// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) /* Copyright (c) 2021 Facebook */ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <errno.h> #include <linux/filter.h> #include <sys/param.h> #include "btf.h" #include "bpf.h" #include "libbpf.h" #include "libbpf_internal.h" #include "hashmap.h" #include "bpf_gen_internal.h" #include "skel_internal.h" #include <asm/byteorder.h> #define MAX_USED_MAPS 64 #define MAX_USED_PROGS 32 #define MAX_KFUNC_DESCS 256 #define MAX_FD_ARRAY_SZ (MAX_USED_MAPS + MAX_KFUNC_DESCS) /* The following structure describes the stack layout of the loader program. * In addition R6 contains the pointer to context. * R7 contains the result of the last sys_bpf command (typically error or FD). * R9 contains the result of the last sys_close command. * * Naming convention: * ctx - bpf program context * stack - bpf program stack * blob - bpf_attr-s, strings, insns, map data. * All the bytes that loader prog will use for read/write. */ struct loader_stack { __u32 btf_fd; __u32 inner_map_fd; __u32 prog_fd[MAX_USED_PROGS]; }; #define stack_off(field) \ (__s16)(-sizeof(struct loader_stack) + offsetof(struct loader_stack, field)) #define attr_field(attr, field) (attr + offsetof(union bpf_attr, field)) static int blob_fd_array_off(struct bpf_gen *gen, int index) { return gen->fd_array + index * sizeof(int); } static int realloc_insn_buf(struct bpf_gen *gen, __u32 size) { size_t off = gen->insn_cur - gen->insn_start; void *insn_start; if (gen->error) return gen->error; if (size > INT32_MAX || off + size > INT32_MAX) { gen->error = -ERANGE; return -ERANGE; } insn_start = realloc(gen->insn_start, off + size); if (!insn_start) { gen->error = -ENOMEM; free(gen->insn_start); gen->insn_start = NULL; return -ENOMEM; } gen->insn_start = insn_start; gen->insn_cur = insn_start + off; return 0; } static int realloc_data_buf(struct bpf_gen *gen, __u32 size) { size_t off = gen->data_cur - gen->data_start; void *data_start; if (gen->error) return gen->error; if (size > INT32_MAX || off + size > INT32_MAX) { gen->error = -ERANGE; return -ERANGE; } data_start = realloc(gen->data_start, off + size); if (!data_start) { gen->error = -ENOMEM; free(gen->data_start); gen->data_start = NULL; return -ENOMEM; } gen->data_start = data_start; gen->data_cur = data_start + off; return 0; } static void emit(struct bpf_gen *gen, struct bpf_insn insn) { if (realloc_insn_buf(gen, sizeof(insn))) return; memcpy(gen->insn_cur, &insn, sizeof(insn)); gen->insn_cur += sizeof(insn); } static void emit2(struct bpf_gen *gen, struct bpf_insn insn1, struct bpf_insn insn2) { emit(gen, insn1); emit(gen, insn2); } static int add_data(struct bpf_gen *gen, const void *data, __u32 size); static void emit_sys_close_blob(struct bpf_gen *gen, int blob_off); void bpf_gen__init(struct bpf_gen *gen, int log_level, int nr_progs, int nr_maps) { size_t stack_sz = sizeof(struct loader_stack), nr_progs_sz; int i; gen->fd_array = add_data(gen, NULL, MAX_FD_ARRAY_SZ * sizeof(int)); gen->log_level = log_level; /* save ctx pointer into R6 */ emit(gen, BPF_MOV64_REG(BPF_REG_6, BPF_REG_1)); /* bzero stack */ emit(gen, BPF_MOV64_REG(BPF_REG_1, BPF_REG_10)); emit(gen, BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -stack_sz)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, stack_sz)); emit(gen, BPF_MOV64_IMM(BPF_REG_3, 0)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_probe_read_kernel)); /* amount of stack actually used, only used to calculate iterations, not stack offset */ nr_progs_sz = offsetof(struct loader_stack, prog_fd[nr_progs]); /* jump over cleanup code */ emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, /* size of cleanup code below (including map fd cleanup) */ (nr_progs_sz / 4) * 3 + 2 + /* 6 insns for emit_sys_close_blob, * 6 insns for debug_regs in emit_sys_close_blob */ nr_maps * (6 + (gen->log_level ? 6 : 0)))); /* remember the label where all error branches will jump to */ gen->cleanup_label = gen->insn_cur - gen->insn_start; /* emit cleanup code: close all temp FDs */ for (i = 0; i < nr_progs_sz; i += 4) { emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_10, -stack_sz + i)); emit(gen, BPF_JMP_IMM(BPF_JSLE, BPF_REG_1, 0, 1)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_sys_close)); } for (i = 0; i < nr_maps; i++) emit_sys_close_blob(gen, blob_fd_array_off(gen, i)); /* R7 contains the error code from sys_bpf. Copy it into R0 and exit. */ emit(gen, BPF_MOV64_REG(BPF_REG_0, BPF_REG_7)); emit(gen, BPF_EXIT_INSN()); } static int add_data(struct bpf_gen *gen, const void *data, __u32 size) { __u32 size8 = roundup(size, 8); __u64 zero = 0; void *prev; if (realloc_data_buf(gen, size8)) return 