/* * Helper routines for SuperH Clock Pulse Generator blocks (CPG). * * Copyright (C) 2010 Magnus Damm * Copyright (C) 2010 - 2012 Paul Mundt * * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. */ #include <linux/clk.h> #include <linux/compiler.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/sh_clk.h> #define CPG_CKSTP_BIT BIT(8) static unsigned int sh_clk_read(struct clk *clk) { if (clk->flags & CLK_ENABLE_REG_8BIT) return ioread8(clk->mapped_reg); else if (clk->flags & CLK_ENABLE_REG_16BIT) return ioread16(clk->mapped_reg); return ioread32(clk->mapped_reg); } static void sh_clk_write(int value, struct clk *clk) { if (clk->flags & CLK_ENABLE_REG_8BIT) iowrite8(value, clk->mapped_reg); else if (clk->flags & CLK_ENABLE_REG_16BIT) iowrite16(value, clk->mapped_reg); else iowrite32(value, clk->mapped_reg); } static int sh_clk_mstp_enable(struct clk *clk) { sh_clk_write(sh_clk_read(clk) & ~(1 << clk->enable_bit), clk); if (clk->status_reg) { unsigned int (*read)(const void __iomem *addr); int i; void __iomem *mapped_status = (phys_addr_t)clk->status_reg - (phys_addr_t)clk->enable_reg + clk->mapped_reg; if (clk->flags & CLK_ENABLE_REG_8BIT) read = ioread8; else if (clk->flags & CLK_ENABLE_REG_16BIT) read = ioread16; else read = ioread32; for (i = 1000; (read(mapped_status) & (1 << clk->enable_bit)) && i; i--) cpu_relax(); if (!i) { pr_err("cpg: failed to enable %p[%d]\n", clk->enable_reg, clk->enable_bit); return -ETIMEDOUT; } } return 0; } static void sh_clk_mstp_disable(struct clk *clk) { sh_clk_write(sh_clk_read(clk) | (1 << clk->enable_bit), clk); } static struct sh_clk_ops sh_clk_mstp_clk_ops = { .enable = sh_clk_mstp_enable, .disable = sh_clk_mstp_disable, .recalc = followparent_recalc, }; int __init sh_clk_mstp_register(struct clk *clks, int nr) { struct clk *clkp; int ret = 0; int k; for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = &sh_clk_mstp_clk_ops; ret |= clk_register(clkp); } return ret; } /* * Div/mult table lookup helpers */ static inline struct clk_div_table *clk_to_div_table(struct clk *clk) { return clk->priv; } static inline struct clk_div_mult_table *clk_to_div_mult_table(struct clk *clk) { return clk_to_div_table(clk)->div_mult_table; } /* * Common div ops */ static long sh_clk_div_round_rate(struct clk *clk, unsigned long rate) { return clk_rate_table_round(clk, clk->freq_table, rate); } static unsigned long sh_clk_div_recalc(struct clk *clk) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); unsigned int idx; clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, clk->arch_flags ? &clk->arch_flags : NULL); idx = (sh_clk_read(clk) >> clk->enable_bit) & clk->div_mask; return clk->freq_table[idx].frequency; } static int sh_clk_div_set_rate(struct clk *clk, unsigned long rate) { struct clk_div_table *dt = clk_to_div_table(clk); unsigned long value; int idx; idx = clk_rate_table_find(clk, clk->freq_table, rate); if (idx < 0) return idx; value = sh_clk_read(clk); value &= ~(clk->div_mask << clk->enable_bit); value |= (idx << clk->enable_bit); sh_clk_write(value, clk); /* XXX: Should use a post-change notifier */ if (dt->kick) dt->kick(clk); return 0; } static int sh_clk_div_enable(struct clk *clk) { if (clk->div_mask == SH_CLK_DIV6_MSK) { int ret = sh_clk_div_set_rate(clk, clk->rate); if (ret < 0) return ret; } sh_clk_write(sh_clk_read(clk) & ~CPG_CKSTP_BIT, clk); return 0; } static void sh_clk_div_disable(struct clk *clk) { unsigned int val; val = sh_clk_read(clk); val |= CPG_CKSTP_BIT; /* * div6 clocks require the divisor field to be non-zero or the * above CKSTP toggle silently fails. Ensure that the divisor * array is reset to its initial state on disable. */ if (clk->flags & CLK_MASK_DIV_ON_DISABLE) val |= clk->div_mask; sh_clk_write(val, clk); } static struct sh_clk_ops sh_clk_div_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, }; static struct sh_clk_ops sh_clk_div_enable_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, }; static int __init sh_clk_init_parent(struct clk *clk) { u32 val; if (clk->parent) return 0; if (!clk->parent_table || !clk->parent_num) return 0; if (!clk->src_width) { pr_err("sh_clk_init_parent: cannot select parent clock\n"); return -EINVAL; } val = (sh_clk_read(clk) >> clk->src_shift); val &= (1 << clk->src_width) - 1; if (val >= clk->parent_num) { pr_err("sh_clk_init_parent: parent table size failed\n"); return -EINVAL; } clk_reparent(clk, clk->parent_table[val]); if (!clk->parent) { pr_err("sh_clk_init_parent: unable to set parent"); return -EINVAL; } return 0; } static int __init sh_clk_div_register_ops(struct clk *clks, int nr, struct clk_div_table *table, struct sh_clk_ops *ops) { struct clk *clkp; void *freq_table; int nr_divs = table->div_mult_table->nr_divisors; int freq_table_size = sizeof(struct cpufreq_frequency_table); int ret = 0; int k; freq_table_size *= (nr_divs + 