// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012-2020 NVIDIA CORPORATION. All rights reserved. */ #include <linux/io.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/syscore_ops.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/mutex.h> #include <linux/clk/tegra.h> #include <dt-bindings/clock/tegra210-car.h> #include <dt-bindings/reset/tegra210-car.h> #include <linux/sizes.h> #include <soc/tegra/pmc.h> #include "clk.h" #include "clk-id.h" /* * TEGRA210_CAR_BANK_COUNT: the number of peripheral clock register * banks present in the Tegra210 CAR IP block. The banks are * identified by single letters, e.g.: L, H, U, V, W, X, Y. See * periph_regs[] in drivers/clk/tegra/clk.c */ #define TEGRA210_CAR_BANK_COUNT 7 #define CLK_SOURCE_CSITE 0x1d4 #define CLK_SOURCE_EMC 0x19c #define CLK_SOURCE_SOR1 0x410 #define CLK_SOURCE_SOR0 0x414 #define CLK_SOURCE_LA 0x1f8 #define CLK_SOURCE_SDMMC2 0x154 #define CLK_SOURCE_SDMMC4 0x164 #define CLK_SOURCE_EMC_DLL 0x664 #define PLLC_BASE 0x80 #define PLLC_OUT 0x84 #define PLLC_MISC0 0x88 #define PLLC_MISC1 0x8c #define PLLC_MISC2 0x5d0 #define PLLC_MISC3 0x5d4 #define PLLC2_BASE 0x4e8 #define PLLC2_MISC0 0x4ec #define PLLC2_MISC1 0x4f0 #define PLLC2_MISC2 0x4f4 #define PLLC2_MISC3 0x4f8 #define PLLC3_BASE 0x4fc #define PLLC3_MISC0 0x500 #define PLLC3_MISC1 0x504 #define PLLC3_MISC2 0x508 #define PLLC3_MISC3 0x50c #define PLLM_BASE 0x90 #define PLLM_MISC1 0x98 #define PLLM_MISC2 0x9c #define PLLP_BASE 0xa0 #define PLLP_MISC0 0xac #define PLLP_MISC1 0x680 #define PLLA_BASE 0xb0 #define PLLA_MISC0 0xbc #define PLLA_MISC1 0xb8 #define PLLA_MISC2 0x5d8 #define PLLD_BASE 0xd0 #define PLLD_MISC0 0xdc #define PLLD_MISC1 0xd8 #define PLLU_BASE 0xc0 #define PLLU_OUTA 0xc4 #define PLLU_MISC0 0xcc #define PLLU_MISC1 0xc8 #define PLLX_BASE 0xe0 #define PLLX_MISC0 0xe4 #define PLLX_MISC1 0x510 #define PLLX_MISC2 0x514 #define PLLX_MISC3 0x518 #define PLLX_MISC4 0x5f0 #define PLLX_MISC5 0x5f4 #define PLLE_BASE 0xe8 #define PLLE_MISC0 0xec #define PLLD2_BASE 0x4b8 #define PLLD2_MISC0 0x4bc #define PLLD2_MISC1 0x570 #define PLLD2_MISC2 0x574 #define PLLD2_MISC3 0x578 #define PLLE_AUX 0x48c #define PLLRE_BASE 0x4c4 #define PLLRE_MISC0 0x4c8 #define PLLRE_OUT1 0x4cc #define PLLDP_BASE 0x590 #define PLLDP_MISC 0x594 #define PLLC4_BASE 0x5a4 #define PLLC4_MISC0 0x5a8 #define PLLC4_OUT 0x5e4 #define PLLMB_BASE 0x5e8 #define PLLMB_MISC1 0x5ec #define PLLA1_BASE 0x6a4 #define PLLA1_MISC0 0x6a8 #define PLLA1_MISC1 0x6ac #define PLLA1_MISC2 0x6b0 #define PLLA1_MISC3 0x6b4 #define PLLU_IDDQ_BIT 31 #define PLLCX_IDDQ_BIT 27 #define PLLRE_IDDQ_BIT 24 #define PLLA_IDDQ_BIT 25 #define PLLD_IDDQ_BIT 20 #define PLLSS_IDDQ_BIT 18 #define PLLM_IDDQ_BIT 5 #define PLLMB_IDDQ_BIT 17 #define PLLXP_IDDQ_BIT 3 #define PLLCX_RESET_BIT 30 #define PLL_BASE_LOCK BIT(27) #define PLLCX_BASE_LOCK BIT(26) #define PLLE_MISC_LOCK BIT(11) #define PLLRE_MISC_LOCK BIT(27) #define PLL_MISC_LOCK_ENABLE 18 #define PLLC_MISC_LOCK_ENABLE 24 #define PLLDU_MISC_LOCK_ENABLE 22 #define PLLU_MISC_LOCK_ENABLE 29 #define PLLE_MISC_LOCK_ENABLE 9 #define PLLRE_MISC_LOCK_ENABLE 30 #define PLLSS_MISC_LOCK_ENABLE 30 #define PLLP_MISC_LOCK_ENABLE 18 #define PLLM_MISC_LOCK_ENABLE 4 #define PLLMB_MISC_LOCK_ENABLE 16 #define PLLA_MISC_LOCK_ENABLE 28 #define PLLU_MISC_LOCK_ENABLE 29 #define PLLD_MISC_LOCK_ENABLE 18 #define PLLA_SDM_DIN_MASK 0xffff #define PLLA_SDM_EN_MASK BIT(26) #define PLLD_SDM_EN_MASK BIT(16) #define PLLD2_SDM_EN_MASK BIT(31) #define PLLD2_SSC_EN_MASK 0 #define PLLDP_SS_CFG 0x598 #define PLLDP_SDM_EN_MASK BIT(31) #define PLLDP_SSC_EN_MASK BIT(30) #define PLLDP_SS_CTRL1 0x59c #define PLLDP_SS_CTRL2 0x5a0 #define PMC_PLLM_WB0_OVERRIDE 0x1dc #define PMC_PLLM_WB0_OVERRIDE_2 0x2b0 #define UTMIP_PLL_CFG2 0x488 #define UTMIP_PLL_CFG2_STABLE_COUNT(x) (((x) & 0xfff) << 6) #define UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(x) (((x) & 0x3f) << 18) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN BIT(0) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP BIT(1) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN BIT(2) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP BIT(3) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERDOWN BIT(4) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_C_POWERUP BIT(5) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN BIT(24) #define UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP BIT(25) #define UTMIP_PLL_CFG1 0x484 #define UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(x) (((x) & 0x1f) << 27) #define UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(x) (((x) & 0xfff) << 0) #define UTMIP_PLL_CFG1_FORCE_PLLU_POWERUP BIT(17) #define UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN BIT(16) #define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP BIT(15) #define UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN BIT(14) #define UTMIP_PLL_CFG1_FORCE_PLL_ACTIVE_POWERDOWN BIT(12) #define SATA_PLL_CFG0 0x490 #define SATA_PLL_CFG0_PADPLL_RESET_SWCTL BIT(0) #define SATA_PLL_CFG0_PADPLL_USE_LOCKDET BIT(2) #define SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL BIT(4) #define SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE BIT(5) #define SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE BIT(6) #define SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE BIT(7) #define SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ BIT(13) #define SATA_PLL_CFG0_SEQ_ENABLE BIT(24) #define XUSBIO_PLL_CFG0 0x51c #define XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL BIT(0) #define XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL BIT(2) #define XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET BIT(6) #define XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ BIT(13) #define XUSBIO_PLL_CFG0_SEQ_ENABLE BIT(24) #define UTMIPLL_HW_PWRDN_CFG0 0x52c #define UTMIPLL_HW_PWRDN_CFG0_UTMIPLL_LOCK BIT(31) #define UTMIPLL_HW_PWRDN_CFG0_SEQ_START_STATE BIT(25) #define UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE BIT(24) #define UTMIPLL_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE BIT(7) #define UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET BIT(6) #define UTMIPLL_HW_PWRDN_CFG0_SEQ_RESET_INPUT_VALUE BIT(5) #define UTMIPLL_HW_PWRDN_CFG0_SEQ_IN_SWCTL BIT(4) #define UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL BIT(2) #define UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE BIT(1) #define UTMIPLL_HW_PWRDN_CFG0_IDDQ_SWCTL BIT(0) #define PLLU_HW_PWRDN_CFG0 0x530 #define PLLU_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE BIT(28) #define PLLU_HW_PWRDN_CFG0_SEQ_ENABLE BIT(24) #define PLLU_HW_PWRDN_CFG0_USE_SWITCH_DETECT BIT(7) #define PLLU_HW_PWRDN_CFG0_USE_LOCKDET BIT(6) #define PLLU_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL BIT(2) #define PLLU_HW_PWRDN_CFG0_CLK_SWITCH_SWCTL BIT(0) #define XUSB_PLL_CFG0 0x534 #define XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY 0x3ff #define XUSB_PLL_CFG0_PLLU_LOCK_DLY_MASK (0x3ff << 14) #define SPARE_REG0 0x55c #define CLK_M_DIVISOR_SHIFT 2 #define CLK_M_DIVISOR_MASK 0x3 #define CLK_MASK_ARM 0x44 #define MISC_CLK_ENB 0x48 #define RST_DFLL_DVCO 0x2f4 #define DVFS_DFLL_RESET_SHIFT 0 #define CLK_RST_CONTROLLER_CLK_OUT_ENB_X_SET 0x284 #define CLK_RST_CONTROLLER_CLK_OUT_ENB_X_CLR 0x288 #define CLK_OUT_ENB_X_CLK_ENB_EMC_DLL BIT(14) #define CLK_RST_CONTROLLER_RST_DEV_Y_SET 0x2a8 #define CLK_RST_CONTROLLER_RST_DEV_Y_CLR 0x2ac #define CPU_SOFTRST_CTRL 0x380 #define LVL2_CLK_GATE_OVRA 0xf8 #define LVL2_CLK_GATE_OVRC 0x3a0 #define LVL2_CLK_GATE_OVRD 0x3a4 #define LVL2_CLK_GATE_OVRE 0x554 /* I2S registers to handle during APE MBIST WAR */ #define TEGRA210_I2S_BASE 0x1000 #define TEGRA210_I2S_SIZE 0x100 #define TEGRA210_I2S_CTRLS 5 #define TEGRA210_I2S_CG 0x88 #define TEGRA210_I2S_CTRL 0xa0 /* DISPA registers to handle during MBIST WAR */ #define DC_CMD_DISPLAY_COMMAND 0xc8 #define DC_COM_DSC_TOP_CTL 0xcf8 /* VIC register to handle during MBIST WAR */ #define NV_PVIC_THI_SLCG_OVERRIDE_LOW 0x8c /* APE, DISPA and VIC base addesses needed for MBIST WAR */ #define TEGRA210_AHUB_BASE 0x702d0000 #define TEGRA210_DISPA_BASE 0x54200000 #define TEGRA210_VIC_BASE 0x54340000 /* * SDM fractional divisor is 16-bit 2's complement signed number within * (-2^12 ... 