0; prev = gen->data_cur; if (data) { memcpy(gen->data_cur, data, size); memcpy(gen->data_cur + size, &zero, size8 - size); } else { memset(gen->data_cur, 0, size8); } gen->data_cur += size8; return prev - gen->data_start; } /* Get index for map_fd/btf_fd slot in reserved fd_array, or in data relative * to start of fd_array. Caller can decide if it is usable or not. */ static int add_map_fd(struct bpf_gen *gen) { if (gen->nr_maps == MAX_USED_MAPS) { pr_warn("Total maps exceeds %d\n", MAX_USED_MAPS); gen->error = -E2BIG; return 0; } return gen->nr_maps++; } static int add_kfunc_btf_fd(struct bpf_gen *gen) { int cur; if (gen->nr_fd_array == MAX_KFUNC_DESCS) { cur = add_data(gen, NULL, sizeof(int)); return (cur - gen->fd_array) / sizeof(int); } return MAX_USED_MAPS + gen->nr_fd_array++; } static int insn_bytes_to_bpf_size(__u32 sz) { switch (sz) { case 8: return BPF_DW; case 4: return BPF_W; case 2: return BPF_H; case 1: return BPF_B; default: return -1; } } /* *(u64 *)(blob + off) = (u64)(void *)(blob + data) */ static void emit_rel_store(struct bpf_gen *gen, int off, int data) { emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_0, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, data)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, off)); emit(gen, BPF_STX_MEM(BPF_DW, BPF_REG_1, BPF_REG_0, 0)); } static void move_blob2blob(struct bpf_gen *gen, int off, int size, int blob_off) { emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_2, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_off)); emit(gen, BPF_LDX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_0, BPF_REG_2, 0)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, off)); emit(gen, BPF_STX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_1, BPF_REG_0, 0)); } static void move_blob2ctx(struct bpf_gen *gen, int ctx_off, int size, int blob_off) { emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_off)); emit(gen, BPF_LDX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_0, BPF_REG_1, 0)); emit(gen, BPF_STX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_6, BPF_REG_0, ctx_off)); } static void move_ctx2blob(struct bpf_gen *gen, int off, int size, int ctx_off, bool check_non_zero) { emit(gen, BPF_LDX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_0, BPF_REG_6, ctx_off)); if (check_non_zero) /* If value in ctx is zero don't update the blob. * For example: when ctx->map.max_entries == 0, keep default max_entries from bpf.c */ emit(gen, BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 3)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, off)); emit(gen, BPF_STX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_1, BPF_REG_0, 0)); } static void move_stack2blob(struct bpf_gen *gen, int off, int size, int stack_off) { emit(gen, BPF_LDX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_0, BPF_REG_10, stack_off)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, off)); emit(gen, BPF_STX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_1, BPF_REG_0, 0)); } static void move_stack2ctx(struct bpf_gen *gen, int ctx_off, int size, int stack_off) { emit(gen, BPF_LDX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_0, BPF_REG_10, stack_off)); emit(gen, BPF_STX_MEM(insn_bytes_to_bpf_size(size), BPF_REG_6, BPF_REG_0, ctx_off)); } static void emit_sys_bpf(struct bpf_gen *gen, int cmd, int attr, int attr_size) { emit(gen, BPF_MOV64_IMM(BPF_REG_1, cmd)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_2, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, attr)); emit(gen, BPF_MOV64_IMM(BPF_REG_3, attr_size)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_sys_bpf)); /* remember the result in R7 */ emit(gen, BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); } static bool is_simm16(__s64 value) { return value == (__s64)(__s16)value; } static void emit_check_err(struct bpf_gen *gen) { __s64 off = -(gen->insn_cur - gen->insn_start - gen->cleanup_label) / 8 - 1; /* R7 contains result of last sys_bpf command. * if (R7 < 0) goto cleanup; */ if (is_simm16(off)) { emit(gen, BPF_JMP_IMM(BPF_JSLT, BPF_REG_7, 0, off)); } else { gen->error = -ERANGE; emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, -1)); } } /* reg1 and reg2 should not be R1 - R5. They can be R0, R6 - R10 */ static void emit_debug(struct bpf_gen *gen, int reg1, int reg2, const char *fmt, va_list args) { char buf[1024]; int addr, len, ret; if (!gen->log_level) return; ret = vsnprintf(buf, sizeof(buf), fmt, args); if (ret < 1024 - 7 && reg1 >= 0 && reg2 < 0) /* The special case to accommodate common debug_ret(): * to avoid specifying BPF_REG_7 and adding " r=%%d" to * prints explicitly. */ strcat(buf, " r=%d"); len = strlen(buf) + 1; addr = add_data(gen, buf, len); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, addr)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, len)); if (reg1 >= 0) emit(gen, BPF_MOV64_REG(BPF_REG_3, reg1)); if (reg2 >= 0) emit(gen, BPF_MOV64_REG(BPF_REG_4, reg2)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_trace_printk)); } static void debug_regs(struct bpf_gen *gen, int reg1, int reg2, const char *fmt, ...) { va_list args; va_start(args, fmt); emit_debug(gen, reg1, reg2, fmt, args); va_end(args); } static void debug_ret(struct bpf_gen *gen, const char *fmt, ...) { va_list args; va_start(args, fmt); emit_debug(gen, BPF_REG_7, -1, fmt, args); va_end(args); } static void __emit_sys_close(struct bpf_gen *gen) { emit(gen, BPF_JMP_IMM(BPF_JSLE, BPF_REG_1, 0, /* 2 is the number of the following insns * * 6 is additional insns in debug_regs */ 2 + (gen->log_level ? 6 : 0))); emit(gen, BPF_MOV64_REG(BPF_REG_9, BPF_REG_1)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_sys_close)); debug_regs(gen, BPF_REG_9, BPF_REG_0, "close(%%d) = %%d"); } static void emit_sys_close_stack(struct bpf_gen *gen, int stack_off) { emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_10, stack_off)); __emit_sys_close(gen); } static void emit_sys_close_blob(struct bpf_gen *gen, int blob_off) { emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_0, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_off)); emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_1, BPF_REG_0, 0)); __emit_sys_close(gen); } int bpf_gen__finish(struct bpf_gen *gen, int nr_progs, int nr_maps) { int i; if (nr_progs < gen->nr_progs || nr_maps != gen->nr_maps) { pr_warn("nr_progs %d/%d nr_maps %d/%d mismatch\n", nr_progs, gen->nr_progs, nr_maps, gen->nr_maps); gen->error = -EFAULT; return gen->error; } emit_sys_close_stack(gen, stack_off(btf_fd)); for (i = 0; i < gen->nr_progs; i++) move_stack2ctx(gen, sizeof(struct bpf_loader_ctx) + sizeof(struct bpf_map_desc) * gen->nr_maps + sizeof(struct bpf_prog_desc) * i + offsetof(struct bpf_prog_desc, prog_fd), 4, stack_off(prog_fd[i])); for (i = 0; i < gen->nr_maps; i++) move_blob2ctx(gen, sizeof(struct bpf_loader_ctx) + sizeof(struct bpf_map_desc) * i + offsetof(struct bpf_map_desc, map_fd), 4, blob_fd_array_off(gen, i)); emit(gen, BPF_MOV64_IMM(BPF_REG_0, 0)); emit(gen, BPF_EXIT_INSN()); pr_debug("gen: finish %d\n", gen->error); if (!gen->error) { struct gen_loader_opts *opts = gen->opts; opts->insns = gen->insn_start; opts->insns_sz = gen->insn_cur - gen->insn_start; opts->data = gen->data_start; opts->data_sz = gen->data_cur - gen->data_start; } return gen->error; } void bpf_gen__free(struct bpf_gen *gen) { if (!gen) return; free(gen->data_start); free(gen->insn_start); free(gen); } void bpf_gen__load_btf(struct bpf_gen *gen, const void *btf_raw_data, __u32 btf_raw_size) { int attr_size = offsetofend(union bpf_attr, btf_log_level); int btf_data, btf_load_attr; union bpf_attr attr; memset(&attr, 0, attr_size); pr_debug("gen: load_btf: size %d\n", btf_raw_size); btf_data = add_data(gen, btf_raw_data, btf_raw_size); attr.btf_size = btf_raw_size; btf_load_attr = add_data(gen, &attr, attr_size); /* populate union bpf_attr with user provided log details */ move_ctx2blob(gen, attr_field(btf_load_attr, btf_log_level), 4, offsetof(struct bpf_loader_ctx, log_level), false); move_ctx2blob(gen, attr_field(btf_load_attr, btf_log_size), 4, offsetof(struct bpf_loader_ctx, log_size), false); move_ctx2blob(gen, attr_field(btf_load_attr, btf_log_buf), 8, offsetof(struct bpf_loader_ctx, log_buf), false); /* populate union bpf_attr with a pointer to the BTF data */ emit_rel_store(gen, attr_field(btf_load_attr, btf), btf_data); /* emit BTF_LOAD command */ emit_sys_bpf(gen, BPF_BTF_LOAD, btf_load_attr, attr_size); debug_ret(gen, "btf_load size %d", btf_raw_size); emit_check_err(gen); /* remember btf_fd in the stack, if successful */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_7, stack_off(btf_fd))); } void bpf_gen__map_create(struct bpf_gen *gen, enum bpf_map_type map_type, const char *map_name, __u32 key_size, __u32 value_size, __u32 max_entries, struct bpf_map_create_opts *map_attr, int map_idx) { int attr_size = offsetofend(union bpf_attr, map_extra); bool close_inner_map_fd = false; int map_create_attr, idx; union bpf_attr attr; memset(&attr, 0, attr_size); attr.map_type = map_type; attr.key_size = key_size; attr.value_size = value_size; attr.map_flags = map_attr->map_flags; attr.map_extra = map_attr->map_extra; if (map_name) libbpf_strlcpy(attr.map_name, map_name, sizeof(attr.map_name)); attr.numa_node = map_attr->numa_node; attr.map_ifindex = map_attr->map_ifindex; attr.max_entries = max_entries; attr.btf_key_type_id = map_attr->btf_key_type_id; attr.btf_value_type_id = map_attr->btf_value_type_id; pr_debug("gen: map_create: %s idx %d type %d value_type_id %d\n", attr.map_name, map_idx, map_type, attr.btf_value_type_id); map_create_attr = add_data(gen, &attr, attr_size); if (attr.btf_value_type_id) /* populate union bpf_attr with btf_fd saved in the stack earlier */ move_stack2blob(gen, attr_field(map_create_attr, btf_fd), 4, stack_off(btf_fd)); switch (attr.map_type) { case BPF_MAP_TYPE_ARRAY_OF_MAPS: case BPF_MAP_TYPE_HASH_OF_MAPS: move_stack2blob(gen, attr_field(map_create_attr, inner_map_fd), 4, stack_off(inner_map_fd)); close_inner_map_fd = true; break; default: break; } /* conditionally update max_entries */ if (map_idx >= 0) move_ctx2blob(gen, attr_field(map_create_attr, max_entries), 4, sizeof(struct bpf_loader_ctx) + sizeof(struct bpf_map_desc) * map_idx + offsetof(struct bpf_map_desc, max_entries), true /* check that max_entries != 0 */); /* emit MAP_CREATE command */ emit_sys_bpf(gen, BPF_MAP_CREATE, map_create_attr, attr_size); debug_ret(gen, "map_create %s idx %d type %d value_size %d value_btf_id %d", attr.map_name, map_idx, map_type, value_size, attr.btf_value_type_id); emit_check_err(gen); /* remember map_fd in the stack, if successful */ if (map_idx < 0) { /* This bpf_gen__map_create() function is called with map_idx >= 0 * for all maps that libbpf loading logic tracks. * It's called with -1 to create an inner map. */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_7, stack_off(inner_map_fd))); } else if (map_idx != gen->nr_maps) { gen->error = -EDOM; /* internal bug */ return; } else { /* add_map_fd does gen->nr_maps++ */ idx = add_map_fd(gen); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_fd_array_off(gen, idx))); emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_1, BPF_REG_7, 0)); } if (close_inner_map_fd) emit_sys_close_stack(gen, stack_off(inner_map_fd)); } void bpf_gen__record_attach_target(struct bpf_gen *gen, const char *attach_name, enum bpf_attach_type type) { const char *prefix; int kind, ret; btf_get_kernel_prefix_kind(type, &prefix, &kind); gen->attach_kind = kind; ret = snprintf(gen->attach_target, sizeof(gen->attach_target), "%s%s", prefix, attach_name); if (ret >= sizeof(gen->attach_target)) gen->error = -ENOSPC; } static void emit_find_attach_target(struct bpf_gen *gen) { int name, len = strlen(gen->attach_target) + 1; pr_debug("gen: find_attach_tgt %s %d\n", gen->attach_target, gen->attach_kind); name = add_data(gen, gen->attach_target, len); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, name)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, len)); emit(gen, BPF_MOV64_IMM(BPF_REG_3, gen->attach_kind)); emit(gen, BPF_MOV64_IMM(BPF_REG_4, 0)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_btf_find_by_name_kind)); emit(gen, BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); debug_ret(gen, "find_by_name_kind(%s,%d)", gen->attach_target, gen->attach_kind); emit_check_err(gen); /* if successful, btf_id is in lower 32-bit of R7 and * btf_obj_fd is in upper 32-bit */ } void bpf_gen__record_extern(struct bpf_gen *gen, const char *name, bool is_weak, bool is_typeless, bool is_ld64, int kind, int insn_idx) { struct ksym_relo_desc *relo; relo = libbpf_reallocarray(gen->relos, gen->relo_cnt + 1, sizeof(*relo)); if (!relo) { gen->error = -ENOMEM; return; } gen->relos = relo; relo += gen->relo_cnt; relo->name = name; relo->is_weak = is_weak; relo->is_typeless = is_typeless; relo->is_ld64 = is_ld64; relo->kind = kind; relo->insn_idx = insn_idx; gen->relo_cnt++; } /* returns existing ksym_desc with ref incremented, or inserts a new one */ static struct ksym_desc *get_ksym_desc(struct bpf_gen *gen, struct ksym_relo_desc *relo) { struct ksym_desc *kdesc; int i; for (i = 0; i < gen->nr_ksyms; i++) { kdesc = &gen->ksyms[i]; if (kdesc->kind == relo->kind && kdesc->is_ld64 == relo->is_ld64 && !strcmp(kdesc->name, relo->name)) { kdesc->ref++; return kdesc; } } kdesc = libbpf_reallocarray(gen->ksyms, gen->nr_ksyms + 1, sizeof(*kdesc)); if (!kdesc) { gen->error = -ENOMEM; return NULL; } gen->ksyms = kdesc; kdesc = &gen->ksyms[gen->nr_ksyms++]; kdesc->name = relo->name; kdesc->kind = relo->kind; kdesc->ref = 1; kdesc->off = 0; kdesc->insn = 0; kdesc->is_ld64 = relo->is_ld64; return kdesc; } /* Overwrites BPF_REG_{0, 1, 2, 3, 4, 7} * Returns result in BPF_REG_7 */ static void emit_bpf_find_by_name_kind(struct bpf_gen *gen, struct ksym_relo_desc *relo) { int name_off, len = strlen(relo->name) + 1; name_off = add_data(gen, relo->name, len); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, name_off)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, len)); emit(gen, BPF_MOV64_IMM(BPF_REG_3, relo->kind)); emit(gen, BPF_MOV64_IMM(BPF_REG_4, 0)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_btf_find_by_name_kind)); emit(gen, BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); debug_ret(gen, "find_by_name_kind(%s,%d)", relo->name, relo->kind); } /* Overwrites BPF_REG_{0, 1, 2, 3, 4, 7} * Returns result in BPF_REG_7 * Returns u64 symbol addr in BPF_REG_9 */ static void emit_bpf_kallsyms_lookup_name(struct bpf_gen *gen, struct ksym_relo_desc *relo) { int name_off, len = strlen(relo->name) + 1, res_off; name_off = add_data(gen, relo->name, len); res_off = add_data(gen, NULL, 8); /* res is u64 */ emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, name_off)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, len)); emit(gen, BPF_MOV64_IMM(BPF_REG_3, 0)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_4, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, res_off)); emit(gen, BPF_MOV64_REG(BPF_REG_7, BPF_REG_4)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_kallsyms_lookup_name)); emit(gen, BPF_LDX_MEM(BPF_DW, BPF_REG_9, BPF_REG_7, 0)); emit(gen, BPF_MOV64_REG(BPF_REG_7, BPF_REG_0)); debug_ret(gen, "kallsyms_lookup_name(%s,%d)", relo->name, relo->kind); } /* Expects: * BPF_REG_8 - pointer to instruction * * We need to reuse BTF fd for same symbol otherwise each relocation takes a new * index, while kernel limits total kfunc BTFs to 256. For duplicate symbols, * this would mean a new BTF fd index for each entry. By pairing symbol name * with index, we get the insn->imm, insn->off pairing that kernel uses for * kfunc_tab, which becomes the effective limit even though all of them may * share same index in fd_array (such that kfunc_btf_tab has 1 element). */ static void emit_relo_kfunc_btf(struct bpf_gen *gen, struct ksym_relo_desc *relo, int insn) { struct ksym_desc *kdesc; int btf_fd_idx; kdesc = get_ksym_desc(gen, relo); if (!kdesc) return; /* try to copy from existing bpf_insn */ if (kdesc->ref > 1) { move_blob2blob(gen, insn + offsetof(struct bpf_insn, imm), 4, kdesc->insn + offsetof(struct bpf_insn, imm)); move_blob2blob(gen, insn + offsetof(struct bpf_insn, off), 2, kdesc->insn + offsetof(struct bpf_insn, off)); goto log; } /* remember insn offset, so we can copy BTF ID and FD later */ kdesc->insn = insn; emit_bpf_find_by_name_kind(gen, relo); if (!relo->is_weak) emit_check_err(gen); /* get index in fd_array to store BTF FD at */ btf_fd_idx = add_kfunc_btf_fd(gen); if (btf_fd_idx > INT16_MAX) { pr_warn("BTF fd off %d for kfunc %s exceeds INT16_MAX, cannot process relocation\n", btf_fd_idx, relo->name); gen->error = -E2BIG; return; } kdesc->off = btf_fd_idx; /* jump to success case */ emit(gen, BPF_JMP_IMM(BPF_JSGE, BPF_REG_7, 0, 3)); /* set value for imm, off as 0 */ emit(gen, BPF_ST_MEM(BPF_W, BPF_REG_8, offsetof(struct bpf_insn, imm), 0)); emit(gen, BPF_ST_MEM(BPF_H, BPF_REG_8, offsetof(struct bpf_insn, off), 0)); /* skip success case for ret < 0 */ emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, 10)); /* store btf_id into insn[insn_idx].imm */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_8, BPF_REG_7, offsetof(struct bpf_insn, imm))); /* obtain fd in BPF_REG_9 */ emit(gen, BPF_MOV64_REG(BPF_REG_9, BPF_REG_7)); emit(gen, BPF_ALU64_IMM(BPF_RSH, BPF_REG_9, 32)); /* load fd_array slot pointer */ emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_0, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_fd_array_off(gen, btf_fd_idx))); /* store BTF fd in slot, 0 for vmlinux */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_9, 0)); /* jump to insn[insn_idx].off store if fd denotes module BTF */ emit(gen, BPF_JMP_IMM(BPF_JNE, BPF_REG_9, 0, 2)); /* set the default value for off */ emit(gen, BPF_ST_MEM(BPF_H, BPF_REG_8, offsetof(struct bpf_insn, off), 0)); /* skip BTF fd store for vmlinux BTF */ emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, 1)); /* store index into insn[insn_idx].off */ emit(gen, BPF_ST_MEM(BPF_H, BPF_REG_8, offsetof(struct bpf_insn, off), btf_fd_idx)); log: if (!gen->log_level) return; emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_8, offsetof(struct bpf_insn, imm))); emit(gen, BPF_LDX_MEM(BPF_H, BPF_REG_9, BPF_REG_8, offsetof(struct bpf_insn, off))); debug_regs(gen, BPF_REG_7, BPF_REG_9, " func (%s:count=%d): imm: %%d, off: %%d", relo->name, kdesc->ref); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_0, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, blob_fd_array_off(gen, kdesc->off))); emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_9, BPF_REG_0, 