// SPDX-License-Identifier: GPL-2.0-or-later /* P9 gunzip sample code for demonstrating the P9 NX hardware * interface. Not intended for productive uses or for performance or * compression ratio measurements. Note also that /dev/crypto/gzip, * VAS and skiboot support are required * * Copyright 2020 IBM Corp. * * Author: Bulent Abali <abali@us.ibm.com> * * https://github.com/libnxz/power-gzip for zlib api and other utils * Definitions of acronyms used here. See * P9 NX Gzip Accelerator User's Manual for details: * https://github.com/libnxz/power-gzip/blob/develop/doc/power_nx_gzip_um.pdf * * adler/crc: 32 bit checksums appended to stream tail * ce: completion extension * cpb: coprocessor parameter block (metadata) * crb: coprocessor request block (command) * csb: coprocessor status block (status) * dht: dynamic huffman table * dde: data descriptor element (address, length) * ddl: list of ddes * dh/fh: dynamic and fixed huffman types * fc: coprocessor function code * histlen: history/dictionary length * history: sliding window of up to 32KB of data * lzcount: Deflate LZ symbol counts * rembytecnt: remaining byte count * sfbt: source final block type; last block's type during decomp * spbc: source processed byte count * subc: source unprocessed bit count * tebc: target ending bit count; valid bits in the last byte * tpbc: target processed byte count * vas: virtual accelerator switch; the user mode interface */ #define _ISOC11_SOURCE // For aligned_alloc() #define _DEFAULT_SOURCE // For endian.h #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <stdint.h> #include <sys/types.h> #include <sys/stat.h> #include <sys/time.h> #include <sys/fcntl.h> #include <sys/mman.h> #include <endian.h> #include <bits/endian.h> #include <sys/ioctl.h> #include <assert.h> #include <errno.h> #include <signal.h> #include "nxu.h" #include "nx.h" #include "crb.h" int nx_dbg; FILE *nx_gzip_log; #define NX_MIN(X, Y) (((X) < (Y))?(X):(Y)) #define NX_MAX(X, Y) (((X) > (Y))?(X):(Y)) #define GETINPC(X) fgetc(X) #define FNAME_MAX 1024 /* fifo queue management */ #define fifo_used_bytes(used) (used) #define fifo_free_bytes(used, len) ((len)-(used)) /* amount of free bytes in the first and last parts */ #define fifo_free_first_bytes(cur, used, len) ((((cur)+(used)) <= (len)) \ ? (len)-((cur)+(used)) : 0) #define fifo_free_last_bytes(cur, used, len) ((((cur)+(used)) <= (len)) \ ? (cur) : (len)-(used)) /* amount of used bytes in the first and last parts */ #define fifo_used_first_bytes(cur, used, len) ((((cur)+(used)) <= (len)) \ ? (used) : (len)-(cur)) #define fifo_used_last_bytes(cur, used, len) ((((cur)+(used)) <= (len)) \ ? 0 : ((used)+(cur))-(len)) /* first and last free parts start here */ #define fifo_free_first_offset(cur, used) ((cur)+(used)) #define fifo_free_last_offset(cur, used, len) \ fifo_used_last_bytes(cur, used, len) /* first and last used parts start here */ #define fifo_used_first_offset(cur) (cur) #define fifo_used_last_offset(cur) (0) const int fifo_in_len = 1<<24; const int fifo_out_len = 1<<24; const int page_sz = 1<<16; const int line_sz = 1<<7; const int window_max = 1<<15; /* * Adds an (address, len) pair to the list of ddes (ddl) and updates * the base dde. ddl[0] is the only dde in a direct dde which * contains