2^12-1) range. Represented in PLL data structure as unsigned * 16-bit value, with "0" divisor mapped to 0xFFFF. Data "0" is used to * indicate that SDM is disabled. * * Effective ndiv value when SDM is enabled: ndiv + 1/2 + sdm_din/2^13 */ #define PLL_SDM_COEFF BIT(13) #define sdin_din_to_data(din) ((u16)((din) ? : 0xFFFFU)) #define sdin_data_to_din(dat) (((dat) == 0xFFFFU) ? 0 : (s16)dat) /* This macro returns ndiv effective scaled to SDM range */ #define sdin_get_n_eff(cfg) ((cfg)->n * PLL_SDM_COEFF + ((cfg)->sdm_data ? \ (PLL_SDM_COEFF/2 + sdin_data_to_din((cfg)->sdm_data)) : 0)) /* Tegra CPU clock and reset control regs */ #define CLK_RST_CONTROLLER_CPU_CMPLX_STATUS 0x470 #ifdef CONFIG_PM_SLEEP static struct cpu_clk_suspend_context { u32 clk_csite_src; } tegra210_cpu_clk_sctx; #endif struct tegra210_domain_mbist_war { void (*handle_lvl2_ovr)(struct tegra210_domain_mbist_war *mbist); const u32 lvl2_offset; const u32 lvl2_mask; const unsigned int num_clks; const unsigned int *clk_init_data; struct clk_bulk_data *clks; }; static struct clk **clks; static void __iomem *clk_base; static void __iomem *pmc_base; static void __iomem *ahub_base; static void __iomem *dispa_base; static void __iomem *vic_base; static unsigned long osc_freq; static unsigned long pll_ref_freq; static DEFINE_SPINLOCK(pll_d_lock); static DEFINE_SPINLOCK(pll_e_lock); static DEFINE_SPINLOCK(pll_re_lock); static DEFINE_SPINLOCK(pll_u_lock); static DEFINE_SPINLOCK(sor0_lock); static DEFINE_SPINLOCK(sor1_lock); static DEFINE_SPINLOCK(emc_lock); static DEFINE_MUTEX(lvl2_ovr_lock); /* possible OSC frequencies in Hz */ static unsigned long tegra210_input_freq[] = { [5] = 38400000, [8] = 12000000, }; #define PLL_ENABLE (1 << 30) #define PLLCX_MISC1_IDDQ (1 << 27) #define PLLCX_MISC0_RESET (1 << 30) #define PLLCX_MISC0_DEFAULT_VALUE 0x40080000 #define PLLCX_MISC0_WRITE_MASK 0x400ffffb #define PLLCX_MISC1_DEFAULT_VALUE 0x08000000 #define PLLCX_MISC1_WRITE_MASK 0x08003cff #define PLLCX_MISC2_DEFAULT_VALUE 0x1f720f05 #define PLLCX_MISC2_WRITE_MASK 0xffffff17 #define PLLCX_MISC3_DEFAULT_VALUE 0x000000c4 #define PLLCX_MISC3_WRITE_MASK 0x00ffffff /* PLLA */ #define PLLA_BASE_IDDQ (1 << 25) #define PLLA_BASE_LOCK (1 << 27) #define PLLA_MISC0_LOCK_ENABLE (1 << 28) #define PLLA_MISC0_LOCK_OVERRIDE (1 << 27) #define PLLA_MISC2_EN_SDM (1 << 26) #define PLLA_MISC2_EN_DYNRAMP (1 << 25) #define PLLA_MISC0_DEFAULT_VALUE 0x12000020 #define PLLA_MISC0_WRITE_MASK 0x7fffffff #define PLLA_MISC2_DEFAULT_VALUE 0x0 #define PLLA_MISC2_WRITE_MASK 0x06ffffff /* PLLD */ #define PLLD_BASE_CSI_CLKSOURCE (1 << 23) #define PLLD_MISC0_EN_SDM (1 << 16) #define PLLD_MISC0_LOCK_OVERRIDE (1 << 17) #define PLLD_MISC0_LOCK_ENABLE (1 << 18) #define PLLD_MISC0_IDDQ (1 << 20) #define PLLD_MISC0_DSI_CLKENABLE (1 << 21) #define PLLD_MISC0_DEFAULT_VALUE 0x00140000 #define PLLD_MISC0_WRITE_MASK 0x3ff7ffff #define PLLD_MISC1_DEFAULT_VALUE 0x20 #define PLLD_MISC1_WRITE_MASK 0x00ffffff /* PLLD2 and PLLDP and PLLC4 */ #define PLLDSS_BASE_LOCK (1 << 27) #define PLLDSS_BASE_LOCK_OVERRIDE (1 << 24) #define PLLDSS_BASE_IDDQ (1 << 18) #define PLLDSS_BASE_REF_SEL_SHIFT 25 #define PLLDSS_BASE_REF_SEL_MASK (0x3 << PLLDSS_BASE_REF_SEL_SHIFT) #define PLLDSS_MISC0_LOCK_ENABLE (1 << 30) #define PLLDSS_MISC1_CFG_EN_SDM (1 << 31) #define PLLDSS_MISC1_CFG_EN_SSC (1 << 30) #define PLLD2_MISC0_DEFAULT_VALUE 0x40000020 #define PLLD2_MISC1_CFG_DEFAULT_VALUE 0x10000000 #define PLLD2_MISC2_CTRL1_DEFAULT_VALUE 0x0 #define PLLD2_MISC3_CTRL2_DEFAULT_VALUE 0x0 #define PLLDP_MISC0_DEFAULT_VALUE 0x40000020 #define PLLDP_MISC1_CFG_DEFAULT_VALUE 0xc0000000 #define PLLDP_MISC2_CTRL1_DEFAULT_VALUE 0xf400f0da #define PLLDP_MISC3_CTRL2_DEFAULT_VALUE 0x2004f400 #define PLLDSS_MISC0_WRITE_MASK 0x47ffffff #define PLLDSS_MISC1_CFG_WRITE_MASK 0xf8000000 #define PLLDSS_MISC2_CTRL1_WRITE_MASK 0xffffffff #define PLLDSS_MISC3_CTRL2_WRITE_MASK 0xffffffff #define PLLC4_MISC0_DEFAULT_VALUE 0x40000000 /* PLLRE */ #define PLLRE_MISC0_LOCK_ENABLE (1 << 30) #define PLLRE_MISC0_LOCK_OVERRIDE (1 << 29) #define PLLRE_MISC0_LOCK (1 << 27) #define PLLRE_MISC0_IDDQ (1 << 24) #define PLLRE_BASE_DEFAULT_VALUE 0x0 #define PLLRE_MISC0_DEFAULT_VALUE 0x41000000 #define PLLRE_BASE_DEFAULT_MASK 0x1c000000 #define PLLRE_MISC0_WRITE_MASK 0x67ffffff /* PLLE */ #define PLLE_MISC_IDDQ_SW_CTRL (1 << 14) #define PLLE_AUX_USE_LOCKDET (1 << 3) #define PLLE_AUX_SS_SEQ_INCLUDE (1 << 31) #define PLLE_AUX_ENABLE_SWCTL (1 << 4) #define PLLE_AUX_SS_SWCTL (1 << 6) #define PLLE_AUX_SEQ_ENABLE (1 << 24) /* PLLX */ #define PLLX_USE_DYN_RAMP 1 #define PLLX_BASE_LOCK (1 << 27) #define PLLX_MISC0_FO_G_DISABLE (0x1 << 28) #define PLLX_MISC0_LOCK_ENABLE (0x1 << 18) #define PLLX_MISC2_DYNRAMP_STEPB_SHIFT 24 #define PLLX_MISC2_DYNRAMP_STEPB_MASK (0xFF << PLLX_MISC2_DYNRAMP_STEPB_SHIFT) #define PLLX_MISC2_DYNRAMP_STEPA_SHIFT 16 #define PLLX_MISC2_DYNRAMP_STEPA_MASK (0xFF << PLLX_MISC2_DYNRAMP_STEPA_SHIFT) #define PLLX_MISC2_NDIV_NEW_SHIFT 8 #define PLLX_MISC2_NDIV_NEW_MASK (0xFF << PLLX_MISC2_NDIV_NEW_SHIFT) #define