0)); debug_regs(gen, BPF_REG_9, -1, " func (%s:count=%d): btf_fd", relo->name, kdesc->ref); } static void emit_ksym_relo_log(struct bpf_gen *gen, struct ksym_relo_desc *relo, int ref) { if (!gen->log_level) return; emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_7, BPF_REG_8, offsetof(struct bpf_insn, imm))); emit(gen, BPF_LDX_MEM(BPF_H, BPF_REG_9, BPF_REG_8, sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm))); debug_regs(gen, BPF_REG_7, BPF_REG_9, " var t=%d w=%d (%s:count=%d): imm[0]: %%d, imm[1]: %%d", relo->is_typeless, relo->is_weak, relo->name, ref); emit(gen, BPF_LDX_MEM(BPF_B, BPF_REG_9, BPF_REG_8, offsetofend(struct bpf_insn, code))); debug_regs(gen, BPF_REG_9, -1, " var t=%d w=%d (%s:count=%d): insn.reg", relo->is_typeless, relo->is_weak, relo->name, ref); } /* Expects: * BPF_REG_8 - pointer to instruction */ static void emit_relo_ksym_typeless(struct bpf_gen *gen, struct ksym_relo_desc *relo, int insn) { struct ksym_desc *kdesc; kdesc = get_ksym_desc(gen, relo); if (!kdesc) return; /* try to copy from existing ldimm64 insn */ if (kdesc->ref > 1) { move_blob2blob(gen, insn + offsetof(struct bpf_insn, imm), 4, kdesc->insn + offsetof(struct bpf_insn, imm)); move_blob2blob(gen, insn + sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm), 4, kdesc->insn + sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm)); goto log; } /* remember insn offset, so we can copy ksym addr later */ kdesc->insn = insn; /* skip typeless ksym_desc in fd closing loop in cleanup_relos */ kdesc->typeless = true; emit_bpf_kallsyms_lookup_name(gen, relo); emit(gen, BPF_JMP_IMM(BPF_JEQ, BPF_REG_7, -ENOENT, 1)); emit_check_err(gen); /* store lower half of addr into insn[insn_idx].imm */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_8, BPF_REG_9, offsetof(struct bpf_insn, imm))); /* store upper half of addr into insn[insn_idx + 1].imm */ emit(gen, BPF_ALU64_IMM(BPF_RSH, BPF_REG_9, 32)); emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_8, BPF_REG_9, sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm))); log: emit_ksym_relo_log(gen, relo, kdesc->ref); } static __u32 src_reg_mask(void) { #if defined(__LITTLE_ENDIAN_BITFIELD) return 0x0f; /* src_reg,dst_reg,... */ #elif defined(__BIG_ENDIAN_BITFIELD) return 0xf0; /* dst_reg,src_reg,... */ #else #error "Unsupported bit endianness, cannot proceed" #endif } /* Expects: * BPF_REG_8 - pointer to instruction */ static void emit_relo_ksym_btf(struct bpf_gen *gen, struct ksym_relo_desc *relo, int insn) { struct ksym_desc *kdesc; __u32 reg_mask; kdesc = get_ksym_desc(gen, relo); if (!kdesc) return; /* try to copy from existing ldimm64 insn */ if (kdesc->ref > 1) { move_blob2blob(gen, insn + sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm), 4, kdesc->insn + sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm)); move_blob2blob(gen, insn + offsetof(struct bpf_insn, imm), 4, kdesc->insn + offsetof(struct bpf_insn, imm)); /* jump over src_reg adjustment if imm (btf_id) is not 0, reuse BPF_REG_0 from move_blob2blob * If btf_id is zero, clear BPF_PSEUDO_BTF_ID flag in src_reg of ld_imm64 insn */ emit(gen, BPF_JMP_IMM(BPF_JNE, BPF_REG_0, 0, 3)); goto clear_src_reg; } /* remember insn offset, so we can copy BTF ID and FD later */ kdesc->insn = insn; emit_bpf_find_by_name_kind(gen, relo); if (!relo->is_weak) emit_check_err(gen); /* jump to success case */ emit(gen, BPF_JMP_IMM(BPF_JSGE, BPF_REG_7, 0, 3)); /* set values for insn[insn_idx].imm, insn[insn_idx + 1].imm as 0 */ emit(gen, BPF_ST_MEM(BPF_W, BPF_REG_8, offsetof(struct bpf_insn, imm), 0)); emit(gen, BPF_ST_MEM(BPF_W, BPF_REG_8, sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm), 0)); /* skip success case for ret < 0 */ emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, 4)); /* store btf_id into insn[insn_idx].imm */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_8, BPF_REG_7, offsetof(struct bpf_insn, imm))); /* store btf_obj_fd into insn[insn_idx + 1].imm */ emit(gen, BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 32)); emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_8, BPF_REG_7, sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm))); /* skip src_reg adjustment */ emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, 3)); clear_src_reg: /* clear bpf_object__relocate_data's src_reg assignment, otherwise we get a verifier failure */ reg_mask = src_reg_mask(); emit(gen, BPF_LDX_MEM(BPF_B, BPF_REG_9, BPF_REG_8, offsetofend(struct bpf_insn, code))); emit(gen, BPF_ALU32_IMM(BPF_AND, BPF_REG_9, reg_mask)); emit(gen, BPF_STX_MEM(BPF_B, BPF_REG_8, BPF_REG_9, offsetofend(struct bpf_insn, code))); emit_ksym_relo_log(gen, relo, kdesc->ref); } void