a single (addr,len) pair. For more pairs, ddl[0] becomes * the indirect (base) dde that points to a list of direct ddes. * See Section 6.4 of the NX-gzip user manual for DDE description. * Addr=NULL, len=0 clears the ddl[0]. Returns the total number of * bytes in ddl. Caller is responsible for allocting the array of * nx_dde_t *ddl. If N addresses are required in the scatter-gather * list, the ddl array must have N+1 entries minimum. */ static inline uint32_t nx_append_dde(struct nx_dde_t *ddl, void *addr, uint32_t len) { uint32_t ddecnt; uint32_t bytes; if (addr == NULL && len == 0) { clearp_dde(ddl); return 0; } NXPRT(fprintf(stderr, "%d: %s addr %p len %x\n", __LINE__, addr, __func__, len)); /* Number of ddes in the dde list ; == 0 when it is a direct dde */ ddecnt = getpnn(ddl, dde_count); bytes = getp32(ddl, ddebc); if (ddecnt == 0 && bytes == 0) { /* First dde is unused; make it a direct dde */ bytes = len; putp32(ddl, ddebc, bytes); putp64(ddl, ddead, (uint64_t) addr); } else if (ddecnt == 0) { /* Converting direct to indirect dde * ddl[0] becomes head dde of ddl * copy direct to indirect first. */ ddl[1] = ddl[0]; /* Add the new dde next */ clear_dde(ddl[2]); put32(ddl[2], ddebc, len); put64(ddl[2], ddead, (uint64_t) addr); /* Ddl head points to 2 direct ddes */ ddecnt = 2; putpnn(ddl, dde_count, ddecnt); bytes = bytes + len; putp32(ddl, ddebc, bytes); /* Pointer to the first direct dde */ putp64(ddl, ddead, (uint64_t) &ddl[1]); } else { /* Append a dde to an existing indirect ddl */ ++ddecnt; clear_dde(ddl[ddecnt]); put64(ddl[ddecnt], ddead, (uint64_t) addr); put32(ddl[ddecnt], ddebc, len); putpnn(ddl, dde_count, ddecnt); bytes = bytes + len; putp32(ddl, ddebc, bytes); /* byte sum of all dde */ } return bytes; } /* * Touch specified number of pages represented in number bytes * beginning from the first buffer in a dde list. * Do not touch the pages past buf_sz-th byte's page. * * Set buf_sz = 0 to touch all pages described by the ddep. */ static int nx_touch_pages_dde(struct nx_dde_t *ddep, long buf_sz, long page_sz, int wr) { uint32_t indirect_count; uint32_t buf_len; long total; uint64_t buf_addr; struct nx_dde_t *dde_list; int i; assert(!!ddep); indirect_count = getpnn(ddep, dde_count); NXPRT(fprintf(stderr, "%s dde_count %d request len ", __func__, indirect_count)); NXPRT(fprintf(stderr, "0x%lx\n", buf_sz)); if (indirect_count == 0) { /* Direct dde */ buf_len = getp32(ddep, ddebc); buf_addr = getp64(ddep, ddead); NXPRT(fprintf(stderr, "touch direct ddebc 0x%x ddead %p\n", buf_len, (void *)buf_addr)); if (buf_sz == 0) nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr); else nxu_touch_pages((void *)buf_addr, NX_MIN(buf_len, buf_sz), page_sz, wr); return ERR_NX_OK; } /* Indirect dde */ if (indirect_count > MAX_DDE_COUNT) return ERR_NX_EXCESSIVE_DDE; /* First address of the list */ dde_list = (struct nx_dde_t *) getp64(ddep, ddead); if (buf_sz == 0) buf_sz = getp32(ddep, ddebc); total = 0; for (i = 0; i < indirect_count; i++) { buf_len = get32(dde_list[i], ddebc); buf_addr = get64(dde_list[i], ddead); total += buf_len; NXPRT(fprintf(stderr, "touch loop len 0x%x ddead %p total ", buf_len, (void *)buf_addr)); NXPRT(fprintf(stderr, "0x%lx\n", total)); /* Touching fewer pages than encoded in