// SPDX-License-Identifier: GPL-2.0 /* * Hyper-V HvFlushVirtualAddress{List,Space}{,Ex} tests * * Copyright (C) 2022, Red Hat, Inc. * */ #define _GNU_SOURCE /* for program_invocation_short_name */ #include <asm/barrier.h> #include <pthread.h> #include <inttypes.h> #include "kvm_util.h" #include "processor.h" #include "hyperv.h" #include "test_util.h" #include "vmx.h" #define WORKER_VCPU_ID_1 2 #define WORKER_VCPU_ID_2 65 #define NTRY 100 #define NTEST_PAGES 2 struct hv_vpset { u64 format; u64 valid_bank_mask; u64 bank_contents[]; }; enum HV_GENERIC_SET_FORMAT { HV_GENERIC_SET_SPARSE_4K, HV_GENERIC_SET_ALL, }; #define HV_FLUSH_ALL_PROCESSORS BIT(0) #define HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES BIT(1) #define HV_FLUSH_NON_GLOBAL_MAPPINGS_ONLY BIT(2) #define HV_FLUSH_USE_EXTENDED_RANGE_FORMAT BIT(3) /* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */ struct hv_tlb_flush { u64 address_space; u64 flags; u64 processor_mask; u64 gva_list[]; } __packed; /* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */ struct hv_tlb_flush_ex { u64 address_space; u64 flags; struct hv_vpset hv_vp_set; u64 gva_list[]; } __packed; /* * Pass the following info to 'workers' and 'sender' * - Hypercall page's GVA * - Hypercall page's GPA * - Test pages GVA * - GVAs of the test pages' PTEs */ struct test_data { vm_vaddr_t hcall_gva; vm_paddr_t hcall_gpa; vm_vaddr_t test_pages; vm_vaddr_t test_pages_pte[NTEST_PAGES]; }; /* 'Worker' vCPU code checking the contents of the test page */ static void worker_guest_code(vm_vaddr_t test_data) { struct test_data *data = (struct test_data *)test_data; u32 vcpu_id = rdmsr(HV_X64_MSR_VP_INDEX); void *exp_page = (void *)data->test_pages + PAGE_SIZE * NTEST_PAGES; u64 *this_cpu = (u64 *)(exp_page + vcpu_id * sizeof(u64)); u64 expected, val; x2apic_enable(); wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID); for (;;) { cpu_relax(); expected = READ_ONCE(*this_cpu); /* * Make sure the value in the test page is read after reading * the expectation for the first time. Pairs with wmb() in * prepare_to_test(). */ rmb(); val = READ_ONCE(*(u64 *)data->test_pages); /* * Make sure the value in the test page is read after before * reading the expectation for the second time. Pairs with wmb() * post_test(). */ rmb(); /* * '0' indicates the sender is between iterations, wait until * the sender is ready for this vCPU to start checking again. */ if (!expected) continue; /* * Re-read the per-vCPU byte to ensure the sender didn't move * onto a new iteration. */ if (expected != READ_ONCE(*this_cpu)) continue; GUEST_ASSERT(val == expected); } } /* * Write per-CPU info indicating what each 'worker' CPU is supposed to see in * test page. '0' means don't check. */ static void set_expected_val(void *addr, u64 val, int vcpu_id) { void *exp_page = addr + PAGE_SIZE * NTEST_PAGES; *(u64 *)(exp_page + vcpu_id * sizeof(u64)) = val; } /* * Update PTEs swapping two test pages. * TODO: use swap()/xchg() when these are provided. */ static void swap_two_test_pages(vm_paddr_t pte_gva1, vm_paddr_t pte_gva2) { uint64_t tmp = *(uint64_t *)pte_gva1; *(uint64_t *)pte_gva1 = *(uint64_t *)pte_gva2; *(uint64_t *)pte_gva2 = tmp; } /* * TODO: replace the silly NOP loop with a proper udelay() implementation. */ static inline void do_delay(void) { int i; for (i = 0; i < 1000000; i++) asm volatile("nop"); } /* * Prepare to test: 'disable' workers by setting the expectation to '0', * clear hypercall input page and then swap two test pages. */ static inline void prepare_to_test(struct test_data *data) { /* Clear hypercall input page */ memset((void *)data->hcall_gva, 0, PAGE_SIZE); /* 