// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. #include <linux/audit.h> #include <linux/elf.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/mm.h> #include <linux/ptrace.h> #include <linux/regset.h> #include <linux/sched.h> #include <linux/sched/task_stack.h> #include <linux/signal.h> #include <linux/smp.h> #include <linux/uaccess.h> #include <linux/user.h> #include <asm/thread_info.h> #include <asm/page.h> #include <asm/processor.h> #include <asm/asm-offsets.h> #include <abi/regdef.h> #include <abi/ckmmu.h> #define CREATE_TRACE_POINTS #include <trace/events/syscalls.h> /* sets the trace bits. */ #define TRACE_MODE_SI (1 << 14) #define TRACE_MODE_RUN 0 #define TRACE_MODE_MASK ~(0x3 << 14) /* * Make sure the single step bit is not set. */ static void singlestep_disable(struct task_struct *tsk) { struct pt_regs *regs; regs = task_pt_regs(tsk); regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN; /* Enable irq */ regs->sr |= BIT(6); } static void singlestep_enable(struct task_struct *tsk) { struct pt_regs *regs; regs = task_pt_regs(tsk); regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI; /* Disable irq */ regs->sr &= ~BIT(6); } /* * Make sure the single step bit is set. */ void user_enable_single_step(struct task_struct *child) { singlestep_enable(child); } void user_disable_single_step(struct task_struct *child) { singlestep_disable(child); } enum csky_regset { REGSET_GPR, REGSET_FPR, }; static int gpr_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct pt_regs *regs = task_pt_regs(target); /* Abiv1 regs->tls is fake and we need sync here. */ regs->tls = task_thread_info(target)->tp_value; return membuf_write(&to, regs, sizeof(*regs)); } static int gpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret; struct pt_regs regs; ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, ®s, 0, -1); if (ret) return ret; /* BIT(0) of regs.sr is Condition Code/Carry bit */ regs.sr = (regs.sr & BIT(0)) | (task_pt_regs(target)->sr & ~BIT(0)); #ifdef CONFIG_CPU_HAS_HILO regs.dcsr = task_pt_regs(target)->dcsr; #endif task_thread_info(target)->tp_value = regs.tls; *task_pt_regs(target) = regs; return 0; } static int fpr_get(struct task_struct *target, const struct user_regset *regset, struct membuf to) { struct user_fp *regs = (struct user_fp *)&target->thread.user_fp; #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP) int i; struct user_fp tmp = *regs; for (i = 0; i < 16; i++) { tmp.vr[i*4] = regs->vr[i*2]; tmp.vr[i*4 + 1] = regs->vr[i*2 + 1]; } for (i = 0; i < 32; i++) tmp.vr[64 + i] = regs->vr[32 + i]; return membuf_write(&to, &tmp, sizeof(tmp)); #else return membuf_write(&to, regs, sizeof(*regs)); #endif } static int fpr_set(struct task_struct *target, const struct user_regset *regset, unsigned int pos, unsigned int count, const void *kbuf, const void __user *ubuf) { int ret; struct user_fp *regs = (struct user_fp *)&target->thread.user_fp; #if defined(CONFIG_CPU_HAS_FPUV2) && !defined(CONFIG_CPU_HAS_VDSP) int i; struct user_fp tmp; ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tmp, 0, -1); *regs = tmp; for (i = 0; i < 16; i++) { regs->vr[i*2] = tmp.vr[i*4]; regs->vr[i*2 + 1] = tmp.vr[i*4 + 1]; } for (i = 0; i < 32; i++) regs->vr[32 + i] = tmp.vr[64 + i]; #else ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, regs, 0, -1); #endif return ret; } static const struct user_regset csky_regsets[] = { [REGSET_GPR] = { .core_note_type = NT_PRSTATUS, .n = sizeof(struct pt_regs) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .regset_get = gpr_get, .set = gpr_set, }, [REGSET_FPR] = { .core_note_type = NT_PRFPREG, .n = sizeof(struct user_fp) / sizeof(u32), .size = sizeof(u32), .align = sizeof(u32), .regset_get = fpr_get, .set = fpr_set, }, }; static const struct user_regset_view user_csky_view = { .name = "csky", .e_machine = ELF_ARCH, .regsets = csky_regsets, .n = ARRAY_SIZE(csky_regsets), }; const struct user_regset_view *task_user_regset_view(struct task_struct *task) { return &user_csky_view; } struct pt_regs_offset { const char *name; int offset; }; #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)} #define REG_OFFSET_END {.name = NULL, .offset = 0} static const struct pt_regs_offset regoffset_table[] = { REG_OFFSET_NAME(tls), REG_OFFSET_NAME(lr), REG_OFFSET_NAME(pc), REG_OFFSET_NAME(sr), REG_OFFSET_NAME(usp), REG_OFFSET_NAME(orig_a0), REG_OFFSET_NAME(a0), REG_OFFSET_NAME(a1), REG_OFFSET_NAME(a2), REG_OFFSET_NAME(a3), REG_OFFSET_NAME(regs[0]), REG_OFFSET_NAME(regs[1]), REG_OFFSET_NAME(regs[2]), REG_OFFSET_NAME(regs[3]), REG_OFFSET_NAME(regs[4]), REG_OFFSET_NAME(regs[5]), REG_OFFSET_NAME(regs[6]), REG_OFFSET_NAME(regs[7]), REG_OFFSET_NAME(regs[8]), REG_OFFSET_NAME(regs[9]), #if defined(__CSKYABIV2__) REG_OFFSET_NAME(exregs[0]), REG_OFFSET_NAME(exregs[1]), REG_OFFSET_NAME(exregs[2]), REG_OFFSET_NAME(exregs[3]), REG_OFFSET_NAME(exregs[4]), REG_OFFSET_NAME(exregs[5]), REG_OFFSET_NAME(exregs[6]), REG_OFFSET_NAME(exregs[7]), REG_OFFSET_NAME(exregs[8]), REG_OFFSET_NAME(exregs[9]), REG_OFFSET_NAME(exregs[10]), REG_OFFSET_NAME(exregs[11]), REG_OFFSET_NAME(exregs[12]), REG_OFFSET_NAME(exregs[13]), REG_OFFSET_NAME(exregs[14]), REG_OFFSET_NAME(rhi), REG_OFFSET_NAME(rlo), REG_OFFSET_NAME(dcsr), #endif REG_OFFSET_END, }; /** * regs_query_register_offset() - query register offset from its name * @name: the name of a register * * regs_query_register_offset() returns the offset of a register in struct * pt_regs from its name. If the name is invalid, this returns -EINVAL; */ int regs_query_register_offset(const char *name) { const struct pt_regs_offset *roff; for (roff = regoffset_table; roff->name != NULL; roff++) if (!strcmp(roff->name, name)) return roff->offset; return -EINVAL; } /** * regs_within_kernel_stack() - check the address in the stack * @regs: pt_regs which contains kernel stack pointer. * @addr: address which is checked. * * regs_within_kernel_stack() checks @addr is within the kernel stack page(s). * If @addr is within the kernel stack, it returns true. If not, returns false. */ static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr) { return (addr & ~(THREAD_SIZE - 1)) == (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)); } /** * regs_get_kernel_stack_nth() - get Nth entry of the stack * @regs: pt_regs which contains kernel stack pointer. * @n: stack entry number. * * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which * is specified by @regs. If the @n th entry is NOT in the kernel stack, * this returns 0. */ unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n) { unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs); addr += n; if (regs_within_kernel_stack(regs, (unsigned long)addr)) return *addr; else return 0; } void ptrace_disable(struct task_struct *child) { singlestep_disable(child); } long arch_ptrace(struct task_struct *child, long request, unsigned long addr, unsigned long data) { long ret = -EIO; switch (request) { default: ret = ptrace_request(child, request, addr, data); break; } return ret; } asmlinkage int syscall_trace_enter(struct pt_regs *regs) { if (test_thread_flag(TIF_SYSCALL_TRACE)) if (ptrace_report_syscall_entry(regs)) return -1; if (secure_computing() == -1) return -1; if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) trace_sys_enter(regs, syscall_get_nr(current, regs)); audit_syscall_entry(regs_syscallid(regs), regs->a0, regs->a1, regs->a2, regs->a3); return 0; } asmlinkage void syscall_trace_exit(struct pt_regs *regs) { audit_syscall_exit(regs); if (test_thread_flag(TIF_SYSCALL_TRACE)) ptrace_report_syscall_exit(regs, 0); if (test_thread_flag(TIF_SYSCALL_TRACEPOINT)) trace_sys_exit(regs, syscall_get_return_value(current, regs)); } #ifdef CONFIG_CPU_CK860 static void show_iutlb(void) { int entry, i; unsigned long flags; unsigned long oldpid; unsigned long entryhi[16], entrylo0[16], entrylo1[16]; oldpid = read_mmu_entryhi(); entry = 0x8000; local_irq_save(flags); for (i = 0; i < 