the ddebc */ if (total > buf_sz) { buf_len = NX_MIN(buf_len, total - buf_sz); nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr); NXPRT(fprintf(stderr, "touch loop break len 0x%x ", buf_len)); NXPRT(fprintf(stderr, "ddead %p\n", (void *)buf_addr)); break; } nxu_touch_pages((void *)buf_addr, buf_len, page_sz, wr); } return ERR_NX_OK; } /* * Src and dst buffers are supplied in scatter gather lists. * NX function code and other parameters supplied in cmdp. */ static int nx_submit_job(struct nx_dde_t *src, struct nx_dde_t *dst, struct nx_gzip_crb_cpb_t *cmdp, void *handle) { uint64_t csbaddr; memset((void *)&cmdp->crb.csb, 0, sizeof(cmdp->crb.csb)); cmdp->crb.source_dde = *src; cmdp->crb.target_dde = *dst; /* Status, output byte count in tpbc */ csbaddr = ((uint64_t) &cmdp->crb.csb) & csb_address_mask; put64(cmdp->crb, csb_address, csbaddr); /* NX reports input bytes in spbc; cleared */ cmdp->cpb.out_spbc_comp_wrap = 0; cmdp->cpb.out_spbc_comp_with_count = 0; cmdp->cpb.out_spbc_decomp = 0; /* Clear output */ put32(cmdp->cpb, out_crc, INIT_CRC); put32(cmdp->cpb, out_adler, INIT_ADLER); /* Submit the crb, the job descriptor, to the accelerator. */ return nxu_submit_job(cmdp, handle); } int decompress_file(int argc, char **argv, void *devhandle) { FILE *inpf = NULL; FILE *outf = NULL; int c, expect, i, cc, rc = 0; char gzfname[FNAME_MAX]; /* Queuing, file ops, byte counting */ char *fifo_in, *fifo_out; int used_in, cur_in, used_out, cur_out, read_sz, n; int first_free, last_free, first_used, last_used; int first_offset, last_offset; int write_sz, free_space, source_sz; int source_sz_estimate, target_sz_estimate; uint64_t last_comp_ratio = 0; /* 1000 max */ uint64_t total_out = 0; int is_final, is_eof; /* nx hardware */ int sfbt, subc, spbc, tpbc, nx_ce, fc, resuming = 0; int history_len = 0; struct nx_gzip_crb_cpb_t cmd, *cmdp; struct nx_dde_t *ddl_in; struct nx_dde_t dde_in[6] __aligned(128); struct nx_dde_t *ddl_out; struct nx_dde_t dde_out[6] __aligned(128); int pgfault_retries; /* when using mmap'ed files */ off_t input_file_offset; if (argc > 2) { fprintf(stderr, "usage: %s <fname> or stdin\n", argv[0]); fprintf(stderr, " writes to stdout or <fname>.nx.gunzip\n"); return -1; } if (argc == 1) { inpf = stdin; outf = stdout; } else if (argc == 2) { char w[1024]; char *wp; inpf = fopen(argv[1], "r"); if (inpf == NULL) { perror(argv[1]); return -1; } /* Make a new file name to write to. Ignoring '.gz' */ wp = (NULL != (wp = strrchr(argv[1], '/'))) ? (wp+1) : argv[1]; strcpy(w, wp); strcat(w, ".nx.gunzip"); outf = fopen(w, "w"); if (outf == NULL) { perror(w); return -1; } } /* Decode the gzip header */ c = GETINPC(inpf); expect = 0x1f; /* ID1 */ if (c != expect) goto err1; c = GETINPC(inpf); expect = 0x8b; /* ID2 */ if (c != expect) goto err1; c = GETINPC(inpf); expect = 0x08; /* CM */ if (c != expect) goto err1; int flg = GETINPC(inpf); /* FLG */ if (flg & 0xE0 || flg & 0x4 || flg == EOF) goto err2; fprintf(stderr, "gzHeader FLG %x\n", flg); /* Read 6 bytes; ignoring the MTIME, XFL, OS fields in this * sample code. */ for (i = 0; i < 6; i++) { char tmp[10]; tmp[i] = GETINPC(inpf); if (tmp[i] == EOF) goto err3; fprintf(stderr, "%02x ", tmp[i]); if (i == 5) fprintf(stderr, "\n"); } fprintf(stderr, "gzHeader