (__u32)3,.val = (__s32)-1,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT | BTF_F_NONAME, "{3,-1,}", { .name_off = 3, .val = -1,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, 0, "(struct btf_enum){\n" " .name_off = (__u32)3,\n" " .val = (__s32)-1,\n" "}", { .name_off = 3, .val = -1,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT | BTF_F_NONAME, "{-1,}", { .name_off = 0, .val = -1,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT | BTF_F_NONAME | BTF_F_ZERO, "{0,-1,}", { .name_off = 0, .val = -1,}); /* empty struct should be printed */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT, "(struct btf_enum){}", { .name_off = 0, .val = 0,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT | BTF_F_NONAME, "{}", { .name_off = 0, .val = 0,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, 0, "(struct btf_enum){\n" "}", { .name_off = 0, .val = 0,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_COMPACT | BTF_F_ZERO, "(struct btf_enum){.name_off = (__u32)0,.val = (__s32)0,}", { .name_off = 0, .val = 0,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct btf_enum, BTF_F_ZERO, "(struct btf_enum){\n" " .name_off = (__u32)0,\n" " .val = (__s32)0,\n" "}", { .name_off = 0, .val = 0,}); /* struct with pointers */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, BTF_F_COMPACT, "(struct list_head){.next = (struct list_head *)0x1,}", { .next = (struct list_head *)1 }); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, 0, "(struct list_head){\n" " .next = (struct list_head *)0x1,\n" "}", { .next = (struct list_head *)1 }); /* NULL pointer should not be displayed */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, BTF_F_COMPACT, "(struct list_head){}", { .next = (struct list_head *)0 }); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct list_head, 0, "(struct list_head){\n" "}", { .next = (struct list_head *)0 }); /* struct with function pointers */ type_id = btf__find_by_name(btf, "file_operations"); if (ASSERT_GT(type_id, 0, "find type id")) { type_sz = btf__resolve_size(btf, type_id); str[0] = '\0'; ret = btf_dump__dump_type_data(d, type_id, fops, type_sz, &opts); ASSERT_EQ(ret, type_sz, "unexpected return value dumping file_operations"); cmpstr = "(struct file_operations){\n" " .owner = (struct module *)0xffffffffffffffff,\n" " .llseek = (loff_t (*)(struct file *, loff_t, int))0xffffffffffffffff,"; ASSERT_STRNEQ(str, cmpstr, strlen(cmpstr), "file_operations"); } /* struct with char array */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT, "(struct bpf_prog_info){.name = (char[16])['f','o','o',],}", { .name = "foo",}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT | BTF_F_NONAME, "{['f','o','o',],}", {.name = "foo",}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, 0, "(struct bpf_prog_info){\n" " .name = (char[16])[\n" " 'f',\n" " 'o',\n" " 'o',\n" " ],\n" "}", {.name = "foo",}); /* leading null char means do not display string */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT, "(struct bpf_prog_info){}", {.name = {'\0', 'f', 'o', 'o'}}); /* handle non-printable characters */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_prog_info, BTF_F_COMPACT, "(struct bpf_prog_info){.name = (char[16])[1,2,3,],}", { .name = {1, 2, 3, 0}}); /* struct with non-char array */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, BTF_F_COMPACT, "(struct __sk_buff){.cb = (__u32[5])[1,2,3,4,5,],}", { .cb = {1, 2, 3, 4, 5,},}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, BTF_F_COMPACT | BTF_F_NONAME, "{[1,2,3,4,5,],}", { .cb = { 1, 2, 3, 4, 5},}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, 0, "(struct __sk_buff){\n" " .cb = (__u32[5])[\n" " 1,\n" " 2,\n" " 3,\n" " 4,\n" " 5,\n" " ],\n" "}", { .cb = { 1, 2, 3, 4, 5},}); /* For non-char, arrays, show non-zero values only */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, BTF_F_COMPACT, "(struct __sk_buff){.cb = (__u32[5])[0,0,1,0,0,],}", { .cb = { 0, 0, 1, 0, 0},}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct __sk_buff, 0, "(struct __sk_buff){\n" " .cb = (__u32[5])[\n" " 0,\n" " 0,\n" " 1,\n" " 0,\n" " 0,\n" " ],\n" "}", { .cb = { 0, 0, 1, 0, 0},}); /* struct with bitfields */ TEST_BTF_DUMP_DATA_C(btf, d, "struct", str, struct bpf_insn, BTF_F_COMPACT, {.code = (__u8)1,.dst_reg = (__u8)0x2,.src_reg = (__u8)0x3,.off = (__s16)4,.imm = (__s32)5,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn, BTF_F_COMPACT | BTF_F_NONAME, "{1,0x2,0x3,4,5,}", { .code = 1, .dst_reg = 0x2, .src_reg = 0x3, .off = 4, .imm = 5,}); TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn, 0, "(struct bpf_insn){\n" " .code = (__u8)1,\n" " .dst_reg = (__u8)0x2,\n" " .src_reg = (__u8)0x3,\n" " .off = (__s16)4,\n" " .imm = (__s32)5,\n" "}", {.code = 1, .dst_reg = 2, .src_reg = 3, .off = 4, .imm = 5}); /* zeroed bitfields should not be displayed */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_insn, BTF_F_COMPACT, "(struct bpf_insn){.dst_reg = (__u8)0x1,}", { .code = 0, .dst_reg = 1}); /* struct with enum bitfield */ type_id = btf__find_by_name(btf, "fs_context"); if (ASSERT_GT(type_id, 0, "find fs_context")) { type_sz = btf__resolve_size(btf, type_id); str[0] = '\0'; opts.emit_zeroes = true; ret = btf_dump__dump_type_data(d, type_id, zero_data, type_sz, &opts); ASSERT_EQ(ret, type_sz, "unexpected return value dumping fs_context"); ASSERT_NEQ(strstr(str, "FS_CONTEXT_FOR_MOUNT"), NULL, "bitfield value not present"); } /* struct with nested anon union */ TEST_BTF_DUMP_DATA(btf, d, "struct", str, struct bpf_sock_ops, BTF_F_COMPACT, "(struct bpf_sock_ops){.op = (__u32)1,(union){.args = (__u32[4])[1,2,3,4,],.reply = (__u32)1,.replylong = (__u32[4])[1,2,3,4,],},}", { .op = 1, .args = { 1, 2, 3, 4}}); /* union with nested struct */ TEST_BTF_DUMP_DATA(btf, d, "union", str, union bpf_iter_link_info, BTF_F_COMPACT, "(union bpf_iter_link_info){.map = (struct){.map_fd = (__u32)1,},.cgroup = (struct){.order = (enum bpf_cgroup_iter_order)BPF_CGROUP_ITER_SELF_ONLY,.cgroup_fd = (__u32)1,},.task = (struct){.tid = (__u32)1,.pid = (__u32)1,},}", { .cgroup = { .order = 1, .cgroup_fd = 1, }}); /* struct skb with nested structs/unions; because type output is so * complex, we don't do a string comparison, just verify we return * the type size as the amount of data displayed. */ type_id = btf__find_by_name(btf, "sk_buff"); if (ASSERT_GT(type_id, 0, "find struct sk_buff")) { type_sz = btf__resolve_size(btf, type_id); str[0] = '\0'; ret = btf_dump__dump_type_data(d, type_id, skb, type_sz, &opts); ASSERT_EQ(ret, type_sz, "unexpected return value dumping sk_buff"); } /* overflow bpf_sock_ops struct with final element nonzero/zero. * Regardless of the value of the final field, we don't have all the * data we need to display it, so we should trigger an overflow. * In other words overflow