// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <linux/arm-smccc.h> #include <linux/preempt.h> #include <linux/kvm_host.h> #include <linux/uaccess.h> #include <linux/wait.h> #include <asm/cputype.h> #include <asm/kvm_emulate.h> #include <kvm/arm_psci.h> #include <kvm/arm_hypercalls.h> /* * This is an implementation of the Power State Coordination Interface * as described in ARM document number ARM DEN 0022A. */ #define AFFINITY_MASK(level) ~((0x1UL << ((level) * MPIDR_LEVEL_BITS)) - 1) static unsigned long psci_affinity_mask(unsigned long affinity_level) { if (affinity_level <= 3) return MPIDR_HWID_BITMASK & AFFINITY_MASK(affinity_level); return 0; } static unsigned long kvm_psci_vcpu_suspend(struct kvm_vcpu *vcpu) { /* * NOTE: For simplicity, we make VCPU suspend emulation to be * same-as WFI (Wait-for-interrupt) emulation. * * This means for KVM the wakeup events are interrupts and * this is consistent with intended use of StateID as described * in section 5.4.1 of PSCI v0.2 specification (ARM DEN 0022A). * * Further, we also treat power-down request to be same as * stand-by request as-per section 5.4.2 clause 3 of PSCI v0.2 * specification (ARM DEN 0022A). This means all suspend states * for KVM will preserve the register state. */ kvm_vcpu_wfi(vcpu); return PSCI_RET_SUCCESS; } static inline bool kvm_psci_valid_affinity(struct kvm_vcpu *vcpu, unsigned long affinity) { return !(affinity & ~MPIDR_HWID_BITMASK); } static unsigned long kvm_psci_vcpu_on(struct kvm_vcpu *source_vcpu) { struct vcpu_reset_state *reset_state; struct kvm *kvm = source_vcpu->kvm; struct kvm_vcpu *vcpu = NULL; int ret = PSCI_RET_SUCCESS; unsigned long cpu_id; cpu_id = smccc_get_arg1(source_vcpu); if (!kvm_psci_valid_affinity(source_vcpu, cpu_id)) return PSCI_RET_INVALID_PARAMS; vcpu = kvm_mpidr_to_vcpu(kvm, cpu_id); /* * Make sure the caller requested a valid CPU and that the CPU is * turned off. */ if (!vcpu) return PSCI_RET_INVALID_PARAMS; spin_lock(&vcpu->arch.mp_state_lock); if (!kvm_arm_vcpu_stopped(vcpu)) { if (kvm_psci_version(source_vcpu) != KVM_ARM_PSCI_0_1) ret = PSCI_RET_ALREADY_ON; else ret = PSCI_RET_INVALID_PARAMS; goto out_unlock; } reset_state = &vcpu->arch.reset_state; reset_state->pc = smccc_get_arg2(source_vcpu); /* Propagate caller endianness */ reset_state->be = kvm_vcpu_is_be(source_vcpu); /* * NOTE: We always update r0 (or x0) because for PSCI v0.1 * the general purpose registers are undefined upon CPU_ON. */ reset_state->r0 = smccc_get_arg3(source_vcpu); reset_state->reset = true; kvm_make_request(KVM_REQ_VCPU_RESET, vcpu); /* * Make sure the reset request is observed if the RUNNABLE mp_state is * observed. */ smp_wmb(); WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE); kvm_vcpu_wake_up(vcpu); out_unlock: spin_unlock(&vcpu->arch.mp_state_lock); return ret; } static unsigned long kvm_psci_vcpu_affinity_info(struct kvm_vcpu *vcpu) { int matching_cpus = 0; unsigned long i, mpidr; unsigned long target_affinity; unsigned long target_affinity_mask; unsigned long lowest_affinity_level; struct kvm *kvm = vcpu->kvm; struct kvm_vcpu *tmp; target_affinity = smccc_get_arg1(vcpu); lowest_affinity_level = smccc_get_arg2(vcpu); if (!kvm_psci_valid_affinity(vcpu, target_affinity)) return PSCI_RET_INVALID_PARAMS; /* Determine target affinity mask */ target_affinity_mask = psci_affinity_mask(lowest_affinity_level); if (!target_affinity_mask) return PSCI_RET_INVALID_PARAMS; /* Ignore other bits of target affinity */ target_affinity &= target_affinity_mask; /* * If one or more VCPU matching target affinity are running * then ON else OFF */ kvm_for_each_vcpu(i, tmp, kvm) { mpidr = kvm_vcpu_get_mpidr_aff(tmp); if ((mpidr & target_affinity_mask) == target_affinity) { matching_cpus++; if (!kvm_arm_vcpu_stopped(tmp)) return PSCI_0_2_AFFINITY_LEVEL_ON; } } if (!matching_cpus) return PSCI_RET_INVALID_PARAMS; return PSCI_0_2_AFFINITY_LEVEL_OFF; } static void kvm_prepare_system_event(struct kvm_vcpu *vcpu, u32 type, u64 flags) { unsigned long i; struct kvm_vcpu *tmp; /* * The KVM ABI specifies that a system event exit may call KVM_RUN * again and may perform shutdown/reboot at a later time that when the * actual request is made. Since we are implementing PSCI and a * caller of PSCI reboot and shutdown expects that the system shuts * down or reboots immediately, let's make sure that VCPUs are not run * after this call is handled and before the VCPUs have been * re-initialized. */ kvm_for_each_vcpu(i, tmp, vcpu->kvm) { spin_lock(&tmp->arch.mp_state_lock); WRITE_ONCE(tmp->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED); spin_unlock(&tmp->arch.mp_state_lock); } kvm_make_all_cpus_request(vcpu->kvm, KVM_REQ_SLEEP); memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event)); vcpu->run->system_event.type = type; vcpu->run->system_event.ndata = 1; vcpu->run->system_event.data[0] = flags; vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; } static void kvm_psci_system_off(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_SHUTDOWN, 0); } static void kvm_psci_system_reset(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, 0); } static void kvm_psci_system_reset2(struct kvm_vcpu *vcpu) { kvm_prepare_system_event(vcpu, KVM_SYSTEM_EVENT_RESET, KVM_SYSTEM_EVENT_RESET_FLAG_PSCI_RESET2); } static void kvm_psci_system_suspend(struct kvm_vcpu *vcpu) { struct kvm_run *run = vcpu->run; memset(&run->system_event, 0, sizeof(vcpu->run->system_event)); run->system_event.type = KVM_SYSTEM_EVENT_SUSPEND; run->exit_reason = KVM_EXIT_SYSTEM_EVENT; } static void kvm_psci_narrow_to_32bit(struct kvm_vcpu *vcpu) { int i; /* * Zero the input registers' upper 32 bits. They will be fully * zeroed on exit, so we're fine changing them in place. */ for (i = 1; i < 4; i++) vcpu_set_reg(vcpu, i, lower_32_bits(vcpu_get_reg(vcpu, i))); } static unsigned long kvm_psci_check_allowed_function(struct kvm_vcpu *vcpu, u32 fn) { /* * Prevent 32 bit guests from calling 64 bit PSCI functions. */ if ((fn & PSCI_0_2_64BIT) && vcpu_mode_is_32bit(vcpu)) return PSCI_RET_NOT_SUPPORTED; return 0; } static int kvm_psci_0_2_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); unsigned long val; int ret = 1; switch (psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: /* * Bits[31:16] = Major Version = 0 * Bits[15:0] = Minor Version = 2 */ val = KVM_ARM_PSCI_0_2; break; case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: val = kvm_psci_vcpu_suspend(vcpu); break; case PSCI_0_2_FN_CPU_OFF: kvm_arm_vcpu_power_off(vcpu); val = PSCI_RET_SUCCESS; break; case PSCI_0_2_FN_CPU_ON: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_CPU_ON: val = kvm_psci_vcpu_on(vcpu); break; case PSCI_0_2_FN_AFFINITY_INFO: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_0_2_FN64_AFFINITY_INFO: val = kvm_psci_vcpu_affinity_info(vcpu); break; case PSCI_0_2_FN_MIGRATE_INFO_TYPE: /* * Trusted OS is MP hence does not require migration * or * Trusted OS is not present */ val = PSCI_0_2_TOS_MP; break; case PSCI_0_2_FN_SYSTEM_OFF: kvm_psci_system_off(vcpu); /* * We shouldn't be going back to guest VCPU after * receiving SYSTEM_OFF request. * * If user space accidentally/deliberately resumes * guest VCPU after SYSTEM_OFF request then guest * VCPU should see internal failure from PSCI return * value. To achieve this, we preload r0 (or x0) with * PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; case PSCI_0_2_FN_SYSTEM_RESET: kvm_psci_system_reset(vcpu); /* * Same reason as SYSTEM_OFF for preloading r0 (or x0) * with PSCI return value INTERNAL_FAILURE. */ val = PSCI_RET_INTERNAL_FAILURE; ret = 0; break; default: val = PSCI_RET_NOT_SUPPORTED; break; } smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_1_x_call(struct kvm_vcpu *vcpu, u32 minor) { unsigned long val = PSCI_RET_NOT_SUPPORTED; u32 psci_fn = smccc_get_function(vcpu); struct kvm *kvm = vcpu->kvm; u32 arg; int ret = 1; switch(psci_fn) { case PSCI_0_2_FN_PSCI_VERSION: val = minor == 0 ? KVM_ARM_PSCI_1_0 : KVM_ARM_PSCI_1_1; break; case PSCI_1_0_FN_PSCI_FEATURES: arg = smccc_get_arg1(vcpu); val = kvm_psci_check_allowed_function(vcpu, arg); if (val) break; val = PSCI_RET_NOT_SUPPORTED; switch(arg) { case PSCI_0_2_FN_PSCI_VERSION: case PSCI_0_2_FN_CPU_SUSPEND: case PSCI_0_2_FN64_CPU_SUSPEND: case PSCI_0_2_FN_CPU_OFF: case PSCI_0_2_FN_CPU_ON: case PSCI_0_2_FN64_CPU_ON: case PSCI_0_2_FN_AFFINITY_INFO: case PSCI_0_2_FN64_AFFINITY_INFO: case PSCI_0_2_FN_MIGRATE_INFO_TYPE: case PSCI_0_2_FN_SYSTEM_OFF: case PSCI_0_2_FN_SYSTEM_RESET: case PSCI_1_0_FN_PSCI_FEATURES: case ARM_SMCCC_VERSION_FUNC_ID: val = 0; break; case PSCI_1_0_FN_SYSTEM_SUSPEND: case PSCI_1_0_FN64_SYSTEM_SUSPEND: if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) val = 0; break; case PSCI_1_1_FN_SYSTEM_RESET2: case PSCI_1_1_FN64_SYSTEM_RESET2: if (minor >= 1) val = 0; break; } break; case PSCI_1_0_FN_SYSTEM_SUSPEND: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_1_0_FN64_SYSTEM_SUSPEND: /* * Return directly to userspace without changing the vCPU's * registers. Userspace depends on reading the SMCCC parameters * to implement SYSTEM_SUSPEND. */ if (test_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags)) { kvm_psci_system_suspend(vcpu); return 0; } break; case PSCI_1_1_FN_SYSTEM_RESET2: kvm_psci_narrow_to_32bit(vcpu); fallthrough; case PSCI_1_1_FN64_SYSTEM_RESET2: if (minor >= 1) { arg = smccc_get_arg1(vcpu); if (arg <= PSCI_1_1_RESET_TYPE_SYSTEM_WARM_RESET || arg >= PSCI_1_1_RESET_TYPE_VENDOR_START) { kvm_psci_system_reset2(vcpu); vcpu_set_reg(vcpu, 0, PSCI_RET_INTERNAL_FAILURE); return 0; } val = PSCI_RET_INVALID_PARAMS; break; } break; default: return kvm_psci_0_2_call(vcpu); } smccc_set_retval(vcpu, val, 0, 0, 0); return ret; } static int kvm_psci_0_1_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); unsigned long val; switch (psci_fn) { case KVM_PSCI_FN_CPU_OFF: kvm_arm_vcpu_power_off(vcpu); val = PSCI_RET_SUCCESS; break; case KVM_PSCI_FN_CPU_ON: val = kvm_psci_vcpu_on(vcpu); break; default: val = PSCI_RET_NOT_SUPPORTED; break; } smccc_set_retval(vcpu, val, 0, 0, 0); return 1; } /** * kvm_psci_call - handle PSCI call if r0 value is in range * @vcpu: Pointer to the VCPU struct * * Handle PSCI calls from guests through traps from HVC instructions. * The calling convention is similar to SMC calls to the secure world * where the function number is placed in r0. * * This function returns: > 0 (success), 0 (success but exit to user * space), and < 0 (errors) * * Errors: * -EINVAL: Unrecognized PSCI function */ int kvm_psci_call(struct kvm_vcpu *vcpu) { u32 psci_fn = smccc_get_function(vcpu); int version = kvm_psci_version(vcpu); unsigned long val; val = kvm_psci_check_allowed_function(vcpu, psci_fn); if (val) { smccc_set_retval(vcpu, val, 0, 0, 0); return 1; } switch (version) { case KVM_ARM_PSCI_1_1: return kvm_psci_1_x_call(vcpu, 1); case KVM_ARM_PSCI_1_0: return kvm_psci_1_x_call(vcpu, 0); case KVM_ARM_PSCI_0_2: return kvm_psci_0_2_call(vcpu); case KVM_ARM_PSCI_0_1: return kvm_psci_0_1_call(vcpu); default: WARN_ONCE(1, "Unknown PSCI version %d", version); smccc_set_retval(vcpu, SMCCC_RET_NOT_SUPPORTED, 0, 0, 0); return 1; } }