'Disable' workers */ set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_1); set_expected_val((void *)data->test_pages, 0x0, WORKER_VCPU_ID_2); /* Make sure workers are 'disabled' before we swap PTEs. */ wmb(); /* Make sure workers have enough time to notice */ do_delay(); /* Swap test page mappings */ swap_two_test_pages(data->test_pages_pte[0], data->test_pages_pte[1]); } /* * Finalize the test: check hypercall resule set the expected val for * 'worker' CPUs and give them some time to test. */ static inline void post_test(struct test_data *data, u64 exp1, u64 exp2) { /* Make sure we change the expectation after swapping PTEs */ wmb(); /* Set the expectation for workers, '0' means don't test */ set_expected_val((void *)data->test_pages, exp1, WORKER_VCPU_ID_1); set_expected_val((void *)data->test_pages, exp2, WORKER_VCPU_ID_2); /* Make sure workers have enough time to test */ do_delay(); } #define TESTVAL1 0x0101010101010101 #define TESTVAL2 0x0202020202020202 /* Main vCPU doing the test */ static void sender_guest_code(vm_vaddr_t test_data) { struct test_data *data = (struct test_data *)test_data; struct hv_tlb_flush *flush = (struct hv_tlb_flush *)data->hcall_gva; struct hv_tlb_flush_ex *flush_ex = (struct hv_tlb_flush_ex *)data->hcall_gva; vm_paddr_t hcall_gpa = data->hcall_gpa; int i, stage = 1; wrmsr(HV_X64_MSR_GUEST_OS_ID, HYPERV_LINUX_OS_ID); wrmsr(HV_X64_MSR_HYPERCALL, data->hcall_gpa); /* "Slow" hypercalls */ GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush->processor_mask = BIT(WORKER_VCPU_ID_1); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush->processor_mask = BIT(WORKER_VCPU_ID_1); flush->gva_list[0] = (u64)data->test_pages; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | HV_FLUSH_ALL_PROCESSORS; flush->processor_mask = 0; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE, hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | HV_FLUSH_ALL_PROCESSORS; flush->gva_list[0] = (u64)data->test_pages; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | (1 << HV_HYPERCALL_VARHEAD_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); /* bank_contents and gva_list occupy the same space, thus [1] */ flush_ex->gva_list[1] = (u64)data->test_pages; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | (1 << HV_HYPERCALL_VARHEAD_OFFSET) | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) | BIT_ULL(WORKER_VCPU_ID_1 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | (2 << HV_HYPERCALL_VARHEAD_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) | BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); /* bank_contents and gva_list occupy the same space, thus [2] */ flush_ex->gva_list[2] = (u64)data->test_pages; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | (2 << HV_HYPERCALL_VARHEAD_OFFSET) | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX, hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; flush_ex->gva_list[0] = (u64)data->test_pages; hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), hcall_gpa, hcall_gpa + PAGE_SIZE); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } /* "Fast" hypercalls */ GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for WORKER_VCPU_ID_1 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->processor_mask = BIT(WORKER_VCPU_ID_1); hyperv_write_xmm_input(&flush->processor_mask, 1); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE | HV_HYPERCALL_FAST_BIT, 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for WORKER_VCPU_ID_1 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->processor_mask = BIT(WORKER_VCPU_ID_1); flush->gva_list[0] = (u64)data->test_pages; hyperv_write_xmm_input(&flush->processor_mask, 1); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | HV_HYPERCALL_FAST_BIT | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, 0x0); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE for HV_FLUSH_ALL_PROCESSORS */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); hyperv_write_xmm_input(&flush->processor_mask, 1); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE | HV_HYPERCALL_FAST_BIT, 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | HV_FLUSH_ALL_PROCESSORS); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST for HV_FLUSH_ALL_PROCESSORS */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush->gva_list[0] = (u64)data->test_pages; hyperv_write_xmm_input(&flush->processor_mask, 1); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST | HV_HYPERCALL_FAST_BIT | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES | HV_FLUSH_ALL_PROCESSORS); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for WORKER_VCPU_ID_2 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | HV_HYPERCALL_FAST_BIT | (1 << HV_HYPERCALL_VARHEAD_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for WORKER_VCPU_ID_2 */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_2 % 64); /* bank_contents and gva_list occupy the same space, thus [1] */ flush_ex->gva_list[1] = (u64)data->test_pages; hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | HV_HYPERCALL_FAST_BIT | (1 << HV_HYPERCALL_VARHEAD_OFFSET) | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, 0x0, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for both vCPUs */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_2 / 64) | BIT_ULL(WORKER_VCPU_ID_1 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | HV_HYPERCALL_FAST_BIT | (2 << HV_HYPERCALL_VARHEAD_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for both vCPUs */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->hv_vp_set.format = HV_GENERIC_SET_SPARSE_4K; flush_ex->hv_vp_set.valid_bank_mask = BIT_ULL(WORKER_VCPU_ID_1 / 64) | BIT_ULL(WORKER_VCPU_ID_2 / 64); flush_ex->hv_vp_set.bank_contents[0] = BIT_ULL(WORKER_VCPU_ID_1 % 64); flush_ex->hv_vp_set.bank_contents[1] = BIT_ULL(WORKER_VCPU_ID_2 % 64); /* bank_contents and gva_list occupy the same space, thus [2] */ flush_ex->gva_list[2] = (u64)data->test_pages; hyperv_write_xmm_input(&flush_ex->hv_vp_set, 3); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | HV_HYPERCALL_FAST_BIT | (2 << HV_HYPERCALL_VARHEAD_OFFSET) | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX for HV_GENERIC_SET_ALL */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX | HV_HYPERCALL_FAST_BIT, 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_SYNC(stage++); /* HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX for HV_GENERIC_SET_ALL */ for (i = 0; i < NTRY; i++) { prepare_to_test(data); flush_ex->flags = HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES; flush_ex->hv_vp_set.format = HV_GENERIC_SET_ALL; flush_ex->gva_list[0] = (u64)data->test_pages; hyperv_write_xmm_input(&flush_ex->hv_vp_set, 2); hyperv_hypercall(HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX | HV_HYPERCALL_FAST_BIT | (1UL << HV_HYPERCALL_REP_COMP_OFFSET), 0x0, HV_FLUSH_ALL_VIRTUAL_ADDRESS_SPACES); post_test(data, i % 2 ? TESTVAL1 : TESTVAL2, i % 2 ? TESTVAL1 : TESTVAL2); } GUEST_DONE(); } static void *vcpu_thread(void *arg) { struct kvm_vcpu *vcpu = (struct kvm_vcpu *)arg; struct ucall uc; int old; int r; r = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old); TEST_ASSERT(!r, "pthread_setcanceltype failed on vcpu_id=%u with