16; i++) { write_mmu_index(entry); tlb_read(); entryhi[i] = read_mmu_entryhi(); entrylo0[i] = read_mmu_entrylo0(); entrylo1[i] = read_mmu_entrylo1(); entry++; } local_irq_restore(flags); write_mmu_entryhi(oldpid); printk("\n\n\n"); for (i = 0; i < 16; i++) printk("iutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;" " entrylo1 - 0x%lx\n", i, entryhi[i], entrylo0[i], entrylo1[i]); printk("\n\n\n"); } static void show_dutlb(void) { int entry, i; unsigned long flags; unsigned long oldpid; unsigned long entryhi[16], entrylo0[16], entrylo1[16]; oldpid = read_mmu_entryhi(); entry = 0x4000; local_irq_save(flags); for (i = 0; i < 16; i++) { write_mmu_index(entry); tlb_read(); entryhi[i] = read_mmu_entryhi(); entrylo0[i] = read_mmu_entrylo0(); entrylo1[i] = read_mmu_entrylo1(); entry++; } local_irq_restore(flags); write_mmu_entryhi(oldpid); printk("\n\n\n"); for (i = 0; i < 16; i++) printk("dutlb[%d]: entryhi - 0x%lx; entrylo0 - 0x%lx;" " entrylo1 - 0x%lx\n", i, entryhi[i], entrylo0[i], entrylo1[i]); printk("\n\n\n"); } static unsigned long entryhi[1024], entrylo0[1024], entrylo1[1024]; static void show_jtlb(void) { int entry; unsigned long flags; unsigned long oldpid; oldpid = read_mmu_entryhi(); entry = 0; local_irq_save(flags); while (entry < 1024) { write_mmu_index(entry); tlb_read(); entryhi[entry] = read_mmu_entryhi(); entrylo0[entry] = read_mmu_entrylo0(); entrylo1[entry] = read_mmu_entrylo1(); entry++; } local_irq_restore(flags); write_mmu_entryhi(oldpid); printk("\n\n\n"); for (entry = 0; entry < 1024; entry++) printk("jtlb[%x]: entryhi - 0x%lx; entrylo0 - 0x%lx;" " entrylo1 - 0x%lx\n", entry, entryhi[entry], entrylo0[entry], entrylo1[entry]); printk("\n\n\n"); } static void show_tlb(void) { show_iutlb(); show_dutlb(); show_jtlb(); } #else static void show_tlb(void) { return; } #endif void show_regs(struct pt_regs *fp) { pr_info("\nCURRENT PROCESS:\n\n"); pr_info("COMM=%s PID=%d\n", current->comm, current->pid); if (current->mm) { pr_info("TEXT=%08x-%08x DATA=%08x-%08x BSS=%08x-%08x\n", (int) current->mm->start_code, (int) current->mm->end_code, (int) current->mm->start_data, (int) current->mm->end_data, (int) current->mm->end_data, (int) current->mm->brk); pr_info("USER-STACK=%08x KERNEL-STACK=%08x\n\n", (int) current->mm->start_stack, (int) (((unsigned long) current) + 2 * PAGE_SIZE)); } pr_info("PC: 0x%08lx (%pS)\n", (long)fp->pc, (void *)fp->pc); pr_info("LR: 0x%08lx (%pS)\n", (long)fp->lr, (void *)fp->lr); pr_info("SP: 0x%08lx\n", (long)fp->usp); pr_info("PSR: 0x%08lx\n", (long)fp->sr); pr_info("orig_a0: 0x%08lx\n", fp->orig_a0); pr_info("PT_REGS: 0x%08lx\n", (long)fp); pr_info(" a0: 0x%08lx a1: 0x%08lx a2: 0x%08lx a3: 0x%08lx\n", fp->a0, fp->a1, fp->a2, fp->a3); #if defined(__CSKYABIV2__) pr_info(" r4: 0x%08lx r5: 0x%08lx r6: 0x%08lx r7: 0x%08lx\n", fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]); pr_info(" r8: 0x%08lx r9: 0x%08lx r10: 0x%08lx r11: 0x%08lx\n", fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]); pr_info("r12: 0x%08lx r13: 0x%08lx r15: 0x%08lx\n", fp->regs[8], fp->regs[9], fp->lr); pr_info("r16: 0x%08lx r17: 0x%08lx r18: 0x%08lx r19: 0x%08lx\n", fp->exregs[0], fp->exregs[1], fp->exregs[2], fp->exregs[3]); pr_info("r20: 0x%08lx r21: 0x%08lx r22: 0x%08lx r23: 0x%08lx\n", fp->exregs[4], fp->exregs[5], fp->exregs[6], fp->exregs[7]); pr_info("r24: 0x%08lx r25: 0x%08lx r26: 0x%08lx r27: 0x%08lx\n", fp->exregs[8], fp->exregs[9], fp->exregs[10], fp->exregs[11]); pr_info("r28: 0x%08lx r29: 0x%08lx r30: 0x%08lx tls: 0x%08lx\n", fp->exregs[12], fp->exregs[13], fp->exregs[14], fp->tls); pr_info(" hi: 0x%08lx lo: 0x%08lx\n", fp->rhi, fp->rlo); #else pr_info(" r6: 0x%08lx r7: 0x%08lx r8: 0x%08lx r9: 0x%08lx\n", fp->regs[0], fp->regs[1], fp->regs[2], fp->regs[3]); pr_info("r10: 0x%08lx r11: 0x%08lx r12: 0x%08lx r13: 0x%08lx\n", fp->regs[4], fp->regs[5], fp->regs[6], fp->regs[7]); pr_info("r14: 0x%08lx r1: 0x%08lx\n", fp->regs[8], fp->regs[9]); #endif show_tlb(); return; }