bpf_gen__record_relo_core(struct bpf_gen *gen, const struct bpf_core_relo *core_relo) { struct bpf_core_relo *relos; relos = libbpf_reallocarray(gen->core_relos, gen->core_relo_cnt + 1, sizeof(*relos)); if (!relos) { gen->error = -ENOMEM; return; } gen->core_relos = relos; relos += gen->core_relo_cnt; memcpy(relos, core_relo, sizeof(*relos)); gen->core_relo_cnt++; } static void emit_relo(struct bpf_gen *gen, struct ksym_relo_desc *relo, int insns) { int insn; pr_debug("gen: emit_relo (%d): %s at %d %s\n", relo->kind, relo->name, relo->insn_idx, relo->is_ld64 ? "ld64" : "call"); insn = insns + sizeof(struct bpf_insn) * relo->insn_idx; emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_8, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, insn)); if (relo->is_ld64) { if (relo->is_typeless) emit_relo_ksym_typeless(gen, relo, insn); else emit_relo_ksym_btf(gen, relo, insn); } else { emit_relo_kfunc_btf(gen, relo, insn); } } static void emit_relos(struct bpf_gen *gen, int insns) { int i; for (i = 0; i < gen->relo_cnt; i++) emit_relo(gen, gen->relos + i, insns); } static void cleanup_core_relo(struct bpf_gen *gen) { if (!gen->core_relo_cnt) return; free(gen->core_relos); gen->core_relo_cnt = 0; gen->core_relos = NULL; } static void cleanup_relos(struct bpf_gen *gen, int insns) { struct ksym_desc *kdesc; int i, insn; for (i = 0; i < gen->nr_ksyms; i++) { kdesc = &gen->ksyms[i]; /* only close fds for typed ksyms and kfuncs */ if (kdesc->is_ld64 && !kdesc->typeless) { /* close fd recorded in insn[insn_idx + 1].imm */ insn = kdesc->insn; insn += sizeof(struct bpf_insn) + offsetof(struct bpf_insn, imm); emit_sys_close_blob(gen, insn); } else if (!kdesc->is_ld64) { emit_sys_close_blob(gen, blob_fd_array_off(gen, kdesc->off)); if (kdesc->off < MAX_FD_ARRAY_SZ) gen->nr_fd_array--; } } if (gen->nr_ksyms) { free(gen->ksyms); gen->nr_ksyms = 0; gen->ksyms = NULL; } if (gen->relo_cnt) { free(gen->relos); gen->relo_cnt = 0; gen->relos = NULL; } cleanup_core_relo(gen); } void bpf_gen__prog_load(struct bpf_gen *gen, enum bpf_prog_type prog_type, const char *prog_name, const char *license, struct bpf_insn *insns, size_t insn_cnt, struct bpf_prog_load_opts *load_attr, int prog_idx) { int prog_load_attr, license_off, insns_off, func_info, line_info, core_relos; int attr_size = offsetofend(union bpf_attr, core_relo_rec_size); union bpf_attr attr; memset(&attr, 0, attr_size); pr_debug("gen: prog_load: type %d insns_cnt %zd progi_idx %d\n", prog_type, insn_cnt, prog_idx); /* add license string to blob of bytes */ license_off = add_data(gen, license, strlen(license) + 1); /* add insns to blob of bytes */ insns_off = add_data(gen, insns, insn_cnt * sizeof(struct bpf_insn)); attr.prog_type = prog_type; attr.expected_attach_type = load_attr->expected_attach_type; attr.attach_btf_id = load_attr->attach_btf_id; attr.prog_ifindex = load_attr->prog_ifindex; attr.kern_version = 0; attr.insn_cnt = (__u32)insn_cnt; attr.prog_flags = load_attr->prog_flags; attr.func_info_rec_size = load_attr->func_info_rec_size; attr.func_info_cnt = load_attr->func_info_cnt; func_info = add_data(gen, load_attr->func_info, attr.func_info_cnt * attr.func_info_rec_size); attr.line_info_rec_size = load_attr->line_info_rec_size; attr.line_info_cnt = load_attr->line_info_cnt; line_info = add_data(gen, load_attr->line_info, attr.line_info_cnt * attr.line_info_rec_size); attr.core_relo_rec_size = sizeof(struct bpf_core_relo); attr.core_relo_cnt = gen->core_relo_cnt; core_relos = add_data(gen, gen->core_relos, attr.core_relo_cnt * attr.core_relo_rec_size); libbpf_strlcpy(attr.prog_name, prog_name, sizeof(attr.prog_name)); prog_load_attr = add_data(gen, &attr, attr_size); /* populate union bpf_attr with a pointer to license */ emit_rel_store(gen, attr_field(prog_load_attr, license), license_off); /* populate union bpf_attr with a pointer to instructions */ emit_rel_store(gen, attr_field(prog_load_attr, insns), insns_off); /* populate union bpf_attr with a pointer to func_info */ emit_rel_store(gen, attr_field(prog_load_attr, func_info), func_info); /* populate union bpf_attr with a pointer to line_info */ emit_rel_store(gen, attr_field(prog_load_attr, line_info), line_info); /* populate union bpf_attr with a pointer to core_relos */ emit_rel_store(gen, attr_field(prog_load_attr, core_relos), core_relos); /* populate union bpf_attr fd_array with a pointer to data where map_fds are saved */ emit_rel_store(gen, attr_field(prog_load_attr, fd_array), gen->fd_array); /* populate union bpf_attr with user provided log details */ move_ctx2blob(gen, attr_field(prog_load_attr, log_level), 4, offsetof(struct bpf_loader_ctx, log_level), false); move_ctx2blob(gen, attr_field(prog_load_attr, log_size), 