PLLX_MISC2_LOCK_OVERRIDE (0x1 << 4) #define PLLX_MISC2_DYNRAMP_DONE (0x1 << 2) #define PLLX_MISC2_EN_DYNRAMP (0x1 << 0) #define PLLX_MISC3_IDDQ (0x1 << 3) #define PLLX_MISC0_DEFAULT_VALUE PLLX_MISC0_LOCK_ENABLE #define PLLX_MISC0_WRITE_MASK 0x10c40000 #define PLLX_MISC1_DEFAULT_VALUE 0x20 #define PLLX_MISC1_WRITE_MASK 0x00ffffff #define PLLX_MISC2_DEFAULT_VALUE 0x0 #define PLLX_MISC2_WRITE_MASK 0xffffff11 #define PLLX_MISC3_DEFAULT_VALUE PLLX_MISC3_IDDQ #define PLLX_MISC3_WRITE_MASK 0x01ff0f0f #define PLLX_MISC4_DEFAULT_VALUE 0x0 #define PLLX_MISC4_WRITE_MASK 0x8000ffff #define PLLX_MISC5_DEFAULT_VALUE 0x0 #define PLLX_MISC5_WRITE_MASK 0x0000ffff #define PLLX_HW_CTRL_CFG 0x548 #define PLLX_HW_CTRL_CFG_SWCTRL (0x1 << 0) /* PLLMB */ #define PLLMB_BASE_LOCK (1 << 27) #define PLLMB_MISC1_LOCK_OVERRIDE (1 << 18) #define PLLMB_MISC1_IDDQ (1 << 17) #define PLLMB_MISC1_LOCK_ENABLE (1 << 16) #define PLLMB_MISC1_DEFAULT_VALUE 0x00030000 #define PLLMB_MISC1_WRITE_MASK 0x0007ffff /* PLLP */ #define PLLP_BASE_OVERRIDE (1 << 28) #define PLLP_BASE_LOCK (1 << 27) #define PLLP_MISC0_LOCK_ENABLE (1 << 18) #define PLLP_MISC0_LOCK_OVERRIDE (1 << 17) #define PLLP_MISC0_IDDQ (1 << 3) #define PLLP_MISC1_HSIO_EN_SHIFT 29 #define PLLP_MISC1_HSIO_EN (1 << PLLP_MISC1_HSIO_EN_SHIFT) #define PLLP_MISC1_XUSB_EN_SHIFT 28 #define PLLP_MISC1_XUSB_EN (1 << PLLP_MISC1_XUSB_EN_SHIFT) #define PLLP_MISC0_DEFAULT_VALUE 0x00040008 #define PLLP_MISC1_DEFAULT_VALUE 0x0 #define PLLP_MISC0_WRITE_MASK 0xdc6000f #define PLLP_MISC1_WRITE_MASK 0x70ffffff /* PLLU */ #define PLLU_BASE_LOCK (1 << 27) #define PLLU_BASE_OVERRIDE (1 << 24) #define PLLU_BASE_CLKENABLE_USB (1 << 21) #define PLLU_BASE_CLKENABLE_HSIC (1 << 22) #define PLLU_BASE_CLKENABLE_ICUSB (1 << 23) #define PLLU_BASE_CLKENABLE_48M (1 << 25) #define PLLU_BASE_CLKENABLE_ALL (PLLU_BASE_CLKENABLE_USB |\ PLLU_BASE_CLKENABLE_HSIC |\ PLLU_BASE_CLKENABLE_ICUSB |\ PLLU_BASE_CLKENABLE_48M) #define PLLU_MISC0_IDDQ (1 << 31) #define PLLU_MISC0_LOCK_ENABLE (1 << 29) #define PLLU_MISC1_LOCK_OVERRIDE (1 << 0) #define PLLU_MISC0_DEFAULT_VALUE 0xa0000000 #define PLLU_MISC1_DEFAULT_VALUE 0x0 #define PLLU_MISC0_WRITE_MASK 0xbfffffff #define PLLU_MISC1_WRITE_MASK 0x00000007 bool tegra210_plle_hw_sequence_is_enabled(void) { u32 value; value = readl_relaxed(clk_base + PLLE_AUX); if (value & PLLE_AUX_SEQ_ENABLE) return true; return false; } EXPORT_SYMBOL_GPL(tegra210_plle_hw_sequence_is_enabled); int tegra210_plle_hw_sequence_start(void) { u32 value; if (tegra210_plle_hw_sequence_is_enabled()) return 0; /* skip if PLLE is not enabled yet */ value = readl_relaxed(clk_base + PLLE_MISC0); if (!