// SPDX-License-Identifier: GPL-2.0-only /* * PS3 address space management. * * Copyright (C) 2006 Sony Computer Entertainment Inc. * Copyright 2006 Sony Corp. */ #include <linux/dma-mapping.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/memblock.h> #include <linux/slab.h> #include <asm/cell-regs.h> #include <asm/firmware.h> #include <asm/udbg.h> #include <asm/lv1call.h> #include <asm/setup.h> #include "platform.h" #if defined(DEBUG) #define DBG udbg_printf #else #define DBG pr_devel #endif enum { #if defined(CONFIG_PS3_DYNAMIC_DMA) USE_DYNAMIC_DMA = 1, #else USE_DYNAMIC_DMA = 0, #endif }; enum { PAGE_SHIFT_4K = 12U, PAGE_SHIFT_64K = 16U, PAGE_SHIFT_16M = 24U, }; static unsigned long __init make_page_sizes(unsigned long a, unsigned long b) { return (a << 56) | (b << 48); } enum { ALLOCATE_MEMORY_TRY_ALT_UNIT = 0X04, ALLOCATE_MEMORY_ADDR_ZERO = 0X08, }; /* valid htab sizes are {18,19,20} = 256K, 512K, 1M */ enum { HTAB_SIZE_MAX = 20U, /* HV limit of 1MB */ HTAB_SIZE_MIN = 18U, /* CPU limit of 256KB */ }; /*============================================================================*/ /* virtual address space routines */ /*============================================================================*/ /** * struct mem_region - memory region structure * @base: base address * @size: size in bytes * @offset: difference between base and rm.size * @destroy: flag if region should be destroyed upon shutdown */ struct mem_region { u64 base; u64 size; unsigned long offset; int destroy; }; /** * struct map - address space state variables holder * @total: total memory available as reported by HV * @vas_id - HV virtual address space id * @htab_size: htab size in bytes * * The HV virtual address space (vas) allows for hotplug memory regions. * Memory regions can be created and destroyed in the vas at runtime. * @rm: real mode (bootmem) region * @r1: highmem region(s) * * ps3 addresses * virt_addr: a cpu 'translated' effective address * phys_addr: an address in what Linux thinks is the physical address space * lpar_addr: an address in the HV virtual address space * bus_addr: an io controller 'translated' address on a device bus */ struct map { u64 total; u64 vas_id; u64 htab_size; struct mem_region rm; struct mem_region r1; }; #define debug_dump_map(x) _debug_dump_map(x, __func__, __LINE__) static void __maybe_unused _debug_dump_map(const struct map *m, const char *func, int line) { DBG("%s:%d: map.total = %llxh\n", func, line, m->total); DBG("%s:%d: map.rm.size = %llxh\n", func, line, m->rm.size); DBG("%s:%d: map.vas_id = %llu\n", func, line, m->vas_id); DBG("%s:%d: map.htab_size = %llxh\n", func, line, m->htab_size); DBG("%s:%d: map.r1.base = %llxh\n", func, line, m->r1.base); DBG("%s:%d: map.r1.offset = %lxh\n", func, line, m->r1.offset); DBG("%s:%d: map.r1.size = %llxh\n", func, line, m->r1.size); } static struct map map; /** * ps3_mm_phys_to_lpar - translate a linux physical address to lpar address * @phys_addr: linux physical address */ unsigned long ps3_mm_phys_to_lpar(unsigned long phys_addr) { BUG_ON(is_kernel_addr(phys_addr)); return (phys_addr < map.rm.size || phys_addr >= map.total) ? phys_addr : phys_addr + map.r1.offset; } EXPORT_SYMBOL(ps3_mm_phys_to_lpar); /** * ps3_mm_vas_create - create the virtual address space */ void __init ps3_mm_vas_create(unsigned long* htab_size) { int result; u64 start_address; u64 size; u64 access_right; u64 max_page_size; u64 flags; result = lv1_query_logical_partition_address_region_info(0, &start_address, &size, &access_right, &max_page_size, &flags); if (result) { DBG("%s:%d: lv1_query_logical_partition_address_region_info " "failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail; } if (max_page_size < PAGE_SHIFT_16M) { DBG("%s:%d: bad