/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_NOHASH_PGTABLE_H #define _ASM_POWERPC_NOHASH_PGTABLE_H #if defined(CONFIG_PPC64) #include <asm/nohash/64/pgtable.h> #else #include <asm/nohash/32/pgtable.h> #endif /* Permission masks used for kernel mappings */ #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE) #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED) #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) #ifndef __ASSEMBLY__ /* Generic accessors to PTE bits */ #ifndef pte_write static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; } #endif #ifndef pte_read static inline int pte_read(pte_t pte) { return 1; } #endif static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } static inline int pte_none(pte_t pte) { return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; } static inline bool pte_hashpte(pte_t pte) { return false; } static inline bool pte_ci(pte_t pte) { return pte_val(pte) & _PAGE_NO_CACHE; } static inline bool pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; } #ifdef CONFIG_NUMA_BALANCING /* * These work without NUMA balancing but the kernel does not care. See the * comment in include/linux/pgtable.h . On powerpc, this will only * work for user pages and always return true for kernel pages. */ static inline int pte_protnone(pte_t pte) { return pte_present(pte) && !pte_user(pte); } static inline int pmd_protnone(pmd_t pmd) { return pte_protnone(pmd_pte(pmd)); } #endif /* CONFIG_NUMA_BALANCING */ static inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } static inline bool pte_hw_valid(pte_t pte) { return pte_val(pte) & _PAGE_PRESENT; } /* * Don't just check for any non zero bits in __PAGE_USER, since for book3e * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in * _PAGE_USER. Need to explicitly match _PAGE_BAP_UR bit in that case too. */ #ifndef pte_user static inline bool pte_user(pte_t pte) { return (pte_val(pte) & _PAGE_USER) == _PAGE_USER; } #endif /* * We only find page table entry in the last level * Hence no need for other accessors */ #define pte_access_permitted pte_access_permitted static inline bool pte_access_permitted(pte_t pte, bool write) { /* * A read-only access is controlled by _PAGE_USER bit. * We have _PAGE_READ set for WRITE and EXECUTE */ if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte)) return false; if (write && !pte_write(pte)) return false; return true; } /* Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) | pgprot_val(pgprot)); } /* Generic modifiers for PTE bits */ static inline pte_t pte_exprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_EXEC); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); } #ifndef pte_mkhuge static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte)); } #endif #ifndef pte_mkprivileged static inline pte_t pte_mkprivileged(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_USER); } #endif #ifndef pte_mkuser static inline pte_t pte_mkuser(pte_t pte) { return __pte(pte_val(pte) | _PAGE_USER); } #endif static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } static inline int pte_swp_exclusive(pte_t pte) { return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; } static inline pte_t pte_swp_mkexclusive(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); } static inline pte_t pte_swp_clear_exclusive(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); } /* This low level function performs the actual PTE insertion * Setting the PTE depends on the MMU type and other factors. It's * an horrible mess that I'm not going to try to clean up now but * I'm keeping it in one place rather than spread around */ static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { /* Second case is 32-bit with 64-bit PTE. In this case, we * can just store as long as we do the two halves in the right order * with a barrier in between. * In the percpu case, we also fallback to the simple update */ if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) { __asm__ __volatile__("\ stw%X0 %2,%0\n\ mbar\n\ stw%X1 %L2,%1" : "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) : "r" (pte) : "memory"); return; } /* Anything else just stores the PTE normally. That covers all 64-bit * cases, and 32-bit non-hash with 32-bit PTEs. */ #if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES) ptep->pte3 = ptep->pte2 = ptep->pte1 = ptep->pte = pte_val(pte); #else *ptep = pte; #endif /* * With hardware tablewalk, a sync is needed to ensure that * subsequent accesses see the PTE we just wrote. Unlike userspace * mappings, we can't tolerate spurious faults, so make sure * the new PTE will be seen the first time. */ if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr)) mb(); } #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address, pte_t *ptep, pte_t entry, int dirty); /* * Macro to mark a page protection value as "uncacheable". */ #define _PAGE_CACHE_CTL (_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \ _PAGE_WRITETHRU) #define pgprot_noncached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE | _PAGE_GUARDED)) #define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_NO_CACHE)) #define pgprot_cached(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT)) #if _PAGE_WRITETHRU != 0 #define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \ _PAGE_COHERENT | _PAGE_WRITETHRU)) #else #define pgprot_cached_wthru(prot) pgprot_noncached(prot) #endif #define pgprot_cached_noncoherent(prot) \ (__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL)) #define pgprot_writecombine pgprot_noncached_wc struct file; extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size, pgprot_t vma_prot); #define __HAVE_PHYS_MEM_ACCESS_PROT #ifdef CONFIG_HUGETLB_PAGE static inline int hugepd_ok(hugepd_t hpd) { #ifdef CONFIG_PPC_8xx return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M); #else /* We clear the top bit to indicate hugepd */ return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0); #endif } static inline int pmd_huge(pmd_t pmd) { return 0; } static inline int pud_huge(pud_t pud) { return 0; } #define is_hugepd(hpd) (hugepd_ok(hpd)) #endif /* * This gets called at the end of handling a page fault, when * the kernel has put a new PTE into the page table for the process. * We use it to ensure coherency between the i-cache and d-cache * for the page which has just been mapped in. */ #if defined(CONFIG_PPC_E500) && defined(CONFIG_HUGETLB_PAGE) void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr); #else static inline void update_mmu_cache_range(struct vm_fault *vmf, struct vm_area_struct *vma, unsigned long address, pte_t *ptep, unsigned int nr) {} #endif #endif /* __ASSEMBLY__ */ #endif