// SPDX-License-Identifier: GPL-2.0-only /* * eBPF JIT compiler for PPC32 * * Copyright 2020 Christophe Leroy <christophe.leroy@csgroup.eu> * CS GROUP France * * Based on PPC64 eBPF JIT compiler by Naveen N. Rao */ #include <linux/moduleloader.h> #include <asm/cacheflush.h> #include <asm/asm-compat.h> #include <linux/netdevice.h> #include <linux/filter.h> #include <linux/if_vlan.h> #include <asm/kprobes.h> #include <linux/bpf.h> #include "bpf_jit.h" /* * Stack layout: * * [ prev sp ] <------------- * [ nv gpr save area ] 16 * 4 | * fp (r31) --> [ ebpf stack space ] upto 512 | * [ frame header ] 16 | * sp (r1) ---> [ stack pointer ] -------------- */ /* for gpr non volatile registers r17 to r31 (14) + tail call */ #define BPF_PPC_STACK_SAVE (15 * 4 + 4) /* stack frame, ensure this is quadword aligned */ #define BPF_PPC_STACKFRAME(ctx) (STACK_FRAME_MIN_SIZE + BPF_PPC_STACK_SAVE + (ctx)->stack_size) #define PPC_EX32(r, i) EMIT(PPC_RAW_LI((r), (i) < 0 ? -1 : 0)) /* PPC NVR range -- update this if we ever use NVRs below r17 */ #define BPF_PPC_NVR_MIN _R17 #define BPF_PPC_TC _R16 /* BPF register usage */ #define TMP_REG (MAX_BPF_JIT_REG + 0) /* BPF to ppc register mappings */ void bpf_jit_init_reg_mapping(struct codegen_context *ctx) { /* function return value */ ctx->b2p[BPF_REG_0] = _R12; /* function arguments */ ctx->b2p[BPF_REG_1] = _R4; ctx->b2p[BPF_REG_2] = _R6; ctx->b2p[BPF_REG_3] = _R8; ctx->b2p[BPF_REG_4] = _R10; ctx->b2p[BPF_REG_5] = _R22; /* non volatile registers */ ctx->b2p[BPF_REG_6] = _R24; ctx->b2p[BPF_REG_7] = _R26; ctx->b2p[BPF_REG_8] = _R28; ctx->b2p[BPF_REG_9] = _R30; /* frame pointer aka BPF_REG_10 */ ctx->b2p[BPF_REG_FP] = _R18; /* eBPF jit internal registers */ ctx->b2p[BPF_REG_AX] = _R20; ctx->b2p[TMP_REG] = _R31; /* 32 bits */ } static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg) { if ((reg >= BPF_PPC_NVR_MIN && reg < 32) || reg == BPF_PPC_TC) return BPF_PPC_STACKFRAME(ctx) - 4 * (32 - reg); WARN(true, "BPF JIT is asking about unknown registers, will crash the stack"); /* Use the hole we have left for alignment */ return BPF_PPC_STACKFRAME(ctx) - 4; } #define SEEN_VREG_MASK 0x1ff80000 /* Volatile registers r3-r12 */ #define SEEN_NVREG_FULL_MASK 0x0003ffff /* Non volatile registers r14-r31 */ #define SEEN_NVREG_TEMP_MASK 0x00001e01 /* BPF_REG_5, BPF_REG_AX, TMP_REG */ static inline bool bpf_has_stack_frame(struct codegen_context *ctx) { /* * We only need a stack frame if: * - we call other functions (kernel helpers), or * - we use non volatile registers, or * - we use tail call counter * - the bpf program uses its stack area * The latter condition is deduced from the usage of BPF_REG_FP */ return ctx->seen & (SEEN_FUNC | SEEN_TAILCALL | SEEN_NVREG_FULL_MASK) || bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP)); } void bpf_jit_realloc_regs(struct codegen_context *ctx) { unsigned int nvreg_mask; if (ctx->seen & SEEN_FUNC) nvreg_mask = SEEN_NVREG_TEMP_MASK; else nvreg_mask = SEEN_NVREG_FULL_MASK; while (ctx->seen & nvreg_mask && (ctx->seen & SEEN_VREG_MASK) != SEEN_VREG_MASK) { int old = 32 - fls(ctx->seen & (nvreg_mask & 0xaaaaaaab)); int new = 32 - fls(~ctx->seen & (SEEN_VREG_MASK & 0xaaaaaaaa)); int i; for (i = BPF_REG_0; i <= TMP_REG; i++) { if (ctx->b2p[i] != old) continue; ctx->b2p[i] = new; bpf_set_seen_register(ctx, new); bpf_clear_seen_register(ctx, old); if (i != TMP_REG) { bpf_set_seen_register(ctx, new - 1); bpf_clear_seen_register(ctx, old - 1); } break; } } } void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx) { int i; /* Initialize tail_call_cnt, to be skipped if we do tail calls. */ if (ctx->seen & SEEN_TAILCALL) EMIT(PPC_RAW_LI(_R4, 0)); else EMIT(PPC_RAW_NOP()); #define BPF_TAILCALL_PROLOGUE_SIZE 4 if (bpf_has_stack_frame(ctx)) EMIT(PPC_RAW_STWU(_R1, _R1, -BPF_PPC_STACKFRAME(ctx))); if (ctx->seen & SEEN_TAILCALL) EMIT(PPC_RAW_STW(_R4, _R1, bpf_jit_stack_offsetof(ctx, BPF_PPC_TC))); /* First arg comes in as a 32 bits pointer. */ EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_1), _R3)); EMIT(PPC_RAW_LI(bpf_to_ppc(BPF_REG_1) - 1, 0)); /* * We need a stack frame, but we don't necessarily need to * save/restore LR unless we call other functions */ if (ctx->seen & SEEN_FUNC) EMIT(PPC_RAW_MFLR(_R0)); /* * Back up non-volatile regs -- registers r18-r31 */ for (i = BPF_PPC_NVR_MIN; i <= 31; i++) if (bpf_is_seen_register(ctx, i)) EMIT(PPC_RAW_STW(i, _R1, bpf_jit_stack_offsetof(ctx, i))); /* Setup frame pointer to point to the bpf stack area */ if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_FP))) { EMIT(PPC_RAW_LI(bpf_to_ppc(BPF_REG_FP) - 1, 0)); EMIT(PPC_RAW_ADDI(bpf_to_ppc(BPF_REG_FP), _R1, STACK_FRAME_MIN_SIZE + ctx->stack_size)); } if (ctx->seen & SEEN_FUNC) EMIT(PPC_RAW_STW(_R0, _R1, BPF_PPC_STACKFRAME(ctx) + PPC_LR_STKOFF)); } static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx) { int i; /* Restore NVRs */ for (i = BPF_PPC_NVR_MIN; i <= 31; i++) if (bpf_is_seen_register(ctx, i)) EMIT(PPC_RAW_LWZ(i, _R1, bpf_jit_stack_offsetof(ctx, i))); if (ctx->seen & SEEN_FUNC) EMIT(PPC_RAW_LWZ(_R0, _R1, BPF_PPC_STACKFRAME(ctx) + PPC_LR_STKOFF)); /* Tear down our stack frame */ if (bpf_has_stack_frame(ctx)) EMIT(PPC_RAW_ADDI(_R1, _R1, BPF_PPC_STACKFRAME(ctx))); if (ctx->seen & SEEN_FUNC) EMIT(PPC_RAW_MTLR(_R0)); } void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx) { EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_0))); bpf_jit_emit_common_epilogue(image, ctx); EMIT(PPC_RAW_BLR()); } int bpf_jit_emit_func_call_rel(u32 *image, struct codegen_context *ctx, u64 func) { s32 rel = (s32)func - (s32)(image + ctx->idx); if (image && rel < 0x2000000 && rel >= -0x2000000) { PPC_BL(func); } else { /* Load function address into r0 */ EMIT(PPC_RAW_LIS(_R0, IMM_H(func))); EMIT(PPC_RAW_ORI(_R0, _R0, IMM_L(func))); EMIT(PPC_RAW_MTCTR(_R0)); EMIT(PPC_RAW_BCTRL()); } return 0; } static int bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out) { /* * By now, the eBPF program has already setup parameters in r3-r6 * r3-r4/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program * r5-r6/BPF_REG_2 - pointer to bpf_array * r7-r8/BPF_REG_3 - index in bpf_array */ int b2p_bpf_array = bpf_to_ppc(BPF_REG_2); int b2p_index = bpf_to_ppc(BPF_REG_3); /* * if (index >= array->map.max_entries) * goto out; */ EMIT(PPC_RAW_LWZ(_R0, b2p_bpf_array, offsetof(struct bpf_array, map.max_entries))); EMIT(PPC_RAW_CMPLW(b2p_index, _R0)); EMIT(PPC_RAW_LWZ(_R0, _R1, bpf_jit_stack_offsetof(ctx, BPF_PPC_TC))); PPC_BCC_SHORT(COND_GE, out); /* * if (tail_call_cnt >= MAX_TAIL_CALL_CNT) * goto out; */ EMIT(PPC_RAW_CMPLWI(_R0, MAX_TAIL_CALL_CNT)); /* tail_call_cnt++; */ EMIT(PPC_RAW_ADDIC(_R0, _R0, 1)); PPC_BCC_SHORT(COND_GE, out); /* prog = array->ptrs[index]; */ EMIT(PPC_RAW_RLWINM(_R3, b2p_index, 2, 0, 29)); EMIT(PPC_RAW_ADD(_R3, _R3, b2p_bpf_array)); EMIT(PPC_RAW_LWZ(_R3, _R3, offsetof(struct bpf_array, ptrs))); /* * if (prog == NULL) * goto out; */ EMIT(PPC_RAW_CMPLWI(_R3, 0)); PPC_BCC_SHORT(COND_EQ, out); /* goto *(prog->bpf_func + prologue_size); */ EMIT(PPC_RAW_LWZ(_R3, _R3, offsetof(struct bpf_prog, bpf_func))); EMIT(PPC_RAW_ADDIC(_R3, _R3, BPF_TAILCALL_PROLOGUE_SIZE)); EMIT(PPC_RAW_MTCTR(_R3)); EMIT(PPC_RAW_MR(_R3, bpf_to_ppc(BPF_REG_1))); /* Put tail_call_cnt in r4 */ EMIT(PPC_RAW_MR(_R4, _R0)); /* tear restore NVRs, ... */ bpf_jit_emit_common_epilogue(image, ctx); EMIT(PPC_RAW_BCTR()); /* out: */ return 0; } /* Assemble the body code between the prologue & epilogue */ int bpf_jit_build_body(struct bpf_prog *fp, u32 *image, struct codegen_context *ctx, u32 *addrs, int pass, bool extra_pass) { const struct bpf_insn *insn = fp->insnsi; int flen = fp->len; int i, ret; /* Start of epilogue code - will only be valid 2nd pass onwards */ u32 exit_addr = addrs[flen]; for (i = 0; i < flen; i++) { u32 code = insn[i].code; u32 prevcode = i ? insn[i - 1].code : 0; u32 dst_reg = bpf_to_ppc(insn[i].dst_reg); u32 dst_reg_h = dst_reg - 1; u32 src_reg = bpf_to_ppc(insn[i].src_reg); u32 src_reg_h = src_reg - 1; u32 src2_reg = dst_reg; u32 src2_reg_h = dst_reg_h; u32 ax_reg = bpf_to_ppc(BPF_REG_AX); u32 tmp_reg = bpf_to_ppc(TMP_REG); u32 size = BPF_SIZE(code); u32 save_reg, ret_reg; s16 off = insn[i].off; s32 imm = insn[i].imm; bool func_addr_fixed; u64 func_addr; u32 true_cond; u32 tmp_idx; int j; if (i && (BPF_CLASS(code) == BPF_ALU64 || BPF_CLASS(code) == BPF_ALU) && (BPF_CLASS(prevcode) == BPF_ALU64 || BPF_CLASS(prevcode) == BPF_ALU) && BPF_OP(prevcode) == BPF_MOV && BPF_SRC(prevcode) == BPF_X && insn[i - 1].dst_reg == insn[i].dst_reg && insn[i - 1].imm != 1) { src2_reg = bpf_to_ppc(insn[i - 1].src_reg); src2_reg_h = src2_reg - 1; ctx->idx = addrs[i - 1] / 4; } /* * addrs[] maps a BPF bytecode address into a real offset from * the start of the body code. */ addrs[i] = ctx->idx * 4; /* * As an optimization, we note down which registers * are used so that we can only save/restore those in our * prologue and epilogue. We do this here regardless of whether * the actual BPF instruction uses src/dst registers or not * (for instance, BPF_CALL does not use them). The expectation * is that those instructions will have src_reg/dst_reg set to * 0. Even otherwise, we just lose some prologue/epilogue * optimization but everything else should work without * any issues. */ if (dst_reg >= 3 && dst_reg < 32) { bpf_set_seen_register(ctx, dst_reg); bpf_set_seen_register(ctx, dst_reg_h); } if (src_reg >= 3 && src_reg < 32) { bpf_set_seen_register(ctx, src_reg); bpf_set_seen_register(ctx, src_reg_h); } switch (code) { /* * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG */ case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */ EMIT(PPC_RAW_ADD(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */ EMIT(PPC_RAW_ADDC(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_ADDE(dst_reg_h, src2_reg_h, src_reg_h)); break; case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */ EMIT(PPC_RAW_SUB(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */ EMIT(PPC_RAW_SUBFC(dst_reg, src_reg, src2_reg)); EMIT(PPC_RAW_SUBFE(dst_reg_h, src_reg_h, src2_reg_h)); break; case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */ imm = -imm; fallthrough; case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */ if (!imm) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); } else if (IMM_HA(imm) & 0xffff) { EMIT(PPC_RAW_ADDIS(dst_reg, src2_reg, IMM_HA(imm))); src2_reg = dst_reg; } if (IMM_L(imm)) EMIT(PPC_RAW_ADDI(dst_reg, src2_reg, IMM_L(imm))); break; case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */ imm = -imm; fallthrough; case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */ if (!imm) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h)); break; } if (imm >= -32768 && imm < 32768) { EMIT(PPC_RAW_ADDIC(dst_reg, src2_reg, imm)); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_ADDC(dst_reg, src2_reg, _R0)); } if (imm >= 0 || (BPF_OP(code) == BPF_SUB && imm == 0x80000000)) EMIT(PPC_RAW_ADDZE(dst_reg_h, src2_reg_h)); else EMIT(PPC_RAW_ADDME(dst_reg_h, src2_reg_h)); break; case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */ bpf_set_seen_register(ctx, tmp_reg); EMIT(PPC_RAW_MULW(_R0, src2_reg, src_reg_h)); EMIT(PPC_RAW_MULW(dst_reg_h, src2_reg_h, src_reg)); EMIT(PPC_RAW_MULHWU(tmp_reg, src2_reg, src_reg)); EMIT(PPC_RAW_MULW(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, _R0)); EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, tmp_reg)); break; case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */ EMIT(PPC_RAW_MULW(dst_reg, src2_reg, src_reg)); break; case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */ if (imm == 1) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); } else if (imm == -1) { EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0)); } else if (is_power_of_2((u32)imm)) { EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, ilog2(imm))); } else if (imm >= -32768 && imm < 32768) { EMIT(PPC_RAW_MULI(dst_reg, src2_reg, imm)); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_MULW(dst_reg, src2_reg, _R0)); } break; case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */ if (!imm) { PPC_LI32(dst_reg, 0); PPC_LI32(dst_reg_h, 0); } else if (imm == 1) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h)); } else if (imm == -1) { EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0)); EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h)); } else if (imm > 0 && is_power_of_2(imm)) { imm = ilog2(imm); EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, imm, 0, 31 - imm)); EMIT(PPC_RAW_RLWIMI(dst_reg_h, dst_reg, imm, 32 - imm, 31)); EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, imm)); } else { bpf_set_seen_register(ctx, tmp_reg); PPC_LI32(tmp_reg, imm); EMIT(PPC_RAW_MULW(dst_reg_h, src2_reg_h, tmp_reg)); if (imm < 0) EMIT(PPC_RAW_SUB(dst_reg_h, dst_reg_h, src2_reg)); EMIT(PPC_RAW_MULHWU(_R0, src2_reg, tmp_reg)); EMIT(PPC_RAW_MULW(dst_reg, src2_reg, tmp_reg)); EMIT(PPC_RAW_ADD(dst_reg_h, dst_reg_h, _R0)); } break; case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */ EMIT(PPC_RAW_DIVWU(dst_reg, src2_reg, src_reg)); break; case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */ EMIT(PPC_RAW_DIVWU(_R0, src2_reg, src_reg)); EMIT(PPC_RAW_MULW(_R0, src_reg, _R0)); EMIT(PPC_RAW_SUB(dst_reg, src2_reg, _R0)); break; case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */ return -EOPNOTSUPP; case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */ return -EOPNOTSUPP; case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */ if (!imm) return -EINVAL; if (imm == 1) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); } else if (is_power_of_2((u32)imm)) { EMIT(PPC_RAW_SRWI(dst_reg, src2_reg, ilog2(imm))); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_DIVWU(dst_reg, src2_reg, _R0)); } break; case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */ if (!imm) return -EINVAL; if (!is_power_of_2((u32)imm)) { bpf_set_seen_register(ctx, tmp_reg); PPC_LI32(tmp_reg, imm); EMIT(PPC_RAW_DIVWU(_R0, src2_reg, tmp_reg)); EMIT(PPC_RAW_MULW(_R0, tmp_reg, _R0)); EMIT(PPC_RAW_SUB(dst_reg, src2_reg, _R0)); } else if (imm == 1) { EMIT(PPC_RAW_LI(dst_reg, 0)); } else { imm = ilog2((u32)imm); EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 32 - imm, 31)); } break; case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */ if (!imm) return -EINVAL; if (imm < 0) imm = -imm; if (!is_power_of_2(imm)) return -EOPNOTSUPP; if (imm == 1) EMIT(PPC_RAW_LI(dst_reg, 0)); else EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 32 - ilog2(imm), 31)); EMIT(PPC_RAW_LI(dst_reg_h, 0)); break; case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */ if (!imm) return -EINVAL; if (!is_power_of_2(abs(imm))) return -EOPNOTSUPP; if (imm < 0) { EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0)); EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h)); imm = -imm; src2_reg = dst_reg; } if (imm == 1) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h)); } else { imm = ilog2(imm); EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31)); EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1)); EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, imm)); } break; case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */ EMIT(PPC_RAW_NEG(dst_reg, src2_reg)); break; case BPF_ALU64 | BPF_NEG: /* dst = -dst */ EMIT(PPC_RAW_SUBFIC(dst_reg, src2_reg, 0)); EMIT(PPC_RAW_SUBFZE(dst_reg_h, src2_reg_h)); break; /* * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH */ case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */ EMIT(PPC_RAW_AND(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_AND(dst_reg_h, src2_reg_h, src_reg_h)); break; case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */ EMIT(PPC_RAW_AND(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */ if (imm >= 0) EMIT(PPC_RAW_LI(dst_reg_h, 0)); fallthrough; case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */ if (!IMM_H(imm)) { EMIT(PPC_RAW_ANDI(dst_reg, src2_reg, IMM_L(imm))); } else if (!IMM_L(imm)) { EMIT(PPC_RAW_ANDIS(dst_reg, src2_reg, IMM_H(imm))); } else if (imm == (((1 << fls(imm)) - 1) ^ ((1 << (ffs(i) - 1)) - 1))) { EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 32 - fls(imm), 32 - ffs(imm))); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_AND(dst_reg, src2_reg, _R0)); } break; case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */ EMIT(PPC_RAW_OR(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_OR(dst_reg_h, src2_reg_h, src_reg_h)); break; case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */ EMIT(PPC_RAW_OR(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */ /* Sign-extended */ if (imm < 0) EMIT(PPC_RAW_LI(dst_reg_h, -1)); fallthrough; case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */ if (IMM_L(imm)) { EMIT(PPC_RAW_ORI(dst_reg, src2_reg, IMM_L(imm))); src2_reg = dst_reg; } if (IMM_H(imm)) EMIT(PPC_RAW_ORIS(dst_reg, src2_reg, IMM_H(imm))); break; case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */ if (dst_reg == src_reg) { EMIT(PPC_RAW_LI(dst_reg, 0)); EMIT(PPC_RAW_LI(dst_reg_h, 0)); } else { EMIT(PPC_RAW_XOR(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_XOR(dst_reg_h, src2_reg_h, src_reg_h)); } break; case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */ if (dst_reg == src_reg) EMIT(PPC_RAW_LI(dst_reg, 0)); else EMIT(PPC_RAW_XOR(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */ if (imm < 0) EMIT(PPC_RAW_NOR(dst_reg_h, src2_reg_h, src2_reg_h)); fallthrough; case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */ if (IMM_L(imm)) { EMIT(PPC_RAW_XORI(dst_reg, src2_reg, IMM_L(imm))); src2_reg = dst_reg; } if (IMM_H(imm)) EMIT(PPC_RAW_XORIS(dst_reg, src2_reg, IMM_H(imm))); break; case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */ EMIT(PPC_RAW_SLW(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */ bpf_set_seen_register(ctx, tmp_reg); EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32)); EMIT(PPC_RAW_SLW(dst_reg_h, src2_reg_h, src_reg)); EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32)); EMIT(PPC_RAW_SRW(_R0, src2_reg, _R0)); EMIT(PPC_RAW_SLW(tmp_reg, src2_reg, tmp_reg)); EMIT(PPC_RAW_OR(dst_reg_h, dst_reg_h, _R0)); EMIT(PPC_RAW_SLW(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_OR(dst_reg_h, dst_reg_h, tmp_reg)); break; case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<= (u32) imm */ if (imm) EMIT(PPC_RAW_SLWI(dst_reg, src2_reg, imm)); else EMIT(PPC_RAW_MR(dst_reg, src2_reg)); break; case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<= imm */ if (imm < 0) return -EINVAL; if (!imm) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); } else if (imm < 32) { EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, imm, 0, 31 - imm)); EMIT(PPC_RAW_RLWIMI(dst_reg_h, src2_reg, imm, 32 - imm, 31)); EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, imm, 0, 31 - imm)); } else if (imm < 64) { EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg, imm, 0, 31 - imm)); EMIT(PPC_RAW_LI(dst_reg, 0)); } else { EMIT(PPC_RAW_LI(dst_reg_h, 0)); EMIT(PPC_RAW_LI(dst_reg, 0)); } break; case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */ EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */ bpf_set_seen_register(ctx, tmp_reg); EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32)); EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32)); EMIT(PPC_RAW_SLW(_R0, src2_reg_h, _R0)); EMIT(PPC_RAW_SRW(tmp_reg, dst_reg_h, tmp_reg)); EMIT(PPC_RAW_OR(dst_reg, dst_reg, _R0)); EMIT(PPC_RAW_SRW(dst_reg_h, src2_reg_h, src_reg)); EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp_reg)); break; case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */ if (imm) EMIT(PPC_RAW_SRWI(dst_reg, src2_reg, imm)); else EMIT(PPC_RAW_MR(dst_reg, src2_reg)); break; case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */ if (imm < 0) return -EINVAL; if (!imm) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h)); } else if (imm < 32) { EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31)); EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1)); EMIT(PPC_RAW_RLWINM(dst_reg_h, src2_reg_h, 32 - imm, imm, 31)); } else if (imm < 64) { EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg_h, 64 - imm, imm - 32, 31)); EMIT(PPC_RAW_LI(dst_reg_h, 0)); } else { EMIT(PPC_RAW_LI(dst_reg, 0)); EMIT(PPC_RAW_LI(dst_reg_h, 0)); } break; case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */ EMIT(PPC_RAW_SRAW(dst_reg, src2_reg, src_reg)); break; case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */ bpf_set_seen_register(ctx, tmp_reg); EMIT(PPC_RAW_SUBFIC(_R0, src_reg, 32)); EMIT(PPC_RAW_SRW(dst_reg, src2_reg, src_reg)); EMIT(PPC_RAW_SLW(_R0, src2_reg_h, _R0)); EMIT(PPC_RAW_ADDI(tmp_reg, src_reg, 32)); EMIT(PPC_RAW_OR(dst_reg, dst_reg, _R0)); EMIT(PPC_RAW_RLWINM(_R0, tmp_reg, 0, 26, 26)); EMIT(PPC_RAW_SRAW(tmp_reg, src2_reg_h, tmp_reg)); EMIT(PPC_RAW_SRAW(dst_reg_h, src2_reg_h, src_reg)); EMIT(PPC_RAW_SLW(tmp_reg, tmp_reg, _R0)); EMIT(PPC_RAW_OR(dst_reg, dst_reg, tmp_reg)); break; case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */ if (imm) EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg, imm)); else EMIT(PPC_RAW_MR(dst_reg, src2_reg)); break; case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */ if (imm < 0) return -EINVAL; if (!imm) { EMIT(PPC_RAW_MR(dst_reg, src2_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src2_reg_h)); } else if (imm < 32) { EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 32 - imm, imm, 31)); EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg_h, 32 - imm, 0, imm - 1)); EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, imm)); } else if (imm < 64) { EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg_h, imm - 32)); EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, 31)); } else { EMIT(PPC_RAW_SRAWI(dst_reg, src2_reg_h, 31)); EMIT(PPC_RAW_SRAWI(dst_reg_h, src2_reg_h, 31)); } break; /* * MOV */ case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */ if (dst_reg == src_reg) break; EMIT(PPC_RAW_MR(dst_reg, src_reg)); EMIT(PPC_RAW_MR(dst_reg_h, src_reg_h)); break; case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */ /* special mov32 for zext */ if (imm == 1) EMIT(PPC_RAW_LI(dst_reg_h, 0)); else if (dst_reg != src_reg) EMIT(PPC_RAW_MR(dst_reg, src_reg)); break; case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */ PPC_LI32(dst_reg, imm); PPC_EX32(dst_reg_h, imm); break; case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */ PPC_LI32(dst_reg, imm); break; /* * BPF_FROM_BE/LE */ case BPF_ALU | BPF_END | BPF_FROM_LE: switch (imm) { case 16: /* Copy 16 bits to upper part */ EMIT(PPC_RAW_RLWIMI(dst_reg, src2_reg, 16, 0, 15)); /* Rotate 8 bits right & mask */ EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 24, 16, 31)); break; case 32: /* * Rotate word left by 8 bits: * 2 bytes are already in their final position * -- byte 2 and 4 (of bytes 1, 2, 3 and 4) */ EMIT(PPC_RAW_RLWINM(_R0, src2_reg, 8, 0, 31)); /* Rotate 24 bits and insert byte 1 */ EMIT(PPC_RAW_RLWIMI(_R0, src2_reg, 24, 0, 7)); /* Rotate 24 bits and insert byte 3 */ EMIT(PPC_RAW_RLWIMI(_R0, src2_reg, 24, 16, 23)); EMIT(PPC_RAW_MR(dst_reg, _R0)); break; case 64: bpf_set_seen_register(ctx, tmp_reg); EMIT(PPC_RAW_RLWINM(tmp_reg, src2_reg, 8, 0, 31)); EMIT(PPC_RAW_RLWINM(_R0, src2_reg_h, 8, 0, 31)); /* Rotate 24 bits and insert byte 1 */ EMIT(PPC_RAW_RLWIMI(tmp_reg, src2_reg, 24, 0, 7)); EMIT(PPC_RAW_RLWIMI(_R0, src2_reg_h, 24, 0, 7)); /* Rotate 24 bits and insert byte 3 */ EMIT(PPC_RAW_RLWIMI(tmp_reg, src2_reg, 24, 16, 23)); EMIT(PPC_RAW_RLWIMI(_R0, src2_reg_h, 24, 16, 23)); EMIT(PPC_RAW_MR(dst_reg, _R0)); EMIT(PPC_RAW_MR(dst_reg_h, tmp_reg)); break; } break; case BPF_ALU | BPF_END | BPF_FROM_BE: switch (imm) { case 16: /* zero-extend 16 bits into 32 bits */ EMIT(PPC_RAW_RLWINM(dst_reg, src2_reg, 0, 16, 31)); break; case 32: case 64: /* nop */ break; } break; /* * BPF_ST NOSPEC (speculation barrier) */ case BPF_ST | BPF_NOSPEC: break; /* * BPF_ST(X) */ case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */ EMIT(PPC_RAW_STB(src_reg, dst_reg, off)); break; case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */ PPC_LI32(_R0, imm); EMIT(PPC_RAW_STB(_R0, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */ EMIT(PPC_RAW_STH(src_reg, dst_reg, off)); break; case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */ PPC_LI32(_R0, imm); EMIT(PPC_RAW_STH(_R0, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */ EMIT(PPC_RAW_STW(src_reg, dst_reg, off)); break; case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */ PPC_LI32(_R0, imm); EMIT(PPC_RAW_STW(_R0, dst_reg, off)); break; case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */ EMIT(PPC_RAW_STW(src_reg_h, dst_reg, off)); EMIT(PPC_RAW_STW(src_reg, dst_reg, off + 4)); break; case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */ PPC_LI32(_R0, imm); EMIT(PPC_RAW_STW(_R0, dst_reg, off + 4)); PPC_EX32(_R0, imm); EMIT(PPC_RAW_STW(_R0, dst_reg, off)); break; /* * BPF_STX ATOMIC (atomic ops) */ case BPF_STX | BPF_ATOMIC | BPF_W: save_reg = _R0; ret_reg = src_reg; bpf_set_seen_register(ctx, tmp_reg); bpf_set_seen_register(ctx, ax_reg); /* Get offset into TMP_REG */ EMIT(PPC_RAW_LI(tmp_reg, off)); tmp_idx = ctx->idx * 4; /* load value from memory into r0 */ EMIT(PPC_RAW_LWARX(_R0, tmp_reg, dst_reg, 0)); /* Save old value in BPF_REG_AX */ if (imm & BPF_FETCH) EMIT(PPC_RAW_MR(ax_reg, _R0)); switch (imm) { case BPF_ADD: case BPF_ADD | BPF_FETCH: EMIT(PPC_RAW_ADD(_R0, _R0, src_reg)); break; case BPF_AND: case BPF_AND | BPF_FETCH: EMIT(PPC_RAW_AND(_R0, _R0, src_reg)); break; case BPF_OR: case BPF_OR | BPF_FETCH: EMIT(PPC_RAW_OR(_R0, _R0, src_reg)); break; case BPF_XOR: case BPF_XOR | BPF_FETCH: EMIT(PPC_RAW_XOR(_R0, _R0, src_reg)); break; case BPF_CMPXCHG: /* * Return old value in BPF_REG_0 for BPF_CMPXCHG & * in src_reg for other cases. */ ret_reg = bpf_to_ppc(BPF_REG_0); /* Compare with old value in BPF_REG_0 */ EMIT(PPC_RAW_CMPW(bpf_to_ppc(BPF_REG_0), _R0)); /* Don't set if different from old value */ PPC_BCC_SHORT(COND_NE, (ctx->idx + 3) * 4); fallthrough; case BPF_XCHG: save_reg = src_reg; break; default: pr_err_ratelimited("eBPF filter atomic op code %02x (@%d) unsupported\n", code, i); return -EOPNOTSUPP; } /* store new value */ EMIT(PPC_RAW_STWCX(save_reg, tmp_reg, dst_reg)); /* we're done if this succeeded */ PPC_BCC_SHORT(COND_NE, tmp_idx); /* For the BPF_FETCH variant, get old data into src_reg */ if (imm & BPF_FETCH) { EMIT(PPC_RAW_MR(ret_reg, ax_reg)); if (!fp->aux->verifier_zext) EMIT(PPC_RAW_LI(ret_reg - 1, 0)); /* higher 32-bit */ } break; case BPF_STX | BPF_ATOMIC | BPF_DW: /* *(u64 *)(dst + off) += src */ return -EOPNOTSUPP; /* * BPF_LDX */ case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_B: case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_H: case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_W: case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */ case BPF_LDX | BPF_PROBE_MEM | BPF_DW: /* * As PTR_TO_BTF_ID that uses BPF_PROBE_MEM mode could either be a valid * kernel pointer or NULL but not a userspace address, execute BPF_PROBE_MEM * load only if addr is kernel address (see is_kernel_addr()), otherwise * set dst_reg=0 and move on. */ if (BPF_MODE(code) == BPF_PROBE_MEM) { PPC_LI32(_R0, TASK_SIZE - off); EMIT(PPC_RAW_CMPLW(src_reg, _R0)); PPC_BCC_SHORT(COND_GT, (ctx->idx + 4) * 4); EMIT(PPC_RAW_LI(dst_reg, 0)); /* * For BPF_DW case, "li reg_h,0" would be needed when * !fp->aux->verifier_zext. Emit NOP otherwise. * * Note that "li reg_h,0" is emitted for BPF_B/H/W case, * if necessary. So, jump there insted of emitting an * additional "li reg_h,0" instruction. */ if (size == BPF_DW && !fp->aux->verifier_zext) EMIT(PPC_RAW_LI(dst_reg_h, 0)); else EMIT(PPC_RAW_NOP()); /* * Need to jump two instructions instead of one for BPF_DW case * as there are two load instructions for dst_reg_h & dst_reg * respectively. */ if (size == BPF_DW) PPC_JMP((ctx->idx + 3) * 4); else PPC_JMP((ctx->idx + 2) * 4); } switch (size) { case BPF_B: EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off)); break; case BPF_H: EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off)); break; case BPF_W: EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off)); break; case BPF_DW: EMIT(PPC_RAW_LWZ(dst_reg_h, src_reg, off)); EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off + 4)); break; } if (size != BPF_DW && !fp->aux->verifier_zext) EMIT(PPC_RAW_LI(dst_reg_h, 0)); if (BPF_MODE(code) == BPF_PROBE_MEM) { int insn_idx = ctx->idx - 1; int jmp_off = 4; /* * In case of BPF_DW, two lwz instructions are emitted, one * for higher 32-bit and another for lower 32-bit. So, set * ex->insn to the first of the two and jump over both * instructions in fixup. * * Similarly, with !verifier_zext, two instructions are * emitted for BPF_B/H/W case. So, set ex->insn to the * instruction that could fault and skip over both * instructions. */ if (size == BPF_DW || !fp->aux->verifier_zext) { insn_idx -= 1; jmp_off += 4; } ret = bpf_add_extable_entry(fp, image, pass, ctx, insn_idx, jmp_off, dst_reg); if (ret) return ret; } break; /* * Doubleword load * 16 byte instruction that uses two 'struct bpf_insn' */ case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */ tmp_idx = ctx->idx; PPC_LI32(dst_reg_h, (u32)insn[i + 1].imm); PPC_LI32(dst_reg, (u32)insn[i].imm); /* padding to allow full 4 instructions for later patching */ if (!image) for (j = ctx->idx - tmp_idx; j < 4; j++) EMIT(PPC_RAW_NOP()); /* Adjust for two bpf instructions */ addrs[++i] = ctx->idx * 4; break; /* * Return/Exit */ case BPF_JMP | BPF_EXIT: /* * If this isn't the very last instruction, branch to * the epilogue. If we _are_ the last instruction, * we'll just fall through to the epilogue. */ if (i != flen - 1) { ret = bpf_jit_emit_exit_insn(image, ctx, _R0, exit_addr); if (ret) return ret; } /* else fall through to the epilogue */ break; /* * Call kernel helper or bpf function */ case BPF_JMP | BPF_CALL: ctx->seen |= SEEN_FUNC; ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass, &func_addr, &func_addr_fixed); if (ret < 0) return ret; if (bpf_is_seen_register(ctx, bpf_to_ppc(BPF_REG_5))) { EMIT(PPC_RAW_STW(bpf_to_ppc(BPF_REG_5) - 1, _R1, 8)); EMIT(PPC_RAW_STW(bpf_to_ppc(BPF_REG_5), _R1, 12)); } ret = bpf_jit_emit_func_call_rel(image, ctx, func_addr); if (ret) return ret; EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0) - 1, _R3)); EMIT(PPC_RAW_MR(bpf_to_ppc(BPF_REG_0), _R4)); break; /* * Jumps and branches */ case BPF_JMP | BPF_JA: PPC_JMP(addrs[i + 1 + off]); break; case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSGT | BPF_X: true_cond = COND_GT; goto cond_branch; case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_X: true_cond = COND_LT; goto cond_branch; case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_X: true_cond = COND_GE; goto cond_branch; case BPF_JMP | BPF_JLE | BPF_K: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_X: true_cond = COND_LE; goto cond_branch; case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_X: true_cond = COND_EQ; goto cond_branch; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JNE | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JNE | BPF_X: true_cond = COND_NE; goto cond_branch; case BPF_JMP | BPF_JSET | BPF_K: case BPF_JMP | BPF_JSET | BPF_X: case BPF_JMP32 | BPF_JSET | BPF_K: case BPF_JMP32 | BPF_JSET | BPF_X: true_cond = COND_NE; /* fallthrough; */ cond_branch: switch (code) { case BPF_JMP | BPF_JGT | BPF_X: case BPF_JMP | BPF_JLT | BPF_X: case BPF_JMP | BPF_JGE | BPF_X: case BPF_JMP | BPF_JLE | BPF_X: case BPF_JMP | BPF_JEQ | BPF_X: case BPF_JMP | BPF_JNE | BPF_X: /* unsigned comparison */ EMIT(PPC_RAW_CMPLW(dst_reg_h, src_reg_h)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLW(dst_reg, src_reg)); break; case BPF_JMP32 | BPF_JGT | BPF_X: case BPF_JMP32 | BPF_JLT | BPF_X: case BPF_JMP32 | BPF_JGE | BPF_X: case BPF_JMP32 | BPF_JLE | BPF_X: case BPF_JMP32 | BPF_JEQ | BPF_X: case BPF_JMP32 | BPF_JNE | BPF_X: /* unsigned comparison */ EMIT(PPC_RAW_CMPLW(dst_reg, src_reg)); break; case BPF_JMP | BPF_JSGT | BPF_X: case BPF_JMP | BPF_JSLT | BPF_X: case BPF_JMP | BPF_JSGE | BPF_X: case BPF_JMP | BPF_JSLE | BPF_X: /* signed comparison */ EMIT(PPC_RAW_CMPW(dst_reg_h, src_reg_h)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLW(dst_reg, src_reg)); break; case BPF_JMP32 | BPF_JSGT | BPF_X: case BPF_JMP32 | BPF_JSLT | BPF_X: case BPF_JMP32 | BPF_JSGE | BPF_X: case BPF_JMP32 | BPF_JSLE | BPF_X: /* signed comparison */ EMIT(PPC_RAW_CMPW(dst_reg, src_reg)); break; case BPF_JMP | BPF_JSET | BPF_X: EMIT(PPC_RAW_AND_DOT(_R0, dst_reg_h, src_reg_h)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, src_reg)); break; case BPF_JMP32 | BPF_JSET | BPF_X: { EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, src_reg)); break; case BPF_JMP | BPF_JNE | BPF_K: case BPF_JMP | BPF_JEQ | BPF_K: case BPF_JMP | BPF_JGT | BPF_K: case BPF_JMP | BPF_JLT | BPF_K: case BPF_JMP | BPF_JGE | BPF_K: case BPF_JMP | BPF_JLE | BPF_K: /* * Need sign-extended load, so only positive * values can be used as imm in cmplwi */ if (imm >= 0 && imm < 32768) { EMIT(PPC_RAW_CMPLWI(dst_reg_h, 0)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLWI(dst_reg, imm)); } else { /* sign-extending load ... but unsigned comparison */ PPC_EX32(_R0, imm); EMIT(PPC_RAW_CMPLW(dst_reg_h, _R0)); PPC_LI32(_R0, imm); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLW(dst_reg, _R0)); } break; case BPF_JMP32 | BPF_JNE | BPF_K: case BPF_JMP32 | BPF_JEQ | BPF_K: case BPF_JMP32 | BPF_JGT | BPF_K: case BPF_JMP32 | BPF_JLT | BPF_K: case BPF_JMP32 | BPF_JGE | BPF_K: case BPF_JMP32 | BPF_JLE | BPF_K: if (imm >= 0 && imm < 65536) { EMIT(PPC_RAW_CMPLWI(dst_reg, imm)); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_CMPLW(dst_reg, _R0)); } break; } case BPF_JMP | BPF_JSGT | BPF_K: case BPF_JMP | BPF_JSLT | BPF_K: case BPF_JMP | BPF_JSGE | BPF_K: case BPF_JMP | BPF_JSLE | BPF_K: if (imm >= 0 && imm < 65536) { EMIT(PPC_RAW_CMPWI(dst_reg_h, imm < 0 ? -1 : 0)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLWI(dst_reg, imm)); } else { /* sign-extending load */ EMIT(PPC_RAW_CMPWI(dst_reg_h, imm < 0 ? -1 : 0)); PPC_LI32(_R0, imm); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); EMIT(PPC_RAW_CMPLW(dst_reg, _R0)); } break; case BPF_JMP32 | BPF_JSGT | BPF_K: case BPF_JMP32 | BPF_JSLT | BPF_K: case BPF_JMP32 | BPF_JSGE | BPF_K: case BPF_JMP32 | BPF_JSLE | BPF_K: /* * signed comparison, so any 16-bit value * can be used in cmpwi */ if (imm >= -32768 && imm < 32768) { EMIT(PPC_RAW_CMPWI(dst_reg, imm)); } else { /* sign-extending load */ PPC_LI32(_R0, imm); EMIT(PPC_RAW_CMPW(dst_reg, _R0)); } break; case BPF_JMP | BPF_JSET | BPF_K: /* andi does not sign-extend the immediate */ if (imm >= 0 && imm < 32768) { /* PPC_ANDI is _only/always_ dot-form */ EMIT(PPC_RAW_ANDI(_R0, dst_reg, imm)); } else { PPC_LI32(_R0, imm); if (imm < 0) { EMIT(PPC_RAW_CMPWI(dst_reg_h, 0)); PPC_BCC_SHORT(COND_NE, (ctx->idx + 2) * 4); } EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, _R0)); } break; case BPF_JMP32 | BPF_JSET | BPF_K: /* andi does not sign-extend the immediate */ if (imm >= 0 && imm < 32768) { /* PPC_ANDI is _only/always_ dot-form */ EMIT(PPC_RAW_ANDI(_R0, dst_reg, imm)); } else { PPC_LI32(_R0, imm); EMIT(PPC_RAW_AND_DOT(_R0, dst_reg, _R0)); } break; } PPC_BCC(true_cond, addrs[i + 1 + off]); break; /* * Tail call */ case BPF_JMP | BPF_TAIL_CALL: ctx->seen |= SEEN_TAILCALL; ret = bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]); if (ret < 0) return ret; break; default: /* * The filter contains something cruel & unusual. * We don't handle it, but also there shouldn't be * anything missing from our list. */ pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n", code, i); return -EOPNOTSUPP; } if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext && !insn_is_zext(&insn[i + 1]) && !(BPF_OP(code) == BPF_END && imm == 64)) EMIT(PPC_RAW_LI(dst_reg_h, 0)); } /* Set end-of-body-code address for exit. */ addrs[i] = ctx->idx * 4; return 0; }