// SPDX-License-Identifier: GPL-2.0 /* * Dummy stubs used when CONFIG_POSIX_TIMERS=n * * Created by: Nicolas Pitre, July 2016 * Copyright: (C) 2016 Linaro Limited */ #include <linux/linkage.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/errno.h> #include <linux/syscalls.h> #include <linux/ktime.h> #include <linux/timekeeping.h> #include <linux/posix-timers.h> #include <linux/time_namespace.h> #include <linux/compat.h> #ifdef CONFIG_ARCH_HAS_SYSCALL_WRAPPER /* Architectures may override SYS_NI and COMPAT_SYS_NI */ #include <asm/syscall_wrapper.h> #endif asmlinkage long sys_ni_posix_timers(void) { pr_err_once("process %d (%s) attempted a POSIX timer syscall " "while CONFIG_POSIX_TIMERS is not set\n", current->pid, current->comm); return -ENOSYS; } #ifndef SYS_NI #define SYS_NI(name) SYSCALL_ALIAS(sys_##name, sys_ni_posix_timers) #endif #ifndef COMPAT_SYS_NI #define COMPAT_SYS_NI(name) SYSCALL_ALIAS(compat_sys_##name, sys_ni_posix_timers) #endif SYS_NI(timer_create); SYS_NI(timer_gettime); SYS_NI(timer_getoverrun); SYS_NI(timer_settime); SYS_NI(timer_delete); SYS_NI(clock_adjtime); SYS_NI(getitimer); SYS_NI(setitimer); SYS_NI(clock_adjtime32); #ifdef __ARCH_WANT_SYS_ALARM SYS_NI(alarm); #endif /* * We preserve minimal support for CLOCK_REALTIME and CLOCK_MONOTONIC * as it is easy to remain compatible with little code. CLOCK_BOOTTIME * is also included for convenience as at least systemd uses it. */ SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, const struct __kernel_timespec __user *, tp) { struct timespec64 new_tp; if (which_clock != CLOCK_REALTIME) return -EINVAL; if (get_timespec64(&new_tp, tp)) return -EFAULT; return do_sys_settimeofday64(&new_tp, NULL); } static int do_clock_gettime(clockid_t which_clock, struct timespec64 *tp) { switch (which_clock) { case CLOCK_REALTIME: ktime_get_real_ts64(tp); break; case CLOCK_MONOTONIC: ktime_get_ts64(tp); timens_add_monotonic(tp); break; case CLOCK_BOOTTIME: ktime_get_boottime_ts64(tp); timens_add_boottime(tp); break; default: return -EINVAL; } return 0; } SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, struct __kernel_timespec __user *, tp) { int ret; struct timespec64 kernel_tp; ret = do_clock_gettime(which_clock, &kernel_tp); if (ret) return ret; if (put_timespec64(&kernel_tp, tp)) return -EFAULT; return 0; } SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, struct __kernel_timespec __user *, tp) { struct timespec64 rtn_tp = { .tv_sec = 0, .tv_nsec = hrtimer_resolution, }; switch (which_clock) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: if (put_timespec64(&rtn_tp, tp)) return -EFAULT; return 0; default: return -EINVAL; } } SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, const struct __kernel_timespec __user *, rqtp, struct __kernel_timespec __user *, rmtp) { struct timespec64 t; ktime_t texp; switch (which_clock) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: break; default: return -EINVAL; } if (get_timespec64(&t, rqtp)) return -EFAULT; if (!timespec64_valid(&t)) return -EINVAL; if (flags & TIMER_ABSTIME) rmtp = NULL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; current->restart_block.nanosleep.rmtp = rmtp; texp = timespec64_to_ktime(t); if (flags & TIMER_ABSTIME) texp = timens_ktime_to_host(which_clock, texp); return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); } #ifdef CONFIG_COMPAT COMPAT_SYS_NI(timer_create); #endif #if defined(CONFIG_COMPAT) || defined(CONFIG_ALPHA) COMPAT_SYS_NI(getitimer); COMPAT_SYS_NI(setitimer); #endif #ifdef CONFIG_COMPAT_32BIT_TIME SYS_NI(timer_settime32); SYS_NI(timer_gettime32); SYSCALL_DEFINE2(clock_settime32, const clockid_t, which_clock, struct old_timespec32 __user *, tp) { struct timespec64 new_tp; if (which_clock != CLOCK_REALTIME) return -EINVAL; if (get_old_timespec32(&new_tp, tp)) return -EFAULT; return do_sys_settimeofday64(&new_tp, NULL); } SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, struct old_timespec32 __user *, tp) { int ret; struct timespec64 kernel_tp; ret = do_clock_gettime(which_clock, &kernel_tp); if (ret) return ret; if (put_old_timespec32(&kernel_tp, tp)) return -EFAULT; return 0; } SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, struct old_timespec32 __user *, tp) { struct timespec64 rtn_tp = { .tv_sec = 0, .tv_nsec = hrtimer_resolution, }; switch (which_clock) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: if (put_old_timespec32(&rtn_tp, tp)) return -EFAULT; return 0; default: return -EINVAL; } } SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, struct old_timespec32 __user *, rqtp, struct old_timespec32 __user *, rmtp) { struct timespec64 t; ktime_t texp; switch (which_clock) { case CLOCK_REALTIME: case CLOCK_MONOTONIC: case CLOCK_BOOTTIME: break; default: return -EINVAL; } if (get_old_timespec32(&t, rqtp)) return -EFAULT; if (!timespec64_valid(&t)) return -EINVAL; if (flags & TIMER_ABSTIME) rmtp = NULL; current->restart_block.fn = do_no_restart_syscall; current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; current->restart_block.nanosleep.compat_rmtp = rmtp; texp = timespec64_to_ktime(t); if (flags & TIMER_ABSTIME) texp = timens_ktime_to_host(which_clock, texp); return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL, which_clock); } #endif