MTIME, XFL, OS ignored\n"); /* FNAME */ if (flg & 0x8) { int k = 0; do { c = GETINPC(inpf); if (c == EOF || k >= FNAME_MAX) goto err3; gzfname[k++] = c; } while (c); fprintf(stderr, "gzHeader FNAME: %s\n", gzfname); } /* FHCRC */ if (flg & 0x2) { c = GETINPC(inpf); if (c == EOF) goto err3; c = GETINPC(inpf); if (c == EOF) goto err3; fprintf(stderr, "gzHeader FHCRC: ignored\n"); } used_in = cur_in = used_out = cur_out = 0; is_final = is_eof = 0; /* Allocate one page larger to prevent page faults due to NX * overfetching. * Either do this (char*)(uintptr_t)aligned_alloc or use * -std=c11 flag to make the int-to-pointer warning go away. */ assert((fifo_in = (char *)(uintptr_t)aligned_alloc(line_sz, fifo_in_len + page_sz)) != NULL); assert((fifo_out = (char *)(uintptr_t)aligned_alloc(line_sz, fifo_out_len + page_sz + line_sz)) != NULL); /* Leave unused space due to history rounding rules */ fifo_out = fifo_out + line_sz; nxu_touch_pages(fifo_out, fifo_out_len, page_sz, 1); ddl_in = &dde_in[0]; ddl_out = &dde_out[0]; cmdp = &cmd; memset(&cmdp->crb, 0, sizeof(cmdp->crb)); read_state: /* Read from .gz file */ NXPRT(fprintf(stderr, "read_state:\n")); if (is_eof != 0) goto write_state; /* We read in to fifo_in in two steps: first: read in to from * cur_in to the end of the buffer. last: if free space wrapped * around, read from fifo_in offset 0 to offset cur_in. */ /* Reset fifo head to reduce unnecessary wrap arounds */ cur_in = (used_in == 0) ? 0 : cur_in; /* Free space total is reduced by a gap */ free_space = NX_MAX(0, fifo_free_bytes(used_in, fifo_in_len) - line_sz); /* Free space may wrap around as first and last */ first_free = fifo_free_first_bytes(cur_in, used_in, fifo_in_len); last_free = fifo_free_last_bytes(cur_in, used_in, fifo_in_len); /* Start offsets of the free memory */ first_offset = fifo_free_first_offset(cur_in, used_in); last_offset = fifo_free_last_offset(cur_in, used_in, fifo_in_len); /* Reduce read_sz because of the line_sz gap */ read_sz = NX_MIN(free_space, first_free); n = 0; if (read_sz > 0) { /* Read in to offset cur_in + used_in */ n = fread(fifo_in + first_offset, 1, read_sz, inpf); used_in = used_in + n; free_space = free_space - n; assert(n <= read_sz); if (n != read_sz) { /* Either EOF or error; exit the read loop */ is_eof = 1; goto write_state; } } /* If free space wrapped around */ if (last_free > 0) { /* Reduce read_sz because of the line_sz gap */ read_sz = NX_MIN(free_space, last_free); n = 0; if (read_sz > 0) { n = fread(fifo_in + last_offset, 1, read_sz, inpf); used_in = used_in + n; /* Increase used space */ free_space = free_space - n; /* Decrease free space */ assert(n <= read_sz); if (n != read_sz) { /* Either EOF or error; exit the read loop */ is_eof = 1; goto write_state; } } } /* At this point we have used_in bytes in fifo_in with the * data head starting at cur_in and possibly wrapping around. */ write_state: /* Write decompressed data to output file */ NXPRT(fprintf(stderr, "write_state:\n")); if (used_out == 0) goto decomp_state; /* If fifo_out has data waiting, write it out to the file to * make free target space for the accelerator used bytes in * the first and last parts of fifo_out. */ first_used = fifo_used_first_bytes(cur_out, used_out, fifo_out_len); last_used = fifo_used_last_bytes(cur_out, used_out, fifo_out_len); write_sz = first_used; n = 0; if (write_sz > 0) { n = fwrite(fifo_out + cur_out, 1, write_sz, outf); used_out = used_out - n; /* Move head of the fifo */ cur_out = (cur_out + n) % fifo_out_len; assert(n <= write_sz); if (n != write_sz) { fprintf(stderr, "error: write\n"); rc = -1; goto err5; } } if (last_used > 0) { /* If more data available in the last part */ write_sz = last_used; /* Keep it here for later */ n = 0; if (write_sz > 0) { n = fwrite(fifo_out, 1, write_sz, outf); used_out = used_out - n; cur_out = (cur_out + n) % fifo_out_len; assert(n <= write_sz); if (n != write_sz) { fprintf(stderr, "error: write\n"); rc = -1; goto err5; } } } decomp_state: /* NX decompresses input data */ NXPRT(fprintf(stderr, "decomp_state:\n")); if (is_final) goto finish_state; /* Address/len lists */ clearp_dde(ddl_in); clearp_dde(ddl_out); /* FC, CRC, HistLen, Table 6-6 */ if (resuming) { /* Resuming a partially decompressed input. * The key to resume is supplying the 32KB * dictionary (history) to NX, which is basically * the last 32KB of output produced. */ fc = GZIP_FC_DECOMPRESS_RESUME; cmdp->cpb.in_crc = cmdp->cpb.out_crc; cmdp->cpb.in_adler = cmdp->cpb.out_adler; /* Round up the history size to quadword. Section 2.10 */ history_len = (history_len + 15) / 16; putnn(cmdp->cpb, in_histlen, history_len); history_len = history_len * 16; /* bytes */ if (history_len > 0) { /* Chain in the history buffer to the DDE list */ if (cur_out >= history_len) { nx_append_dde(ddl_in, fifo_out + (cur_out - history_len), history_len); } else { nx_append_dde(ddl_in, fifo_out + ((fifo_out_len + cur_out) - history_len), history_len - cur_out); /* Up to 32KB history wraps around fifo_out */ nx_append_dde(ddl_in, fifo_out, cur_out); } } } else { /* First decompress job */ fc = GZIP_FC_DECOMPRESS; history_len = 0; /* Writing 0 clears out subc as well */ cmdp->cpb.in_histlen = 0; total_out = 0; put32(cmdp->cpb, in_crc, INIT_CRC); put32(cmdp->cpb, in_adler, INIT_ADLER); put32(cmdp->cpb, out_crc, INIT_CRC); put32(cmdp->cpb, out_adler, INIT_ADLER); /* Assuming 10% compression ratio initially; use the * most recently measured compression ratio as a * heuristic to estimate the input and output * sizes. If we give too much input, the target buffer * overflows and NX cycles are wasted, and then we * must retry with smaller input size. 1000 is 100%. */ last_comp_ratio = 100UL; } cmdp->crb.gzip_fc = 0; putnn(cmdp->crb, gzip_fc, fc); /* * NX source buffers */ first_used = fifo_used_first_bytes(cur_in, used_in, fifo_in_len); last_used = fifo_used_last_bytes(cur_in, used_in, fifo_in_len); if (first_used > 0) nx_append_dde(ddl_in, fifo_in + cur_in, first_used); if (last_used > 0) nx_append_dde(ddl_in, fifo_in, last_used); /* * NX target buffers */ first_free = fifo_free_first_bytes(cur_out, used_out, fifo_out_len); last_free = fifo_free_last_bytes(cur_out, used_out, fifo_out_len); /* Reduce output free space amount not to overwrite the history */ int target_max = NX_MAX(0, fifo_free_bytes(used_out, fifo_out_len) - (1<<16)); NXPRT(fprintf(stderr, "target_max %d (0x%x)\n", target_max, target_max)); first_free = NX_MIN(target_max, first_free); if (first_free > 0) { first_offset = fifo_free_first_offset(cur_out, used_out); nx_append_dde(ddl_out, fifo_out + first_offset, first_free); } if (last_free > 0) { last_free = NX_MIN(target_max - first_free, last_free); if (last_free > 0) { last_offset = fifo_free_last_offset(cur_out, used_out, fifo_out_len); nx_append_dde(ddl_out, fifo_out + last_offset, last_free); } } /* Target buffer size is used to limit the source data size * based on previous measurements of compression ratio. */ /* source_sz includes history */ source_sz = getp32(ddl_in, ddebc); assert(source_sz > history_len); source_sz = source_sz - history_len; /* Estimating how much source is needed to 3/4 fill a * target_max size target buffer. If we overshoot, then NX * must repeat the job with smaller input and we waste * bandwidth. If we undershoot then we use more NX calls than * necessary. */ source_sz_estimate = ((uint64_t)target_max * last_comp_ratio * 3UL) / 4000; if (source_sz_estimate < source_sz) { /* Target might be small, therefore limiting the * source data. */ source_sz = source_sz_estimate; target_sz_estimate = target_max; } else { /* Source file might be small, therefore limiting target * touch pages to a smaller value to save processor cycles. */ target_sz_estimate = ((uint64_t)source_sz * 1000UL) / (last_comp_ratio + 1); target_sz_estimate = NX_MIN(2 * target_sz_estimate, target_max); } source_sz = source_sz + history_len; /* Some NX condition codes require submitting the NX job again. * Kernel doesn't handle NX page faults. Expects user code to * touch pages. */ pgfault_retries = NX_MAX_FAULTS; restart_nx: putp32(ddl_in, ddebc, source_sz); /* Fault in pages */ nxu_touch_pages(cmdp, sizeof(struct nx_gzip_crb_cpb_t), page_sz, 1); nx_touch_pages_dde(ddl_in, 0, page_sz, 0); nx_touch_pages_dde(ddl_out, target_sz_estimate, page_sz, 1); /* Send job to NX */ cc = nx_submit_job(ddl_in, ddl_out, cmdp, devhandle); switch (cc) { case ERR_NX_AT_FAULT: /* We touched the pages ahead of time. In the most common case * we shouldn't be here. But may be some pages were paged out. * Kernel should have placed the faulting address to fsaddr. */ NXPRT(fprintf(stderr, "ERR_NX_AT_FAULT %p\n", (void *)cmdp->crb.csb.fsaddr)); if (pgfault_retries == NX_MAX_FAULTS) { /* Try once with exact number of pages */ --pgfault_retries; goto restart_nx; } else if (pgfault_retries > 0) { /* If still faulting try fewer input pages * assuming memory outage */ if (source_sz > page_sz) source_sz = NX_MAX(source_sz / 2, page_sz); --pgfault_retries; goto restart_nx; } else { fprintf(stderr, "cannot make progress; too many "); fprintf(stderr, "page fault retries cc= %d\n", cc); rc = -1; goto err5; } case ERR_NX_DATA_LENGTH: NXPRT(fprintf(stderr, "ERR_NX_DATA_LENGTH; ")); NXPRT(fprintf(stderr, "stream may have trailing data\n")); /* Not an error in the most common case; it just says * there is trailing data that we must examine. * * CC=3 CE(1)=0 CE(0)=1 indicates partial completion * Fig.6-7 and Table 6-8. */ nx_ce = get_csb_ce_ms3b(cmdp->crb.csb); if (!csb_ce_termination(nx_ce) && csb_ce_partial_completion(nx_ce)) { /* Check CPB for more information * spbc and tpbc are valid */ sfbt = getnn(cmdp->cpb, out_sfbt); /* Table 6-4 */ subc = getnn(cmdp->cpb, out_subc); /* Table 6-4 */ spbc = get32(cmdp->cpb, out_spbc_decomp); tpbc = get32(cmdp->crb.csb, tpbc); assert(target_max >= tpbc); goto ok_cc3; /* not an error */ } else { /* History length error when CE(1)=1 CE(0)=0. */ rc = -1; fprintf(stderr, "history length error cc= %d\n", cc); goto err5; } case ERR_NX_TARGET_SPACE: /* Target buffer not large enough; retry smaller input * data; give at least 1 byte. SPBC/TPBC are not valid. */ assert(source_sz > history_len); source_sz = ((source_sz - history_len + 2) / 2) + history_len; NXPRT(fprintf(stderr, "ERR_NX_TARGET_SPACE; retry with ")); NXPRT(fprintf(stderr, "smaller input data src %d hist %d\n", source_sz, history_len)); goto restart_nx; case ERR_NX_OK: /* This should not happen for gzip formatted data; * we need trailing crc and isize */ fprintf(stderr, "ERR_NX_OK\n"); spbc = get32(cmdp->cpb, out_spbc_decomp); tpbc = get32(cmdp->crb.csb, tpbc); assert(target_max >= tpbc); assert(spbc >= history_len); source_sz = spbc - history_len; goto offsets_state; default: fprintf(stderr, "error: cc= %d\n", cc); rc = -1; goto err5; } ok_cc3: NXPRT(fprintf(stderr, "cc3: sfbt: %x\n", sfbt)); assert(spbc > history_len); source_sz = spbc - history_len; /* Table 6-4: Source Final Block Type (SFBT) describes the * last processed deflate block and clues the software how to * resume the next job. SUBC indicates how many input bits NX * consumed but did not process. SPBC indicates how many * bytes of source were given to the accelerator including * history bytes. */ switch (sfbt) { int dhtlen; case 0x0: /* Deflate final EOB received */ /* Calculating the checksum start position. */ source_sz = source_sz - subc / 8; is_final = 1; break; /* Resume decompression cases are below. Basically * indicates where NX has suspended and how to resume * the input stream. */ case 0x8: /* Within a literal block; use rembytecount */ case 0x9: /* Within a literal block; use rembytecount; bfinal=1 */ /* Supply the partially processed source byte again */ source_sz = source_sz - ((subc + 7) / 8); /* SUBC LS 3bits: number of bits in the first source byte need * to be processed. * 000 means all 8 bits; Table 6-3 * Clear subc, histlen, sfbt, rembytecnt, dhtlen */ cmdp->cpb.in_subc = 0; cmdp->cpb.in_sfbt = 0; putnn(cmdp->cpb, in_subc, subc % 8); putnn(cmdp->cpb, in_sfbt, sfbt); putnn(cmdp->cpb, in_rembytecnt, getnn(cmdp->cpb, out_rembytecnt)); break; case 0xA: /* Within a FH block; */ case 0xB: /* Within a FH block; bfinal=1 */ source_sz = source_sz - ((subc + 7) / 8); /* Clear subc, histlen, sfbt, rembytecnt, dhtlen */ cmdp->cpb.in_subc = 0; cmdp->cpb.in_sfbt = 0; putnn(cmdp->cpb, in_subc, subc % 8); putnn(cmdp->cpb, in_sfbt, sfbt); break; case 0xC: /* Within a DH block; */ case 0xD: /* Within a DH block; bfinal=1 */ source_sz = source_sz - ((subc + 7) / 8); /* Clear subc, histlen, sfbt, rembytecnt, dhtlen */ cmdp->cpb.in_subc = 0; cmdp->cpb.in_sfbt = 0; putnn(cmdp->cpb, in_subc, subc % 8); putnn(cmdp->cpb, in_sfbt, sfbt); dhtlen = getnn(cmdp->cpb, out_dhtlen); putnn(cmdp->cpb, in_dhtlen, dhtlen); assert(dhtlen >= 42); /* Round up to a qword */ dhtlen = (dhtlen + 127) / 128; while (dhtlen > 0) { /* Copy dht from cpb.out to cpb.in */ --dhtlen; cmdp->cpb.in_dht[dhtlen] = cmdp->cpb.out_dht[dhtlen]; } break; case 0xE: /* Within a block header; bfinal=0; */ /* Also