errno=%d", vcpu->id, r); vcpu_run(vcpu); TEST_ASSERT_KVM_EXIT_REASON(vcpu, KVM_EXIT_IO); switch (get_ucall(vcpu, &uc)) { case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); /* NOT REACHED */ default: TEST_FAIL("Unexpected ucall %lu, vCPU %d", uc.cmd, vcpu->id); } return NULL; } static void cancel_join_vcpu_thread(pthread_t thread, struct kvm_vcpu *vcpu) { void *retval; int r; r = pthread_cancel(thread); TEST_ASSERT(!r, "pthread_cancel on vcpu_id=%d failed with errno=%d", vcpu->id, r); r = pthread_join(thread, &retval); TEST_ASSERT(!r, "pthread_join on vcpu_id=%d failed with errno=%d", vcpu->id, r); TEST_ASSERT(retval == PTHREAD_CANCELED, "expected retval=%p, got %p", PTHREAD_CANCELED, retval); } int main(int argc, char *argv[]) { struct kvm_vm *vm; struct kvm_vcpu *vcpu[3]; pthread_t threads[2]; vm_vaddr_t test_data_page, gva; vm_paddr_t gpa; uint64_t *pte; struct test_data *data; struct ucall uc; int stage = 1, r, i; vm = vm_create_with_one_vcpu(&vcpu[0], sender_guest_code); /* Test data page */ test_data_page = vm_vaddr_alloc_page(vm); data = (struct test_data *)addr_gva2hva(vm, test_data_page); /* Hypercall input/output */ data->hcall_gva = vm_vaddr_alloc_pages(vm, 2); data->hcall_gpa = addr_gva2gpa(vm, data->hcall_gva); memset(addr_gva2hva(vm, data->hcall_gva), 0x0, 2 * PAGE_SIZE); /* * Test pages: the first one is filled with '0x01's, the second with '0x02's * and the test will swap their mappings. The third page keeps the indication * about the current state of mappings. */ data->test_pages = vm_vaddr_alloc_pages(vm, NTEST_PAGES + 1); for (i = 0; i < NTEST_PAGES; i++) memset(addr_gva2hva(vm, data->test_pages + PAGE_SIZE * i), (u8)(i + 1), PAGE_SIZE); set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_1); set_expected_val(addr_gva2hva(vm, data->test_pages), 0x0, WORKER_VCPU_ID_2); /* * Get PTE pointers for test pages and map them inside the guest. * Use separate page for each PTE for simplicity. */ gva = vm_vaddr_unused_gap(vm, NTEST_PAGES * PAGE_SIZE, KVM_UTIL_MIN_VADDR); for (i = 0; i < NTEST_PAGES; i++) { pte = vm_get_page_table_entry(vm, data->test_pages + i * PAGE_SIZE); gpa = addr_hva2gpa(vm, pte); __virt_pg_map(vm, gva + PAGE_SIZE * i, gpa & PAGE_MASK, PG_LEVEL_4K); data->test_pages_pte[i] = gva + (gpa & ~PAGE_MASK); } /* * Sender vCPU which performs the test: swaps test pages, sets expectation * for 'workers' and issues TLB flush hypercalls. */ vcpu_args_set(vcpu[0], 1, test_data_page); vcpu_set_hv_cpuid(vcpu[0]); /* Create worker vCPUs which check the contents of the test pages */ vcpu[1] = vm_vcpu_add(vm, WORKER_VCPU_ID_1, worker_guest_code); vcpu_args_set(vcpu[1], 1, test_data_page); vcpu_set_msr(vcpu[1], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_1); vcpu_set_hv_cpuid(vcpu[1]); vcpu[2] = vm_vcpu_add(vm, WORKER_VCPU_ID_2, worker_guest_code); vcpu_args_set(vcpu[2], 1, test_data_page); vcpu_set_msr(vcpu[2], HV_X64_MSR_VP_INDEX, WORKER_VCPU_ID_2); vcpu_set_hv_cpuid(vcpu[2]); r = pthread_create(&threads[0], NULL, vcpu_thread, vcpu[1]); TEST_ASSERT(!r, "pthread_create() failed"); r = pthread_create(&threads[1], NULL, vcpu_thread, vcpu[2]); TEST_ASSERT(!r, "pthread_create() failed"); while (true) { vcpu_run(vcpu[0]); TEST_ASSERT_KVM_EXIT_REASON(vcpu[0], KVM_EXIT_IO); switch (get_ucall(vcpu[0], &uc)) { case UCALL_SYNC: TEST_ASSERT(uc.args[1] == stage, "Unexpected stage: %ld (%d expected)\n", uc.args[1], stage); break; case UCALL_ABORT: REPORT_GUEST_ASSERT(uc); /* NOT REACHED */ case UCALL_DONE: goto done; default: TEST_FAIL("Unknown ucall %lu", uc.cmd); } stage++; } done: cancel_join_vcpu_thread(threads[0], vcpu[1]); cancel_join_vcpu_thread(threads[1], vcpu[2]); kvm_vm_free(vm); return 0; }