// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2013, Michael (Ellerman|Neuling), IBM Corporation. */ #define pr_fmt(fmt) "powernv: " fmt #include <linux/kernel.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/device.h> #include <linux/gfp.h> #include <linux/smp.h> #include <linux/stop_machine.h> #include <asm/cputhreads.h> #include <asm/cpuidle.h> #include <asm/kvm_ppc.h> #include <asm/machdep.h> #include <asm/opal.h> #include <asm/smp.h> #include <trace/events/ipi.h> #include "subcore.h" #include "powernv.h" /* * Split/unsplit procedure: * * A core can be in one of three states, unsplit, 2-way split, and 4-way split. * * The mapping to subcores_per_core is simple: * * State | subcores_per_core * ------------|------------------ * Unsplit | 1 * 2-way split | 2 * 4-way split | 4 * * The core is split along thread boundaries, the mapping between subcores and * threads is as follows: * * Unsplit: * ---------------------------- * Subcore | 0 | * ---------------------------- * Thread | 0 1 2 3 4 5 6 7 | * ---------------------------- * * 2-way split: * ------------------------------------- * Subcore | 0 | 1 | * ------------------------------------- * Thread | 0 1 2 3 | 4 5 6 7 | * ------------------------------------- * * 4-way split: * ----------------------------------------- * Subcore | 0 | 1 | 2 | 3 | * ----------------------------------------- * Thread | 0 1 | 2 3 | 4 5 | 6 7 | * ----------------------------------------- * * * Transitions * ----------- * * It is not possible to transition between either of the split states, the * core must first be unsplit. The legal transitions are: * * ----------- --------------- * | | <----> | 2-way split | * | | --------------- * | Unsplit | * | | --------------- * | | <----> | 4-way split | * ----------- --------------- * * Unsplitting * ----------- * * Unsplitting is the simpler procedure. It requires thread 0 to request the * unsplit while all other threads NAP. * * Thread 0 clears HID0_POWER8_DYNLPARDIS (Dynamic LPAR Disable). This tells * the hardware that if all threads except 0 are napping, the hardware should * unsplit the core. * * Non-zero threads are sent to a NAP loop, they don't exit the loop until they * see the core unsplit. * * Core 0 spins waiting for the hardware to see all the other threads napping * and perform the unsplit. * * Once thread 0 sees the unsplit, it IPIs the secondary threads to wake them * out of NAP. They will then see the core unsplit and exit the NAP loop. * * Splitting * --------- * * The basic splitting procedure is fairly straight forward. However it is * complicated by the fact that after the split occurs, the newly created * subcores are not in a fully initialised state. * * Most notably the subcores do not have the correct value for SDR1, which * means they must not be running in virtual mode when the split occurs. The * subcores have separate timebases SPRs but these are pre-synchronised by * opal. * * To begin with secondary threads are sent to an assembly routine. There they * switch to real mode, so they are immune to the uninitialised SDR1 value. * Once in real mode they indicate that they are in real mode, and spin waiting * to see the core split. * * Thread 0 waits to see that all secondaries are in real mode, and then begins * the splitting procedure. It firstly sets HID0_POWER8_DYNLPARDIS, which * prevents the hardware from unsplitting. Then it sets the appropriate HID bit * to request the split, and spins waiting to see that the split has happened. * * Concurrently the secondaries will notice the split. When they do they set up * their SPRs, notably SDR1, and then they can return to virtual mode and exit * the procedure. */ /* Initialised at boot by subcore_init() */ static int subcores_per_core; /* * Used to communicate to offline cpus that we want them to pop out of the * offline loop and do a split or unsplit. * * 0 - no split happening * 1 - unsplit in progress * 2 - split to 2 in progress * 4 - split to 4 in progress */ static int new_split_mode; static cpumask_var_t cpu_offline_mask; struct split_state { u8 step; u8 master; }; static DEFINE_PER_CPU(struct split_state, split_state); static void wait_for_sync_step(int step) { int i, cpu = smp_processor_id(); for (i = cpu + 1; i < cpu + threads_per_core; i++) while(per_cpu(split_state, i).step < step) barrier(); /* Order the wait loop vs any subsequent loads/stores. */ mb(); } static void update_hid_in_slw(u64 hid0) { u64 idle_states = pnv_get_supported_cpuidle_states(); if (idle_states & OPAL_PM_WINKLE_ENABLED) { /* OPAL call to patch slw with the new HID0 value */ u64 cpu_pir = hard_smp_processor_id(); opal_slw_set_reg(cpu_pir, SPRN_HID0, hid0); } } static inline void update_power8_hid0(unsigned long hid0) { /* * The HID0 update on Power8 should at the very least be * preceded by a SYNC instruction followed by an ISYNC * instruction */ asm volatile("sync; mtspr %0,%1; isync":: "i"(SPRN_HID0), "r"(hid0)); } static void unsplit_core(void) { u64 hid0, mask; int i, cpu; mask = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE; cpu = smp_processor_id(); if (cpu_thread_in_core(cpu) != 0) { while (mfspr(SPRN_HID0) & mask) power7_idle_type(PNV_THREAD_NAP); per_cpu(split_state, cpu).step = SYNC_STEP_UNSPLIT; return; } hid0 = mfspr(SPRN_HID0); hid0 &= ~HID0_POWER8_DYNLPARDIS; update_power8_hid0(hid0); update_hid_in_slw(hid0); while (mfspr(SPRN_HID0) & mask) cpu_relax(); /* Wake secondaries out of NAP */ for (i = cpu + 1; i < cpu + threads_per_core; i++) smp_send_reschedule(i); wait_for_sync_step(SYNC_STEP_UNSPLIT); } static void split_core(int new_mode) { struct { u64 value; u64 mask; } split_parms[2] = { { HID0_POWER8_1TO2LPAR, HID0_POWER8_2LPARMODE }, { HID0_POWER8_1TO4LPAR, HID0_POWER8_4LPARMODE } }; int i, cpu; u64 hid0; /* Convert new_mode (2 or 4) into an index into our parms array */ i = (new_mode >> 1) - 1; BUG_ON(i < 0 || i > 1); cpu = smp_processor_id(); if (cpu_thread_in_core(cpu) != 0) { split_core_secondary_loop(&per_cpu(split_state, cpu).step); return; } wait_for_sync_step(SYNC_STEP_REAL_MODE); /* Write new mode */ hid0 = mfspr(SPRN_HID0); hid0 |= HID0_POWER8_DYNLPARDIS | split_parms[i].value; update_power8_hid0(hid0); update_hid_in_slw(hid0); /* Wait for it to happen */ while (!(mfspr(SPRN_HID0) & split_parms[i].mask)) cpu_relax(); } static void cpu_do_split(int new_mode) { /* * At boot subcores_per_core will be 0, so we will always unsplit at * boot. In the usual case where the core is already unsplit it's a * nop, and this just ensures the kernel's notion of the mode is * consistent with the hardware. */ if (subcores_per_core != 1) unsplit_core(); if (new_mode != 1) split_core(new_mode); mb(); per_cpu(split_state, smp_processor_id()).step = SYNC_STEP_FINISHED; } bool cpu_core_split_required(void) { smp_rmb(); if (!new_split_mode) return false; cpu_do_split(new_split_mode); return true; } void update_subcore_sibling_mask(void) { int cpu; /* * sibling mask for the first cpu. Left shift this by required bits * to get sibling mask for the rest of the cpus. */ int sibling_mask_first_cpu = (1 << threads_per_subcore) - 1; for_each_possible_cpu(cpu) { int tid = cpu_thread_in_core(cpu); int offset = (tid / threads_per_subcore) * threads_per_subcore; int mask = sibling_mask_first_cpu << offset; paca_ptrs[cpu]->subcore_sibling_mask = mask; } } static int cpu_update_split_mode(void *data) { int cpu, new_mode = *(int *)data; if (this_cpu_ptr(&split_state)->master) { new_split_mode = new_mode; smp_wmb(); cpumask_andnot(cpu_offline_mask, cpu_present_mask, cpu_online_mask); /* This should work even though the cpu is offline */ for_each_cpu(cpu, cpu_offline_mask) smp_send_reschedule(cpu); } cpu_do_split(new_mode); if (this_cpu_ptr(&split_state)->master) { /* Wait for all cpus to finish before we touch subcores_per_core */ for_each_present_cpu(cpu) { if (cpu >= setup_max_cpus) break; while(per_cpu(split_state, cpu).step < SYNC_STEP_FINISHED) barrier(); } new_split_mode = 0; /* Make the new mode public */ subcores_per_core = new_mode; threads_per_subcore = threads_per_core / subcores_per_core; update_subcore_sibling_mask(); /* Make sure the new mode is written before we exit */ mb(); } return 0; } static int set_subcores_per_core(int new_mode) { struct split_state *state; int cpu; if (kvm_hv_mode_active()) { pr_err("Unable to change split core mode while KVM active.\n"); return -EBUSY; } /* * We are only called at boot, or from the sysfs write. If that ever * changes we'll need a lock here. */ BUG_ON(new_mode < 1 || new_mode > 4 || new_mode == 3); for_each_present_cpu(cpu) { state = &per_cpu(split_state, cpu); state->step = SYNC_STEP_INITIAL; state->master = 0; } cpus_read_lock(); /* This cpu will update the globals before exiting stop machine */ this_cpu_ptr(&split_state)->master = 1; /* Ensure state is consistent before we call the other cpus */ mb(); stop_machine_cpuslocked(cpu_update_split_mode, &new_mode, cpu_online_mask); cpus_read_unlock(); return 0; } static ssize_t __used store_subcores_per_core(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned long val; int rc; /* We are serialised by the attribute lock */ rc = sscanf(buf, "%lx", &val); if (rc != 1) return -EINVAL; switch (val) { case 1: case 2: case 4: if (subcores_per_core == val) /* Nothing to do */ goto out; break; default: return -EINVAL; } rc = set_subcores_per_core(val); if (rc) return rc; out: return count; } static ssize_t show_subcores_per_core(struct device *dev, struct device_attribute *attr, char *buf) { return sprintf(buf, "%x\n", subcores_per_core); } static DEVICE_ATTR(subcores_per_core, 0644, show_subcores_per_core, store_subcores_per_core); static int subcore_init(void) { struct device *dev_root; unsigned pvr_ver; int rc = 0; pvr_ver = PVR_VER(mfspr(SPRN_PVR)); if (pvr_ver != PVR_POWER8 && pvr_ver != PVR_POWER8E && pvr_ver != PVR_POWER8NVL) return 0; /* * We need all threads in a core to be present to split/unsplit so * continue only if max_cpus are aligned to threads_per_core. */ if (setup_max_cpus % threads_per_core) return 0; BUG_ON(!alloc_cpumask_var(&cpu_offline_mask, GFP_KERNEL)); set_subcores_per_core(1); dev_root = bus_get_dev_root(&cpu_subsys); if (dev_root) { rc = device_create_file(dev_root, &dev_attr_subcores_per_core); put_device(dev_root); } return rc; } machine_device_initcall(powernv, subcore_init);