// SPDX-License-Identifier: GPL-2.0-only /* * Time related functions for Hexagon architecture * * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. */ #include <linux/init.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/platform_device.h> #include <linux/ioport.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/module.h> #include <asm/hexagon_vm.h> #define TIMER_ENABLE BIT(0) /* * For the clocksource we need: * pcycle frequency (600MHz) * For the loops_per_jiffy we need: * thread/cpu frequency (100MHz) * And for the timer, we need: * sleep clock rate */ cycles_t pcycle_freq_mhz; cycles_t thread_freq_mhz; cycles_t sleep_clk_freq; /* * 8x50 HDD Specs 5-8. Simulator co-sim not fixed until * release 1.1, and then it's "adjustable" and probably not defaulted. */ #define RTOS_TIMER_INT 3 #define RTOS_TIMER_REGS_ADDR 0xAB000000UL static struct resource rtos_timer_resources[] = { { .start = RTOS_TIMER_REGS_ADDR, .end = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1, .flags = IORESOURCE_MEM, }, }; static struct platform_device rtos_timer_device = { .name = "rtos_timer", .id = -1, .num_resources = ARRAY_SIZE(rtos_timer_resources), .resource = rtos_timer_resources, }; /* A lot of this stuff should move into a platform specific section. */ struct adsp_hw_timer_struct { u32 match; /* Match value */ u32 count; u32 enable; /* [1] - CLR_ON_MATCH_EN, [0] - EN */ u32 clear; /* one-shot register that clears the count */ }; /* Look for "TCX0" for related constants. */ static __iomem struct adsp_hw_timer_struct *rtos_timer; static u64 timer_get_cycles(struct clocksource *cs) { return (u64) __vmgettime(); } static struct clocksource hexagon_clocksource = { .name = "pcycles", .rating = 250, .read = timer_get_cycles, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int set_next_event(unsigned long delta, struct clock_event_device *evt) { /* Assuming the timer will be disabled when we enter here. */ iowrite32(1, &rtos_timer->clear); iowrite32(0, &rtos_timer->clear); iowrite32(delta, &rtos_timer->match); iowrite32(TIMER_ENABLE, &rtos_timer->enable); return 0; } #ifdef CONFIG_SMP /* Broadcast mechanism */ static void broadcast(const struct cpumask *mask) { send_ipi(mask, IPI_TIMER); } #endif /* XXX Implement set_state_shutdown() */ static struct clock_event_device hexagon_clockevent_dev = { .name = "clockevent", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 400, .irq = RTOS_TIMER_INT, .set_next_event = set_next_event, #ifdef CONFIG_SMP .broadcast = broadcast, #endif }; #ifdef CONFIG_SMP static DEFINE_PER_CPU(struct clock_event_device, clock_events); void setup_percpu_clockdev(void) { int cpu = smp_processor_id(); struct clock_event_device *ce_dev = &hexagon_clockevent_dev; struct clock_event_device *dummy_clock_dev = &per_cpu(clock_events, cpu); memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev)); INIT_LIST_HEAD(&dummy_clock_dev->list); dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY; dummy_clock_dev->cpumask = cpumask_of(cpu); clockevents_register_device(dummy_clock_dev); } /* Called from smp.c for each CPU's timer ipi call */ void ipi_timer(void) { int cpu = smp_processor_id(); struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu); ce_dev->event_handler(ce_dev); } #endif /* CONFIG_SMP */ static irqreturn_t timer_interrupt(int irq, void *devid) { struct clock_event_device *ce_dev = &hexagon_clockevent_dev; iowrite32(0, &rtos_timer->enable); ce_dev->event_handler(ce_dev); return IRQ_HANDLED; } /* * time_init_deferred - called by start_kernel to set up timer/clock source * * Install the IRQ handler for the clock, setup timers. * This is done late, as that way, we can use ioremap(). * * This runs just before the delay loop is calibrated, and * is used for delay calibration. */ void __init time_init_deferred(void) { struct resource *resource = NULL; struct clock_event_device *ce_dev = &hexagon_clockevent_dev; unsigned long flag = IRQF_TIMER | IRQF_TRIGGER_RISING; ce_dev->cpumask = cpu_all_mask; if (!resource) resource = rtos_timer_device.resource; /* ioremap here means this has to run later, after paging init */ rtos_timer = ioremap(resource->start, resource_size(resource)); if (!rtos_timer) { release_mem_region(resource->start, resource_size(resource)); } clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000); /* Note: the sim generic RTOS clock is apparently really 18750Hz */ /* * Last arg is some guaranteed seconds for which the conversion will * work without overflow. */ clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4); ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev); ce_dev->max_delta_ticks = 0x7fffffff; ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev); ce_dev->min_delta_ticks = 0xf; #ifdef CONFIG_SMP setup_percpu_clockdev(); #endif clockevents_register_device(ce_dev); if (request_irq(ce_dev->irq, timer_interrupt, flag, "rtos_timer", NULL)) pr_err("Failed to register rtos_timer interrupt\n"); } void __init time_init(void) { late_time_init = time_init_deferred; } void __delay(unsigned long cycles) { unsigned long long start = __vmgettime(); while ((__vmgettime() - start) < cycles) cpu_relax(); } EXPORT_SYMBOL(__delay); /* * This could become parametric or perhaps even computed at run-time, * but for now we take the observed simulator jitter. */ static long long fudgefactor = 350; /* Maybe lower if kernel optimized. */ void __udelay(unsigned long usecs) { unsigned long long start = __vmgettime(); unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor; while ((__vmgettime() - start) < finish) cpu_relax(); /* not sure how this improves readability */ } EXPORT_SYMBOL(__udelay);