1); freq_table = kcalloc(nr, freq_table_size, GFP_KERNEL); if (!freq_table) { pr_err("%s: unable to alloc memory\n", __func__); return -ENOMEM; } for (k = 0; !ret && (k < nr); k++) { clkp = clks + k; clkp->ops = ops; clkp->priv = table; clkp->freq_table = freq_table + (k * freq_table_size); clkp->freq_table[nr_divs].frequency = CPUFREQ_TABLE_END; ret = clk_register(clkp); if (ret == 0) ret = sh_clk_init_parent(clkp); } return ret; } /* * div6 support */ static int sh_clk_div6_divisors[64] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64 }; static struct clk_div_mult_table div6_div_mult_table = { .divisors = sh_clk_div6_divisors, .nr_divisors = ARRAY_SIZE(sh_clk_div6_divisors), }; static struct clk_div_table sh_clk_div6_table = { .div_mult_table = &div6_div_mult_table, }; static int sh_clk_div6_set_parent(struct clk *clk, struct clk *parent) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); u32 value; int ret, i; if (!clk->parent_table || !clk->parent_num) return -EINVAL; /* Search the parent */ for (i = 0; i < clk->parent_num; i++) if (clk->parent_table[i] == parent) break; if (i == clk->parent_num) return -ENODEV; ret = clk_reparent(clk, parent); if (ret < 0) return ret; value = sh_clk_read(clk) & ~(((1 << clk->src_width) - 1) << clk->src_shift); sh_clk_write(value | (i << clk->src_shift), clk); /* Rebuild the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, NULL); return 0; } static struct sh_clk_ops sh_clk_div6_reparent_clk_ops = { .recalc = sh_clk_div_recalc, .round_rate = sh_clk_div_round_rate, .set_rate = sh_clk_div_set_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, .set_parent = sh_clk_div6_set_parent, }; int __init sh_clk_div6_register(struct clk *clks, int nr) { return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table, &sh_clk_div_enable_clk_ops); } int __init sh_clk_div6_reparent_register(struct clk *clks, int nr) { return sh_clk_div_register_ops(clks, nr, &sh_clk_div6_table, &sh_clk_div6_reparent_clk_ops); } /* * div4 support */ static int sh_clk_div4_set_parent(struct clk *clk, struct clk *parent) { struct clk_div_mult_table *table = clk_to_div_mult_table(clk); u32 value; int ret; /* we really need a better way to determine parent index, but for * now assume internal parent comes with CLK_ENABLE_ON_INIT set, * no CLK_ENABLE_ON_INIT means external clock... */ if (parent->flags & CLK_ENABLE_ON_INIT) value = sh_clk_read(clk) & ~(1 << 7); else value = sh_clk_read(clk) | (1 << 7); ret = clk_reparent(clk, parent); if (ret < 0) return ret; sh_clk_write(value, clk); /* Rebiuld the frequency table */ clk_rate_table_build(clk, clk->freq_table, table->nr_divisors, table, &clk->arch_flags); return 0; } static struct sh_clk_ops sh_clk_div4_reparent_clk_ops = { .recalc = sh_clk_div_recalc, .set_rate = sh_clk_div_set_rate, .round_rate = sh_clk_div_round_rate, .enable = sh_clk_div_enable, .disable = sh_clk_div_disable, .set_parent = sh_clk_div4_set_parent, }; int __init sh_clk_div4_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div_clk_ops); } int __init sh_clk_div4_enable_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div_enable_clk_ops); } int __init sh_clk_div4_reparent_register(struct clk *clks, int nr, struct clk_div4_table *table) { return sh_clk_div_register_ops(clks, nr, table, &sh_clk_div4_reparent_clk_ops); } /* FSI-DIV */ static unsigned long fsidiv_recalc(struct clk *clk) { u32 value; value = __raw_readl(clk->mapping->base); value >>= 16; if (value < 2) return clk->parent->rate; return clk->parent->rate / value; } static long fsidiv_round_rate(struct clk *clk, unsigned long rate) { return clk_rate_div_range_round(clk, 1, 0xffff, rate); } static void fsidiv_disable(struct clk *clk) { __raw_writel(0, clk->mapping->base); } static int fsidiv_enable(struct clk *clk) { u32 value; value = __raw_readl(clk->mapping->base) >> 16; if (value < 2) return 0; __raw_writel((value << 16) | 0x3, clk->mapping->base); return 0; } static int fsidiv_set_rate(struct clk *clk, unsigned long rate) { int idx; idx = (clk->parent->rate / rate) & 0xffff; if (idx < 2) __raw_writel(0, clk->mapping->base); else __raw_writel(idx << 16, clk->mapping->base); return 0; } static struct sh_clk_ops fsidiv_clk_ops = { .recalc = fsidiv_recalc, .round_rate = fsidiv_round_rate, .set_rate = fsidiv_set_rate, .enable = fsidiv_enable, .disable = fsidiv_disable, }; int __init sh_clk_fsidiv_register(struct clk *clks, int nr) { struct clk_mapping *map; int i; for (i = 0; i < nr; i++) { map = kzalloc(sizeof(struct clk_mapping), GFP_KERNEL); if (!map) { pr_err("%s: unable to alloc memory\n", __func__); return -ENOMEM; } /* clks[i].enable_reg came from SH_CLK_FSIDIV() */ map->phys = (phys_addr_t)clks[i].enable_reg; map->len = 8; clks[i].enable_reg = 0; /* remove .enable_reg */ clks[i].ops = &fsidiv_clk_ops; clks[i].mapping = map; clk_register(&clks[i]); } return 0; }