// SPDX-License-Identifier: GPL-2.0-only /* * Bit sliced AES using NEON instructions * * Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> */ #include <asm/neon.h> #include <asm/simd.h> #include <crypto/aes.h> #include <crypto/ctr.h> #include <crypto/internal/simd.h> #include <crypto/internal/skcipher.h> #include <crypto/scatterwalk.h> #include <crypto/xts.h> #include <linux/module.h> MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS_CRYPTO("ecb(aes)"); MODULE_ALIAS_CRYPTO("cbc(aes)"); MODULE_ALIAS_CRYPTO("ctr(aes)"); MODULE_ALIAS_CRYPTO("xts(aes)"); asmlinkage void aesbs_convert_key(u8 out[], u32 const rk[], int rounds); asmlinkage void aesbs_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks); asmlinkage void aesbs_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_xts_encrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void aesbs_xts_decrypt(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[]); /* borrowed from aes-neon-blk.ko */ asmlinkage void neon_aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks); asmlinkage void neon_aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int blocks, u8 iv[]); asmlinkage void neon_aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[], int rounds, int bytes, u8 ctr[]); asmlinkage void neon_aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int bytes, u32 const rk2[], u8 iv[], int first); asmlinkage void neon_aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[], int rounds, int bytes, u32 const rk2[], u8 iv[], int first); struct aesbs_ctx { u8 rk[13 * (8 * AES_BLOCK_SIZE) + 32]; int rounds; } __aligned(AES_BLOCK_SIZE); struct aesbs_cbc_ctr_ctx { struct aesbs_ctx key; u32 enc[AES_MAX_KEYLENGTH_U32]; }; struct aesbs_xts_ctx { struct aesbs_ctx key; u32 twkey[AES_MAX_KEYLENGTH_U32]; struct crypto_aes_ctx cts; }; static int aesbs_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = aes_expandkey(&rk, in_key, key_len); if (err) return err; ctx->rounds = 6 + key_len / 4; kernel_neon_begin(); aesbs_convert_key(ctx->rk, rk.key_enc, ctx->rounds); kernel_neon_end(); return 0; } static int __ecb_crypt(struct skcipher_request *req, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks)) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); fn(walk.dst.virt.addr, walk.src.virt.addr, ctx->rk, ctx->rounds, blocks); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int ecb_encrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_encrypt); } static int ecb_decrypt(struct skcipher_request *req) { return __ecb_crypt(req, aesbs_ecb_decrypt); } static int aesbs_cbc_ctr_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = aes_expandkey(&rk, in_key, key_len); if (err) return err; ctx->key.rounds = 6 + key_len / 4; memcpy(ctx->enc, rk.key_enc, sizeof(ctx->enc)); kernel_neon_begin(); aesbs_convert_key(ctx->key.rk, rk.key_enc, ctx->key.rounds); kernel_neon_end(); memzero_explicit(&rk, sizeof(rk)); return 0; } static int cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; /* fall back to the non-bitsliced NEON implementation */ kernel_neon_begin(); neon_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->enc, ctx->key.rounds, blocks, walk.iv); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); } return err; } static int cbc_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes >= AES_BLOCK_SIZE) { unsigned int blocks = walk.nbytes / AES_BLOCK_SIZE; if (walk.nbytes < walk.total) blocks = round_down(blocks, walk.stride / AES_BLOCK_SIZE); kernel_neon_begin(); aesbs_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); kernel_neon_end(); err = skcipher_walk_done(&walk, walk.nbytes - blocks * AES_BLOCK_SIZE); } return err; } static int ctr_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_cbc_ctr_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; int err; err = skcipher_walk_virt(&walk, req, false); while (walk.nbytes > 0) { int blocks = (walk.nbytes / AES_BLOCK_SIZE) & ~7; int nbytes = walk.nbytes % (8 * AES_BLOCK_SIZE); const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; kernel_neon_begin(); if (blocks >= 8) { aesbs_ctr_encrypt(dst, src, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); dst += blocks * AES_BLOCK_SIZE; src += blocks * AES_BLOCK_SIZE; } if (nbytes && walk.nbytes == walk.total) { neon_aes_ctr_encrypt(dst, src, ctx->enc, ctx->key.rounds, nbytes, walk.iv); nbytes = 0; } kernel_neon_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key, unsigned int key_len) { struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); struct crypto_aes_ctx rk; int err; err = xts_verify_key(tfm, in_key, key_len); if (err) return err; key_len /= 2; err = aes_expandkey(&ctx->cts, in_key, key_len); if (err) return err; err = aes_expandkey(&rk, in_key + key_len, key_len); if (err) return err; memcpy(ctx->twkey, rk.key_enc, sizeof(ctx->twkey)); return aesbs_setkey(tfm, in_key, key_len); } static int __xts_crypt(struct skcipher_request *req, bool encrypt, void (*fn)(u8 out[], u8 const in[], u8 const rk[], int rounds, int blocks, u8 iv[])) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct aesbs_xts_ctx *ctx = crypto_skcipher_ctx(tfm); int tail = req->cryptlen % (8 * AES_BLOCK_SIZE); struct scatterlist sg_src[2], sg_dst[2]; struct skcipher_request subreq; struct scatterlist *src, *dst; struct skcipher_walk walk; int nbytes, err; int first = 1; u8 *out, *in; if (req->cryptlen < AES_BLOCK_SIZE) return -EINVAL; /* ensure that the cts tail is covered by a single step */ if (unlikely(tail > 0 && tail < AES_BLOCK_SIZE)) { int xts_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; skcipher_request_set_tfm(&subreq, tfm); skcipher_request_set_callback(&subreq, skcipher_request_flags(req), NULL, NULL); skcipher_request_set_crypt(&subreq, req->src, req->dst, xts_blocks * AES_BLOCK_SIZE, req->iv); req = &subreq; } else { tail = 0; } err = skcipher_walk_virt(&walk, req, false); if (err) return err; while (walk.nbytes >= AES_BLOCK_SIZE) { int blocks = (walk.nbytes / AES_BLOCK_SIZE) & ~7; out = walk.dst.virt.addr; in = walk.src.virt.addr; nbytes = walk.nbytes; kernel_neon_begin(); if (blocks >= 8) { if (first == 1) neon_aes_ecb_encrypt(walk.iv, walk.iv, ctx->twkey, ctx->key.rounds, 1); first = 2; fn(out, in, ctx->key.rk, ctx->key.rounds, blocks, walk.iv); out += blocks * AES_BLOCK_SIZE; in += blocks * AES_BLOCK_SIZE; nbytes -= blocks * AES_BLOCK_SIZE; } if (walk.nbytes == walk.total && nbytes > 0) { if (encrypt) neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds, nbytes, ctx->twkey, walk.iv, first); else neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds, nbytes, ctx->twkey, walk.iv, first); nbytes = first = 0; } kernel_neon_end(); err = skcipher_walk_done(&walk, nbytes); } if (err || likely(!tail)) return err; /* handle ciphertext stealing */ dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); if (req->dst != req->src) dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, req->iv); err = skcipher_walk_virt(&walk, req, false); if (err) return err; out = walk.dst.virt.addr; in = walk.src.virt.addr; nbytes = walk.nbytes; kernel_neon_begin(); if (encrypt) neon_aes_xts_encrypt(out, in, ctx->cts.key_enc, ctx->key.rounds, nbytes, ctx->twkey, walk.iv, first); else neon_aes_xts_decrypt(out, in, ctx->cts.key_dec, ctx->key.rounds, nbytes, ctx->twkey, walk.iv, first); kernel_neon_end(); return skcipher_walk_done(&walk, 0); } static int xts_encrypt(struct skcipher_request *req) { return __xts_crypt(req, true, aesbs_xts_encrypt); } static int xts_decrypt(struct skcipher_request *req) { return __xts_crypt(req, false, aesbs_xts_decrypt); } static struct skcipher_alg aes_algs[] = { { .base.cra_name = "ecb(aes)", .base.cra_driver_name = "ecb-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .setkey = aesbs_setkey, .encrypt = ecb_encrypt, .decrypt = ecb_decrypt, }, { .base.cra_name = "cbc(aes)", .base.cra_driver_name = "cbc-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctr_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_ctr_setkey, .encrypt = cbc_encrypt, .decrypt = cbc_decrypt, }, { .base.cra_name = "ctr(aes)", .base.cra_driver_name = "ctr-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = 1, .base.cra_ctxsize = sizeof(struct aesbs_cbc_ctr_ctx), .base.cra_module = THIS_MODULE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .chunksize = AES_BLOCK_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_cbc_ctr_setkey, .encrypt = ctr_encrypt, .decrypt = ctr_encrypt, }, { .base.cra_name = "xts(aes)", .base.cra_driver_name = "xts-aes-neonbs", .base.cra_priority = 250, .base.cra_blocksize = AES_BLOCK_SIZE, .base.cra_ctxsize = sizeof(struct aesbs_xts_ctx), .base.cra_module = THIS_MODULE, .min_keysize = 2 * AES_MIN_KEY_SIZE, .max_keysize = 2 * AES_MAX_KEY_SIZE, .walksize = 8 * AES_BLOCK_SIZE, .ivsize = AES_BLOCK_SIZE, .setkey = aesbs_xts_setkey, .encrypt = xts_encrypt, .decrypt = xts_decrypt, } }; static void aes_exit(void) { crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } static int __init aes_init(void) { if (!cpu_have_named_feature(ASIMD)) return -ENODEV; return crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); } module_init(aes_init); module_exit(aes_exit);