4, offsetof(struct bpf_loader_ctx, log_size), false); move_ctx2blob(gen, attr_field(prog_load_attr, log_buf), 8, offsetof(struct bpf_loader_ctx, log_buf), false); /* populate union bpf_attr with btf_fd saved in the stack earlier */ move_stack2blob(gen, attr_field(prog_load_attr, prog_btf_fd), 4, stack_off(btf_fd)); if (gen->attach_kind) { emit_find_attach_target(gen); /* populate union bpf_attr with btf_id and btf_obj_fd found by helper */ emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_0, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, prog_load_attr)); emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_7, offsetof(union bpf_attr, attach_btf_id))); emit(gen, BPF_ALU64_IMM(BPF_RSH, BPF_REG_7, 32)); emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_0, BPF_REG_7, offsetof(union bpf_attr, attach_btf_obj_fd))); } emit_relos(gen, insns_off); /* emit PROG_LOAD command */ emit_sys_bpf(gen, BPF_PROG_LOAD, prog_load_attr, attr_size); debug_ret(gen, "prog_load %s insn_cnt %d", attr.prog_name, attr.insn_cnt); /* successful or not, close btf module FDs used in extern ksyms and attach_btf_obj_fd */ cleanup_relos(gen, insns_off); if (gen->attach_kind) { emit_sys_close_blob(gen, attr_field(prog_load_attr, attach_btf_obj_fd)); gen->attach_kind = 0; } emit_check_err(gen); /* remember prog_fd in the stack, if successful */ emit(gen, BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_7, stack_off(prog_fd[gen->nr_progs]))); gen->nr_progs++; } void bpf_gen__map_update_elem(struct bpf_gen *gen, int map_idx, void *pvalue, __u32 value_size) { int attr_size = offsetofend(union bpf_attr, flags); int map_update_attr, value, key; union bpf_attr attr; int zero = 0; memset(&attr, 0, attr_size); pr_debug("gen: map_update_elem: idx %d\n", map_idx); value = add_data(gen, pvalue, value_size); key = add_data(gen, &zero, sizeof(zero)); /* if (map_desc[map_idx].initial_value) { * if (ctx->flags & BPF_SKEL_KERNEL) * bpf_probe_read_kernel(value, value_size, initial_value); * else * bpf_copy_from_user(value, value_size, initial_value); * } */ emit(gen, BPF_LDX_MEM(BPF_DW, BPF_REG_3, BPF_REG_6, sizeof(struct bpf_loader_ctx) + sizeof(struct bpf_map_desc) * map_idx + offsetof(struct bpf_map_desc, initial_value))); emit(gen, BPF_JMP_IMM(BPF_JEQ, BPF_REG_3, 0, 8)); emit2(gen, BPF_LD_IMM64_RAW_FULL(BPF_REG_1, BPF_PSEUDO_MAP_IDX_VALUE, 0, 0, 0, value)); emit(gen, BPF_MOV64_IMM(BPF_REG_2, value_size)); emit(gen, BPF_LDX_MEM(BPF_W, BPF_REG_0, BPF_REG_6, offsetof(struct bpf_loader_ctx, flags))); emit(gen, BPF_JMP_IMM(BPF_JSET, BPF_REG_0, BPF_SKEL_KERNEL, 2)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_copy_from_user)); emit(gen, BPF_JMP_IMM(BPF_JA, 0, 0, 1)); emit(gen, BPF_EMIT_CALL(BPF_FUNC_probe_read_kernel)); map_update_attr = add_data(gen, &attr, attr_size); move_blob2blob(gen, attr_field(map_update_attr, map_fd), 4, blob_fd_array_off(gen, map_idx)); emit_rel_store(gen, attr_field(map_update_attr, key), key); emit_rel_store(gen, attr_field(map_update_attr, value), value); /* emit MAP_UPDATE_ELEM command */ emit_sys_bpf(gen, BPF_MAP_UPDATE_ELEM, map_update_attr, attr_size); debug_ret(gen, "update_elem idx %d value_size %d", map_idx, value_size); emit_check_err(gen); } void bpf_gen__populate_outer_map(struct bpf_gen *gen, int outer_map_idx, int slot, int inner_map_idx) { int attr_size = offsetofend(union bpf_attr, flags); int map_update_attr, key; union bpf_attr attr; memset(&attr, 0, attr_size); pr_debug("gen: populate_outer_map: outer %d key %d inner %d\n", outer_map_idx, slot, inner_map_idx); key = add_data(gen, &slot, sizeof(slot)); map_update_attr = add_data(gen, &attr, attr_size); move_blob2blob(gen, attr_field(map_update_attr, map_fd), 4, blob_fd_array_off(gen, outer_map_idx)); emit_rel_store(gen, attr_field(map_update_attr, key), key); emit_rel_store(gen, attr_field(map_update_attr, value), blob_fd_array_off(gen, inner_map_idx)); /* emit MAP_UPDATE_ELEM command */ emit_sys_bpf(gen, BPF_MAP_UPDATE_ELEM, map_update_attr, attr_size); debug_ret(gen, "populate_outer_map outer %d key %d inner %d", outer_map_idx, slot, inner_map_idx); emit_check_err(gen); } void bpf_gen__map_freeze(struct bpf_gen *gen, int map_idx) { int attr_size = offsetofend(union bpf_attr, map_fd); int map_freeze_attr; union bpf_attr attr; memset(&attr, 0, attr_size); pr_debug("gen: map_freeze: idx %d\n", map_idx); map_freeze_attr = add_data(gen, &attr, attr_size); move_blob2blob(gen, attr_field(map_freeze_attr, map_fd), 4, blob_fd_array_off(gen, map_idx)); /* emit MAP_FREEZE command */ emit_sys_bpf(gen, BPF_MAP_FREEZE, map_freeze_attr, attr_size); debug_ret(gen, "map_freeze"); emit_check_err(gen); }