max_page_size %llxh\n", __func__, __LINE__, max_page_size); goto fail; } BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE > HTAB_SIZE_MAX); BUILD_BUG_ON(CONFIG_PS3_HTAB_SIZE < HTAB_SIZE_MIN); result = lv1_construct_virtual_address_space(CONFIG_PS3_HTAB_SIZE, 2, make_page_sizes(PAGE_SHIFT_16M, PAGE_SHIFT_64K), &map.vas_id, &map.htab_size); if (result) { DBG("%s:%d: lv1_construct_virtual_address_space failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail; } result = lv1_select_virtual_address_space(map.vas_id); if (result) { DBG("%s:%d: lv1_select_virtual_address_space failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail; } *htab_size = map.htab_size; debug_dump_map(&map); return; fail: panic("ps3_mm_vas_create failed"); } /** * ps3_mm_vas_destroy - * * called during kexec sequence with MMU off. */ notrace void ps3_mm_vas_destroy(void) { int result; if (map.vas_id) { result = lv1_select_virtual_address_space(0); result += lv1_destruct_virtual_address_space(map.vas_id); if (result) { lv1_panic(0); } map.vas_id = 0; } } static int __init ps3_mm_get_repository_highmem(struct mem_region *r) { int result; /* Assume a single highmem region. */ result = ps3_repository_read_highmem_info(0, &r->base, &r->size); if (result) goto zero_region; if (!r->base || !r->size) { result = -1; goto zero_region; } r->offset = r->base - map.rm.size; DBG("%s:%d: Found high region in repository: %llxh %llxh\n", __func__, __LINE__, r->base, r->size); return 0; zero_region: DBG("%s:%d: No high region in repository.\n", __func__, __LINE__); r->size = r->base = r->offset = 0; return result; } static int ps3_mm_set_repository_highmem(const struct mem_region *r) { /* Assume a single highmem region. */ return r ? ps3_repository_write_highmem_info(0, r->base, r->size) : ps3_repository_write_highmem_info(0, 0, 0); } /** * ps3_mm_region_create - create a memory region in the vas * @r: pointer to a struct mem_region to accept initialized values * @size: requested region size * * This implementation creates the region with the vas large page size. * @size is rounded down to a multiple of the vas large page size. */ static int ps3_mm_region_create(struct mem_region *r, unsigned long size) { int result; u64 muid; r->size = ALIGN_DOWN(size, 1 << PAGE_SHIFT_16M); DBG("%s:%d requested %lxh\n", __func__, __LINE__, size); DBG("%s:%d actual %llxh\n", __func__, __LINE__, r->size); DBG("%s:%d difference %llxh (%lluMB)\n", __func__, __LINE__, size - r->size, (size - r->size) / 1024 / 1024); if (r->size == 0) { DBG("%s:%d: size == 0\n", __func__, __LINE__); result = -1; goto zero_region; } result = lv1_allocate_memory(r->size, PAGE_SHIFT_16M, 0, ALLOCATE_MEMORY_TRY_ALT_UNIT, &r->base, &muid); if (result || r->base < map.rm.size) { DBG("%s:%d: lv1_allocate_memory failed: %s\n", __func__, __LINE__, ps3_result(result)); goto zero_region; } r->destroy = 1; r->offset = r->base - map.rm.size; return result; zero_region: r->size = r->base = r->offset = 0; return result; } /** * ps3_mm_region_destroy - destroy a memory region * @r: pointer to struct mem_region */ static void ps3_mm_region_destroy(struct mem_region *r) { int result; if (!r->destroy) { return; } if (r->base) { result = lv1_release_memory(r->base); if (result) { lv1_panic(0); } r->size = r->base = r->offset = 0; map.total = map.rm.size; } ps3_mm_set_repository_highmem(NULL); } /*============================================================================*/ /* dma routines */ /*============================================================================*/ /** * dma_sb_lpar_to_bus - Translate an lpar address to ioc mapped bus address. * @r: pointer to dma region structure * @lpar_addr: HV lpar address */ static unsigned long dma_sb_lpar_to_bus(struct ps3_dma_region *r, unsigned long lpar_addr) { if (lpar_addr >= map.rm.size) lpar_addr -= map.r1.offset; BUG_ON(lpar_addr < r->offset); BUG_ON(lpar_addr >= r->offset + r->len); return r->bus_addr + lpar_addr - r->offset; } #define dma_dump_region(_a) _dma_dump_region(_a, __func__, __LINE__) static void __maybe_unused _dma_dump_region(const struct ps3_dma_region *r, const char *func, int line) { DBG("%s:%d: dev %llu:%llu\n", func, line, r->dev->bus_id, r->dev->dev_id); DBG("%s:%d: page_size %u\n", func, line, r->page_size); DBG("%s:%d: bus_addr %lxh\n", func, line, r->bus_addr); DBG("%s:%d: len %lxh\n", func, line, r->len); DBG("%s:%d: offset %lxh\n", func, line, r->offset); } /** * dma_chunk - A chunk of dma pages mapped by the io controller. * @region - The dma region that owns this chunk. * @lpar_addr: Starting lpar address of the area to map. * @bus_addr: Starting ioc bus address of the area to map. * @len: Length in bytes of the area to map. * @link: A struct list_head used with struct ps3_dma_region.chunk_list, the * list of all chunks owned by the region. * * This implementation uses a very simple dma page manager * based on the dma_chunk structure. This scheme assumes * that all drivers use very well behaved dma ops. */ struct dma_chunk { struct ps3_dma_region *region; unsigned long lpar_addr; unsigned long bus_addr; unsigned long len; struct list_head link; unsigned int usage_count; }; #define dma_dump_chunk(_a) _dma_dump_chunk(_a, __func__, __LINE__) static void _dma_dump_chunk (const struct dma_chunk* c, const char* func, int line) { DBG("%s:%d: r.dev %llu:%llu\n", func, line, c->region->dev->bus_id, c->region->dev->dev_id); DBG("%s:%d: r.bus_addr %lxh\n", func, line, c->region->bus_addr); DBG("%s:%d: r.page_size %u\n", func, line, c->region->page_size); DBG("%s:%d: r.len %lxh\n", func, line, c->region->len); DBG("%s:%d: r.offset %lxh\n", func, line, c->region->offset); DBG("%s:%d: c.lpar_addr %lxh\n", func, line, c->lpar_addr); DBG("%s:%d: c.bus_addr %lxh\n", func, line, c->bus_addr); DBG("%s:%d: c.len %lxh\n", func, line, c->len); } static struct dma_chunk * dma_find_chunk(struct ps3_dma_region *r, unsigned long bus_addr, unsigned long len) { struct dma_chunk *c; unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len+bus_addr-aligned_bus, 1 << r->page_size); list_for_each_entry(c, &r->chunk_list.head, link) { /* intersection */ if (aligned_bus >= c->bus_addr && aligned_bus + aligned_len <= c->bus_addr + c->len) return c; /* below */ if (aligned_bus + aligned_len <= c->bus_addr) continue; /* above */ if (aligned_bus >= c->bus_addr + c->len) continue; /* we don't handle the multi-chunk case for now */ dma_dump_chunk(c); BUG(); } return NULL; } static struct dma_chunk *dma_find_chunk_lpar(struct ps3_dma_region *r, unsigned long lpar_addr, unsigned long len) { struct dma_chunk *c; unsigned long aligned_lpar = ALIGN_DOWN(lpar_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len + lpar_addr - aligned_lpar, 1 << r->page_size); list_for_each_entry(c, &r->chunk_list.head, link) { /* intersection */ if (c->lpar_addr <= aligned_lpar && aligned_lpar < c->lpar_addr + c->len) { if (aligned_lpar + aligned_len <= c->lpar_addr + c->len) return c; else { dma_dump_chunk(c); BUG(); } } /* below */ if (aligned_lpar + aligned_len <= c->lpar_addr) { continue; } /* above */ if (c->lpar_addr + c->len <= aligned_lpar) { continue; } } return NULL; } static int dma_sb_free_chunk(struct dma_chunk *c) { int result = 0; if (c->bus_addr) { result = lv1_unmap_device_dma_region(c->region->dev->bus_id, c->region->dev->dev_id, c->bus_addr, c->len); BUG_ON(result); } kfree(c); return result; } static int dma_ioc0_free_chunk(struct dma_chunk *c) { int result = 0; int iopage; unsigned long offset; struct ps3_dma_region *r = c->region; DBG("%s:start\n", __func__); for (iopage = 0; iopage < (c->len >> r->page_size); iopage++) { offset = (1 << r->page_size) * iopage; /* put INVALID entry */ result = lv1_put_iopte(0, c->bus_addr + offset, c->lpar_addr + offset, r->ioid, 0); DBG("%s: bus=%#lx, lpar=%#lx, ioid=%d\n", __func__, c->bus_addr + offset, c->lpar_addr + offset, r->ioid); if (result) { DBG("%s:%d: lv1_put_iopte failed: %s\n", __func__, __LINE__, ps3_result(result)); } } kfree(c); DBG("%s:end\n", __func__); return result; } /** * dma_sb_map_pages - Maps dma pages into the io controller bus address space. * @r: Pointer to a struct ps3_dma_region. * @phys_addr: Starting physical address of the area to map. * @len: Length in bytes of the area to map. * c_out: A pointer to receive an allocated struct dma_chunk for this area. * * This is the lowest level dma mapping routine, and is the one that will * make the HV call to add the pages into the io controller address space. */ static int dma_sb_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) { int result; struct dma_chunk *c; c = kzalloc(sizeof(*c), GFP_ATOMIC); if (!c) { result = -ENOMEM; goto fail_alloc; } c->region = r; c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); c->bus_addr = dma_sb_lpar_to_bus(r, c->lpar_addr); c->len = len; BUG_ON(iopte_flag != 0xf800000000000000UL); result = lv1_map_device_dma_region(c->region->dev->bus_id, c->region->dev->dev_id, c->lpar_addr, c->bus_addr, c->len, iopte_flag); if (result) { DBG("%s:%d: lv1_map_device_dma_region failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail_map; } list_add(&c->link, &r->chunk_list.head); *c_out = c; return 0; fail_map: kfree(c); fail_alloc: *c_out = NULL; DBG(" <- %s:%d\n", __func__, __LINE__); return result; } static int dma_ioc0_map_pages(struct ps3_dma_region *r, unsigned long phys_addr, unsigned long len, struct dma_chunk **c_out, u64 iopte_flag) { int result; struct dma_chunk *c, *last; int iopage, pages; unsigned long offset; DBG(KERN_ERR "%s: phy=%#lx, lpar%#lx, len=%#lx\n", __func__, phys_addr, ps3_mm_phys_to_lpar(phys_addr), len); c = kzalloc(sizeof(*c), GFP_ATOMIC); if (!c) { result = -ENOMEM; goto fail_alloc; } c->region = r; c->len = len; c->lpar_addr = ps3_mm_phys_to_lpar(phys_addr); /* allocate IO address */ if (list_empty(&r->chunk_list.head)) { /* first one */ c->bus_addr = r->bus_addr; } else { /* derive from last bus addr*/ last = list_entry(r->chunk_list.head.next, struct dma_chunk, link); c->bus_addr = last->bus_addr + last->len; DBG("%s: last bus=%#lx, len=%#lx\n", __func__, last->bus_addr, last->len); } /* FIXME: check whether length exceeds region size */ /* build ioptes for the area */ pages = len >> r->page_size; DBG("%s: pgsize=%#x len=%#lx pages=%#x iopteflag=%#llx\n", __func__, r->page_size, r->len, pages, iopte_flag); for (iopage = 0; iopage < pages; iopage++) { offset = (1 << r->page_size) * iopage; result = lv1_put_iopte(0, c->bus_addr + offset, c->lpar_addr + offset, r->ioid, iopte_flag); if (result) { pr_warn("%s:%d: lv1_put_iopte failed: %s\n", __func__, __LINE__, ps3_result(result)); goto fail_map; } DBG("%s: pg=%d bus=%#lx, lpar=%#lx, ioid=%#x\n", __func__, iopage, c->bus_addr + offset, c->lpar_addr + offset, r->ioid); } /* be sure that last allocated one is inserted at head */ list_add(&c->link, &r->chunk_list.head); *c_out = c; DBG("%s: end\n", __func__); return 0; fail_map: for (iopage--; 0 <= iopage; iopage--) { lv1_put_iopte(0, c->bus_addr + offset, c->lpar_addr + offset, r->ioid, 0); } kfree(c); fail_alloc: *c_out = NULL; return result; } /** * dma_sb_region_create - Create a device dma region. * @r: Pointer to a struct ps3_dma_region. * * This is the lowest level dma region create routine, and is the one that * will make