(value & PLLE_MISC_LOCK)) return -EIO; value &= ~PLLE_MISC_IDDQ_SW_CTRL; writel_relaxed(value, clk_base + PLLE_MISC0); value = readl_relaxed(clk_base + PLLE_AUX); value |= (PLLE_AUX_USE_LOCKDET | PLLE_AUX_SS_SEQ_INCLUDE); value &= ~(PLLE_AUX_ENABLE_SWCTL | PLLE_AUX_SS_SWCTL); writel_relaxed(value, clk_base + PLLE_AUX); fence_udelay(1, clk_base); value |= PLLE_AUX_SEQ_ENABLE; writel_relaxed(value, clk_base + PLLE_AUX); fence_udelay(1, clk_base); return 0; } EXPORT_SYMBOL_GPL(tegra210_plle_hw_sequence_start); void tegra210_xusb_pll_hw_control_enable(void) { u32 val; val = readl_relaxed(clk_base + XUSBIO_PLL_CFG0); val &= ~(XUSBIO_PLL_CFG0_CLK_ENABLE_SWCTL | XUSBIO_PLL_CFG0_PADPLL_RESET_SWCTL); val |= XUSBIO_PLL_CFG0_PADPLL_USE_LOCKDET | XUSBIO_PLL_CFG0_PADPLL_SLEEP_IDDQ; writel_relaxed(val, clk_base + XUSBIO_PLL_CFG0); } EXPORT_SYMBOL_GPL(tegra210_xusb_pll_hw_control_enable); void tegra210_xusb_pll_hw_sequence_start(void) { u32 val; val = readl_relaxed(clk_base + XUSBIO_PLL_CFG0); val |= XUSBIO_PLL_CFG0_SEQ_ENABLE; writel_relaxed(val, clk_base + XUSBIO_PLL_CFG0); } EXPORT_SYMBOL_GPL(tegra210_xusb_pll_hw_sequence_start); void tegra210_sata_pll_hw_control_enable(void) { u32 val; val = readl_relaxed(clk_base + SATA_PLL_CFG0); val &= ~SATA_PLL_CFG0_PADPLL_RESET_SWCTL; val |= SATA_PLL_CFG0_PADPLL_USE_LOCKDET | SATA_PLL_CFG0_PADPLL_SLEEP_IDDQ; writel_relaxed(val, clk_base + SATA_PLL_CFG0); } EXPORT_SYMBOL_GPL(tegra210_sata_pll_hw_control_enable); void tegra210_sata_pll_hw_sequence_start(void) { u32 val; val = readl_relaxed(clk_base + SATA_PLL_CFG0); val |= SATA_PLL_CFG0_SEQ_ENABLE; writel_relaxed(val, clk_base + SATA_PLL_CFG0); } EXPORT_SYMBOL_GPL(tegra210_sata_pll_hw_sequence_start); void tegra210_set_sata_pll_seq_sw(bool state) { u32 val; val = readl_relaxed(clk_base + SATA_PLL_CFG0); if (state) { val |= SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL; val |= SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE; val |= SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE; val |= SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE; } else { val &= ~SATA_PLL_CFG0_SATA_SEQ_IN_SWCTL; val &= ~SATA_PLL_CFG0_SATA_SEQ_RESET_INPUT_VALUE; val &= ~SATA_PLL_CFG0_SATA_SEQ_LANE_PD_INPUT_VALUE; val &= ~SATA_PLL_CFG0_SATA_SEQ_PADPLL_PD_INPUT_VALUE; } writel_relaxed(val, clk_base + SATA_PLL_CFG0); } EXPORT_SYMBOL_GPL(tegra210_set_sata_pll_seq_sw); void tegra210_clk_emc_dll_enable(bool flag) { u32 offset = flag ? CLK_RST_CONTROLLER_CLK_OUT_ENB_X_SET : CLK_RST_CONTROLLER_CLK_OUT_ENB_X_CLR; writel_relaxed(CLK_OUT_ENB_X_CLK_ENB_EMC_DLL, clk_base + offset); } EXPORT_SYMBOL_GPL(tegra210_clk_emc_dll_enable); void tegra210_clk_emc_dll_update_setting(u32 