checking should trump "is field zero?" * checks because if we've overflowed, it shouldn't matter what the * field is - we can't trust its value so shouldn't display it. */ TEST_BTF_DUMP_DATA_OVER(btf, d, "struct", str, struct bpf_sock_ops, sizeof(struct bpf_sock_ops) - 1, "(struct bpf_sock_ops){\n\t.op = (__u32)1,\n", { .op = 1, .skb_hwtstamp = 2}); TEST_BTF_DUMP_DATA_OVER(btf, d, "struct", str, struct bpf_sock_ops, sizeof(struct bpf_sock_ops) - 1, "(struct bpf_sock_ops){\n\t.op = (__u32)1,\n", { .op = 1, .skb_hwtstamp = 0}); } static void test_btf_dump_var_data(struct btf *btf, struct btf_dump *d, char *str) { #if 0 TEST_BTF_DUMP_VAR(btf, d, NULL, str, "cpu_number", int, BTF_F_COMPACT, "int cpu_number = (int)100", 100); #endif TEST_BTF_DUMP_VAR(btf, d, NULL, str, "cpu_profile_flip", int, BTF_F_COMPACT, "static int cpu_profile_flip = (int)2", 2); } static void test_btf_datasec(struct btf *btf, struct btf_dump *d, char *str, const char *name, const char *expected_val, void *data, size_t data_sz) { DECLARE_LIBBPF_OPTS(btf_dump_type_data_opts, opts); int ret = 0, cmp; size_t secsize; __s32 type_id; opts.compact = true; type_id = btf__find_by_name(btf, name); if (!ASSERT_GT(type_id, 0, "find type id")) return; secsize = btf__resolve_size(btf, type_id); ASSERT_EQ(secsize, 0, "verify section size"); str[0] = '\0'; ret = btf_dump__dump_type_data(d, type_id, data, data_sz, &opts); ASSERT_EQ(ret, 0, "unexpected return value"); cmp = strcmp(str, expected_val); ASSERT_EQ(cmp, 0, "ensure expected/actual match"); } static void test_btf_dump_datasec_data(char *str) { struct btf *btf; char license[4] = "GPL"; struct btf_dump *d; btf = btf__parse("xdping_kern.bpf.o", NULL); if (!ASSERT_OK_PTR(btf, "xdping_kern.bpf.o BTF not found")) return; d = btf_dump__new(btf, btf_dump_snprintf, str, NULL); if (!ASSERT_OK_PTR(d, "could not create BTF dump")) goto out; test_btf_datasec(btf, d, str, "license", "SEC(\"license\") char[4] _license = (char[4])['G','P','L',];", license, sizeof(license)); out: btf_dump__free(d); btf__free(btf); } void test_btf_dump() { char str[STRSIZE]; struct btf_dump *d; struct btf *btf; int i; for (i = 0; i < ARRAY_SIZE(btf_dump_test_cases); i++) { struct btf_dump_test_case *t = &btf_dump_test_cases[i]; if (!test__start_subtest(t->name)) continue; test_btf_dump_case(i, &btf_dump_test_cases[i]); } if (test__start_subtest("btf_dump: incremental")) test_btf_dump_incremental(); btf = libbpf_find_kernel_btf(); if (!ASSERT_OK_PTR(btf, "no kernel BTF found")) return; d = btf_dump__new(btf, btf_dump_snprintf, str, NULL); if (!ASSERT_OK_PTR(d, "could not create BTF dump")) return; /* Verify type display for various types. */ if (test__start_subtest("btf_dump: int_data")) test_btf_dump_int_data(btf, d, str); if (test__start_subtest("btf_dump: float_data")) test_btf_dump_float_data(btf, d, str); if (test__start_subtest("btf_dump: char_data")) test_btf_dump_char_data(btf, d, str); if (test__start_subtest("btf_dump: typedef_data")) test_btf_dump_typedef_data(btf, d, str); if (test__start_subtest("btf_dump: enum_data")) test_btf_dump_enum_data(btf, d, str); if (test__start_subtest("btf_dump: struct_data")) test_btf_dump_struct_data(btf, d, str); if (test__start_subtest("btf_dump: var_data")) test_btf_dump_var_data(btf, d, str); btf_dump__free(d); btf__free(btf); if (test__start_subtest("btf_dump: datasec_data")) test_btf_dump_datasec_data(str); }