given if source data exactly ends (SUBC=0) with * EOB code with BFINAL=0. Means the next byte will * contain a block header. */ case 0xF: /* within a block header with BFINAL=1. */ source_sz = source_sz - ((subc + 7) / 8); /* Clear subc, histlen, sfbt, rembytecnt, dhtlen */ cmdp->cpb.in_subc = 0; cmdp->cpb.in_sfbt = 0; putnn(cmdp->cpb, in_subc, subc % 8); putnn(cmdp->cpb, in_sfbt, sfbt); /* Engine did not process any data */ if (is_eof && (source_sz == 0)) is_final = 1; } offsets_state: /* Adjust the source and target buffer offsets and lengths */ NXPRT(fprintf(stderr, "offsets_state:\n")); /* Delete input data from fifo_in */ used_in = used_in - source_sz; cur_in = (cur_in + source_sz) % fifo_in_len; input_file_offset = input_file_offset + source_sz; /* Add output data to fifo_out */ used_out = used_out + tpbc; assert(used_out <= fifo_out_len); total_out = total_out + tpbc; /* Deflate history is 32KB max. No need to supply more * than 32KB on a resume. */ history_len = (total_out > window_max) ? window_max : total_out; /* To estimate expected expansion in the next NX job; 500 means 50%. * Deflate best case is around 1 to 1000. */ last_comp_ratio = (1000UL * ((uint64_t)source_sz + 1)) / ((uint64_t)tpbc + 1); last_comp_ratio = NX_MAX(NX_MIN(1000UL, last_comp_ratio), 1); NXPRT(fprintf(stderr, "comp_ratio %ld source_sz %d spbc %d tpbc %d\n", last_comp_ratio, source_sz, spbc, tpbc)); resuming = 1; finish_state: NXPRT(fprintf(stderr, "finish_state:\n")); if (is_final) { if (used_out) goto write_state; /* More data to write out */ else if (used_in < 8) { /* Need at least 8 more bytes containing gzip crc * and isize. */ rc = -1; goto err4; } else { /* Compare checksums and exit */ int i; unsigned char tail[8]; uint32_t cksum, isize; for (i = 0; i < 8; i++) tail[i] = fifo_in[(cur_in + i) % fifo_in_len]; fprintf(stderr, "computed checksum %08x isize %08x\n", cmdp->cpb.out_crc, (uint32_t) (total_out % (1ULL<<32))); cksum = ((uint32_t) tail[0] | (uint32_t) tail[1]<<8 | (uint32_t) tail[2]<<16 | (uint32_t) tail[3]<<24); isize = ((uint32_t) tail[4] | (uint32_t) tail[5]<<8 | (uint32_t) tail[6]<<16 | (uint32_t) tail[7]<<24); fprintf(stderr, "stored checksum %08x isize %08x\n", cksum, isize); if (cksum == cmdp->cpb.out_crc && isize == (uint32_t) (total_out % (1ULL<<32))) { rc = 0; goto ok1; } else { rc = -1; goto err4; } } } else goto read_state; return -1; err1: fprintf(stderr, "error: not a gzip file, expect %x, read %x\n", expect, c); return -1; err2: fprintf(stderr, "error: the FLG byte is wrong or not being handled\n"); return -1; err3: fprintf(stderr, "error: gzip header\n"); return -1; err4: fprintf(stderr, "error: checksum missing or mismatch\n"); err5: ok1: fprintf(stderr, "decomp is complete: fclose\n"); fclose(outf); return rc; } int main(int argc, char **argv) { int rc; struct sigaction act; void *handle; nx_dbg = 0; nx_gzip_log = NULL; act.sa_handler = 0; act.sa_sigaction = nxu_sigsegv_handler; act.sa_flags = SA_SIGINFO; act.sa_restorer = 0; sigemptyset(&act.sa_mask); sigaction(SIGSEGV, &act, NULL); handle = nx_function_begin(NX_FUNC_COMP_GZIP, 0); if (!handle) { fprintf(stderr, "Unable to init NX, errno %d\n", errno); exit(-1); } rc = decompress_file(argc, argv, handle); nx_function_end(handle); return rc; }