the HV call to create the region. */ static int dma_sb_region_create(struct ps3_dma_region *r) { int result; u64 bus_addr; DBG(" -> %s:%d:\n", __func__, __LINE__); BUG_ON(!r); if (!r->dev->bus_id) { pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, r->dev->bus_id, r->dev->dev_id); return 0; } DBG("%s:%u: len = 0x%lx, page_size = %u, offset = 0x%lx\n", __func__, __LINE__, r->len, r->page_size, r->offset); BUG_ON(!r->len); BUG_ON(!r->page_size); BUG_ON(!r->region_ops); INIT_LIST_HEAD(&r->chunk_list.head); spin_lock_init(&r->chunk_list.lock); result = lv1_allocate_device_dma_region(r->dev->bus_id, r->dev->dev_id, roundup_pow_of_two(r->len), r->page_size, r->region_type, &bus_addr); r->bus_addr = bus_addr; if (result) { DBG("%s:%d: lv1_allocate_device_dma_region failed: %s\n", __func__, __LINE__, ps3_result(result)); r->len = r->bus_addr = 0; } return result; } static int dma_ioc0_region_create(struct ps3_dma_region *r) { int result; u64 bus_addr; INIT_LIST_HEAD(&r->chunk_list.head); spin_lock_init(&r->chunk_list.lock); result = lv1_allocate_io_segment(0, r->len, r->page_size, &bus_addr); r->bus_addr = bus_addr; if (result) { DBG("%s:%d: lv1_allocate_io_segment failed: %s\n", __func__, __LINE__, ps3_result(result)); r->len = r->bus_addr = 0; } DBG("%s: len=%#lx, pg=%d, bus=%#lx\n", __func__, r->len, r->page_size, r->bus_addr); return result; } /** * dma_region_free - Free a device dma region. * @r: Pointer to a struct ps3_dma_region. * * This is the lowest level dma region free routine, and is the one that * will make the HV call to free the region. */ static int dma_sb_region_free(struct ps3_dma_region *r) { int result; struct dma_chunk *c; struct dma_chunk *tmp; BUG_ON(!r); if (!r->dev->bus_id) { pr_info("%s:%d: %llu:%llu no dma\n", __func__, __LINE__, r->dev->bus_id, r->dev->dev_id); return 0; } list_for_each_entry_safe(c, tmp, &r->chunk_list.head, link) { list_del(&c->link); dma_sb_free_chunk(c); } result = lv1_free_device_dma_region(r->dev->bus_id, r->dev->dev_id, r->bus_addr); if (result) DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", __func__, __LINE__, ps3_result(result)); r->bus_addr = 0; return result; } static int dma_ioc0_region_free(struct ps3_dma_region *r) { int result; struct dma_chunk *c, *n; DBG("%s: start\n", __func__); list_for_each_entry_safe(c, n, &r->chunk_list.head, link) { list_del(&c->link); dma_ioc0_free_chunk(c); } result = lv1_release_io_segment(0, r->bus_addr); if (result) DBG("%s:%d: lv1_free_device_dma_region failed: %s\n", __func__, __LINE__, ps3_result(result)); r->bus_addr = 0; DBG("%s: end\n", __func__); return result; } /** * dma_sb_map_area - Map an area of memory into a device dma region. * @r: Pointer to a struct ps3_dma_region. * @virt_addr: Starting virtual address of the area to map. * @len: Length in bytes of the area to map. * @bus_addr: A pointer to return the starting ioc bus address of the area to * map. * * This is the common dma mapping routine. */ static int dma_sb_map_area(struct ps3_dma_region *r, unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, u64 iopte_flag) { int result; unsigned long flags; struct dma_chunk *c; unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) : virt_addr; unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys, 1 << r->page_size); *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); if (!USE_DYNAMIC_DMA) { unsigned long lpar_addr = ps3_mm_phys_to_lpar(phys_addr); DBG(" -> %s:%d\n", __func__, __LINE__); DBG("%s:%d virt_addr %lxh\n", __func__, __LINE__, virt_addr); DBG("%s:%d phys_addr %lxh\n", __func__, __LINE__, phys_addr); DBG("%s:%d lpar_addr %lxh\n", __func__, __LINE__, lpar_addr); DBG("%s:%d len %lxh\n", __func__, __LINE__, len); DBG("%s:%d bus_addr %llxh (%lxh)\n", __func__, __LINE__, *bus_addr, len); } spin_lock_irqsave(&r->chunk_list.lock, flags); c = dma_find_chunk(r, *bus_addr, len); if (c) { DBG("%s:%d: reusing mapped chunk", __func__, __LINE__); dma_dump_chunk(c); c->usage_count++; spin_unlock_irqrestore(&r->chunk_list.lock, flags); return 0; } result = dma_sb_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); if (result) { *bus_addr = 0; DBG("%s:%d: dma_sb_map_pages failed (%d)\n", __func__, __LINE__, result); spin_unlock_irqrestore(&r->chunk_list.lock, flags); return result; } c->usage_count = 1; spin_unlock_irqrestore(&r->chunk_list.lock, flags); return result; } static int dma_ioc0_map_area(struct ps3_dma_region *r, unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, u64 iopte_flag) { int result; unsigned long flags; struct dma_chunk *c; unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) : virt_addr; unsigned long aligned_phys = ALIGN_DOWN(phys_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len + phys_addr - aligned_phys, 1 << r->page_size); DBG(KERN_ERR "%s: vaddr=%#lx, len=%#lx\n", __func__, virt_addr, len); DBG(KERN_ERR "%s: ph=%#lx a_ph=%#lx a_l=%#lx\n", __func__, phys_addr, aligned_phys, aligned_len); spin_lock_irqsave(&r->chunk_list.lock, flags); c = dma_find_chunk_lpar(r, ps3_mm_phys_to_lpar(phys_addr), len); if (c) { /* FIXME */ BUG(); *bus_addr = c->bus_addr + phys_addr - aligned_phys; c->usage_count++; spin_unlock_irqrestore(&r->chunk_list.lock, flags); return 0; } result = dma_ioc0_map_pages(r, aligned_phys, aligned_len, &c, iopte_flag); if (result) { *bus_addr = 0; DBG("%s:%d: dma_ioc0_map_pages failed (%d)\n", __func__, __LINE__, result); spin_unlock_irqrestore(&r->chunk_list.lock, flags); return result; } *bus_addr = c->bus_addr + phys_addr - aligned_phys; DBG("%s: va=%#lx pa=%#lx a_pa=%#lx bus=%#llx\n", __func__, virt_addr, phys_addr, aligned_phys, *bus_addr); c->usage_count = 1; spin_unlock_irqrestore(&r->chunk_list.lock, flags); return result; } /** * dma_sb_unmap_area - Unmap an area of memory from a device dma region. * @r: Pointer to a struct ps3_dma_region. * @bus_addr: The starting ioc bus address of the area to unmap. * @len: Length in bytes of the area to unmap. * * This is the common dma unmap routine. */ static int dma_sb_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr, unsigned long len) { unsigned long flags; struct dma_chunk *c; spin_lock_irqsave(&r->chunk_list.lock, flags); c = dma_find_chunk(r, bus_addr, len); if (!c) { unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len + bus_addr - aligned_bus, 1 << r->page_size); DBG("%s:%d: not found: bus_addr %llxh\n", __func__, __LINE__, bus_addr); DBG("%s:%d: not found: len %lxh\n", __func__, __LINE__, len); DBG("%s:%d: not found: aligned_bus %lxh\n", __func__, __LINE__, aligned_bus); DBG("%s:%d: not found: aligned_len %lxh\n", __func__, __LINE__, aligned_len); BUG(); } c->usage_count--; if (!c->usage_count) { list_del(&c->link); dma_sb_free_chunk(c); } spin_unlock_irqrestore(&r->chunk_list.lock, flags); return 0; } static int dma_ioc0_unmap_area(struct ps3_dma_region *r, dma_addr_t bus_addr, unsigned long len) { unsigned long flags; struct dma_chunk *c; DBG("%s: start a=%#llx l=%#lx\n", __func__, bus_addr, len); spin_lock_irqsave(&r->chunk_list.lock, flags); c = dma_find_chunk(r, bus_addr, len); if (!c) { unsigned long aligned_bus = ALIGN_DOWN(bus_addr, 1 << r->page_size); unsigned long aligned_len = ALIGN(len + bus_addr - aligned_bus, 1 << r->page_size); DBG("%s:%d: not found: bus_addr %llxh\n", __func__, __LINE__, bus_addr); DBG("%s:%d: not found: len %lxh\n", __func__, __LINE__, len); DBG("%s:%d: not found: aligned_bus %lxh\n", __func__, __LINE__, aligned_bus); DBG("%s:%d: not found: aligned_len %lxh\n", __func__, __LINE__, aligned_len); BUG(); } c->usage_count--; if (!c->usage_count) { list_del(&c->link); dma_ioc0_free_chunk(c); } spin_unlock_irqrestore(&r->chunk_list.lock, flags); DBG("%s: end\n", __func__); return 0; } /** * dma_sb_region_create_linear - Setup a linear dma mapping for a device. * @r: Pointer to a struct ps3_dma_region. * * This routine creates an HV dma region for the device and maps all available * ram into the io controller bus address space. */ static int dma_sb_region_create_linear(struct ps3_dma_region *r) { int result; unsigned long virt_addr, len; dma_addr_t tmp; if (r->len > 16*1024*1024) { /* FIXME: need proper fix */ /* force 16M dma pages for linear mapping */ if (r->page_size != PS3_DMA_16M) { pr_info("%s:%d: forcing 16M pages for linear map\n", __func__, __LINE__); r->page_size = PS3_DMA_16M; r->len = ALIGN(r->len, 1 << r->page_size); } } result = dma_sb_region_create(r); BUG_ON(result); if (r->offset < map.rm.size) { /* Map (part of) 1st RAM chunk */ virt_addr = map.rm.base + r->offset; len = map.rm.size - r->offset; if (len > r->len) len = r->len; result = dma_sb_map_area(r, virt_addr, len, &tmp, CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | CBE_IOPTE_M); BUG_ON(result); } if (r->offset + r->len > map.rm.size) { /* Map (part of) 2nd RAM chunk */ virt_addr = map.rm.size; len = r->len; if (r->offset >= map.rm.size) virt_addr += r->offset - map.rm.size; else len -= map.rm.size - r->offset; result = dma_sb_map_area(r, virt_addr, len, &tmp, CBE_IOPTE_PP_W | CBE_IOPTE_PP_R | CBE_IOPTE_SO_RW | CBE_IOPTE_M); BUG_ON(result); } return result; } /** * dma_sb_region_free_linear - Free a linear dma mapping for a device. * @r: Pointer to a struct ps3_dma_region. * * This routine will unmap all mapped areas and free the HV dma region. */ static int dma_sb_region_free_linear(struct ps3_dma_region *r) { int result; dma_addr_t bus_addr; unsigned long len, lpar_addr; if (r->offset < map.rm.size) { /* Unmap (part of) 1st RAM chunk */ lpar_addr = map.rm.base + r->offset; len = map.rm.size - r->offset; if (len > r->len) len = r->len; bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); result = dma_sb_unmap_area(r, bus_addr, len); BUG_ON(result); } if (r->offset + r->len > map.rm.size) { /* Unmap (part of) 2nd RAM chunk */ lpar_addr = map.r1.base; len = r->len; if (r->offset >= map.rm.size) lpar_addr += r->offset - map.rm.size; else len -= map.rm.size - r->offset; bus_addr = dma_sb_lpar_to_bus(r, lpar_addr); result = dma_sb_unmap_area(r, bus_addr, len); BUG_ON(result); } result = dma_sb_region_free(r); BUG_ON(result); return result; } /** * dma_sb_map_area_linear - Map an area of memory into a device dma region. * @r: Pointer to a struct ps3_dma_region. * @virt_addr: Starting virtual address of the area to map. * @len: Length in bytes of the area to map. * @bus_addr: A pointer to return the starting ioc bus address of the area to * map. * * This routine just returns the corresponding bus address. Actual mapping * occurs in dma_region_create_linear(). */ static int dma_sb_map_area_linear(struct ps3_dma_region *r, unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, u64 iopte_flag) { unsigned long phys_addr = is_kernel_addr(virt_addr) ? __pa(virt_addr) : virt_addr; *bus_addr = dma_sb_lpar_to_bus(r, ps3_mm_phys_to_lpar(phys_addr)); return 0; } /** * dma_unmap_area_linear - Unmap an area of memory from a device dma region. * @r: Pointer to a struct ps3_dma_region. * @bus_addr: The starting ioc bus address of the area to unmap. * @len: Length in bytes of the area to unmap. * * This routine does nothing. Unmapping occurs in dma_sb_region_free_linear(). */ static int dma_sb_unmap_area_linear(struct ps3_dma_region *r, dma_addr_t bus_addr, unsigned long len) { return 0; }; static const struct ps3_dma_region_ops ps3_dma_sb_region_ops = { .create = dma_sb_region_create, .free = dma_sb_region_free, .map = dma_sb_map_area, .unmap = dma_sb_unmap_area }; static const struct ps3_dma_region_ops ps3_dma_sb_region_linear_ops = { .create = dma_sb_region_create_linear, .free = dma_sb_region_free_linear, .map = dma_sb_map_area_linear, .unmap = dma_sb_unmap_area_linear }; static const struct ps3_dma_region_ops ps3_dma_ioc0_region_ops = { .create = dma_ioc0_region_create, .free = dma_ioc0_region_free, .map = dma_ioc0_map_area, .unmap = dma_ioc0_unmap_area }; int ps3_dma_region_init(struct ps3_system_bus_device *dev, struct ps3_dma_region *r, enum ps3_dma_page_size page_size, enum ps3_dma_region_type region_type, void *addr, unsigned long len) { unsigned long lpar_addr; int result; lpar_addr = addr ? ps3_mm_phys_to_lpar(__pa(addr)) : 0; r->dev = dev; r->page_size = page_size; r->region_type = region_type; r->offset = lpar_addr; if (r->offset >= map.rm.size) r->offset -= map.r1.offset; r->len = len ? len : ALIGN(map.total, 1 << r->page_size); dev->core.dma_mask = &r->dma_mask; result = dma_set_mask_and_coherent(&dev->core, DMA_BIT_MASK(32)); if (result < 0) { dev_err(&dev->core, "%s:%d: dma_set_mask_and_coherent failed: %d\n", __func__, __LINE__, result); return result; } switch (dev->dev_type) { case PS3_DEVICE_TYPE_SB: r->region_ops = (USE_DYNAMIC_DMA) ? &ps3_dma_sb_region_ops : &ps3_dma_sb_region_linear_ops; break; case PS3_DEVICE_TYPE_IOC0: r->region_ops = &ps3_dma_ioc0_region_ops; break; default: BUG(); return -EINVAL; } return 0; } EXPORT_SYMBOL(ps3_dma_region_init); int ps3_dma_region_create(struct ps3_dma_region *r) { BUG_ON(!r); BUG_ON(!r->region_ops); BUG_ON(!r->region_ops->create); return r->region_ops->create(r); } EXPORT_SYMBOL(ps3_dma_region_create); int ps3_dma_region_free(struct ps3_dma_region *r) { BUG_ON(!r); BUG_ON(!r->region_ops); BUG_ON(!r->region_ops->free); return r->region_ops->free(r); } EXPORT_SYMBOL(ps3_dma_region_free); int ps3_dma_map(struct ps3_dma_region *r, unsigned long virt_addr, unsigned long len, dma_addr_t *bus_addr, u64 iopte_flag) { return r->region_ops->map(r, virt_addr, len, bus_addr, iopte_flag); } int ps3_dma_unmap(struct ps3_dma_region *r, dma_addr_t bus_addr, unsigned long len) { return r->region_ops->unmap(r, bus_addr, len); } /*============================================================================*/ /* system startup routines */ /*============================================================================*/ /** * ps3_mm_init - initialize the address space state variables */ void __init ps3_mm_init(void) { int result; DBG(" -> %s:%d\n", __func__, __LINE__); result = ps3_repository_read_mm_info(&map.rm.base, &map.rm.size, &map.total); if (result) panic("ps3_repository_read_mm_info() failed"); map.rm.offset = map.rm.base; map.vas_id = map.htab_size = 0; /* this implementation assumes map.rm.base is zero */ BUG_ON(map.rm.base); BUG_ON(!map.rm.size); /* Check if we got the highmem region from an earlier boot step */ if (ps3_mm_get_repository_highmem(&map.r1)) { result = ps3_mm_region_create(&map.r1, map.total - map.rm.size); if (!result) ps3_mm_set_repository_highmem(&map.r1); } /* correct map.total for the real total amount of memory we use */ map.total = map.rm.size + map.r1.size; if (!map.r1.size) { DBG("%s:%d: No highmem region found\n", __func__, __LINE__); } else { DBG("%s:%d: Adding highmem region: %llxh %llxh\n", __func__, __LINE__, map.rm.size, map.total - map.rm.size); memblock_add(map.rm.size, map.total - map.rm.size); } DBG(" <- %s:%d\n", __func__, __LINE__); } /** * ps3_mm_shutdown - final cleanup of address space * * called during kexec sequence with MMU off. */ notrace void ps3_mm_shutdown(void) { ps3_mm_region_destroy(&map.r1); }