emc_dll_src_value) { writel_relaxed(emc_dll_src_value, clk_base + CLK_SOURCE_EMC_DLL); } EXPORT_SYMBOL_GPL(tegra210_clk_emc_dll_update_setting); void tegra210_clk_emc_update_setting(u32 emc_src_value) { writel_relaxed(emc_src_value, clk_base + CLK_SOURCE_EMC); } EXPORT_SYMBOL_GPL(tegra210_clk_emc_update_setting); static void tegra210_generic_mbist_war(struct tegra210_domain_mbist_war *mbist) { u32 val; val = readl_relaxed(clk_base + mbist->lvl2_offset); writel_relaxed(val | mbist->lvl2_mask, clk_base + mbist->lvl2_offset); fence_udelay(1, clk_base); writel_relaxed(val, clk_base + mbist->lvl2_offset); fence_udelay(1, clk_base); } static void tegra210_venc_mbist_war(struct tegra210_domain_mbist_war *mbist) { u32 csi_src, ovra, ovre; unsigned long flags = 0; spin_lock_irqsave(&pll_d_lock, flags); csi_src = readl_relaxed(clk_base + PLLD_BASE); writel_relaxed(csi_src | PLLD_BASE_CSI_CLKSOURCE, clk_base + PLLD_BASE); fence_udelay(1, clk_base); ovra = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRA); writel_relaxed(ovra | BIT(15), clk_base + LVL2_CLK_GATE_OVRA); ovre = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRE); writel_relaxed(ovre | BIT(3), clk_base + LVL2_CLK_GATE_OVRE); fence_udelay(1, clk_base); writel_relaxed(ovra, clk_base + LVL2_CLK_GATE_OVRA); writel_relaxed(ovre, clk_base + LVL2_CLK_GATE_OVRE); writel_relaxed(csi_src, clk_base + PLLD_BASE); fence_udelay(1, clk_base); spin_unlock_irqrestore(&pll_d_lock, flags); } static void tegra210_disp_mbist_war(struct tegra210_domain_mbist_war *mbist) { u32 ovra, dsc_top_ctrl; ovra = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRA); writel_relaxed(ovra | BIT(1), clk_base + LVL2_CLK_GATE_OVRA); fence_udelay(1, clk_base); dsc_top_ctrl = readl_relaxed(dispa_base + DC_COM_DSC_TOP_CTL); writel_relaxed(dsc_top_ctrl | BIT(2), dispa_base + DC_COM_DSC_TOP_CTL); readl_relaxed(dispa_base + DC_CMD_DISPLAY_COMMAND); writel_relaxed(dsc_top_ctrl, dispa_base + DC_COM_DSC_TOP_CTL); readl_relaxed(dispa_base + DC_CMD_DISPLAY_COMMAND); writel_relaxed(ovra, clk_base + LVL2_CLK_GATE_OVRA); fence_udelay(1, clk_base); } static void tegra210_vic_mbist_war(struct tegra210_domain_mbist_war *mbist) { u32 ovre, val; ovre = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRE); writel_relaxed(ovre | BIT(5), clk_base + LVL2_CLK_GATE_OVRE); fence_udelay(1, clk_base); val = readl_relaxed(vic_base + NV_PVIC_THI_SLCG_OVERRIDE_LOW); writel_relaxed(val | BIT(0) | GENMASK(7, 2) | BIT(24), vic_base + NV_PVIC_THI_SLCG_OVERRIDE_LOW); fence_udelay(1, vic_base + NV_PVIC_THI_SLCG_OVERRIDE_LOW); writel_relaxed(val, vic_base + NV_PVIC_THI_SLCG_OVERRIDE_LOW); readl(vic_base + NV_PVIC_THI_SLCG_OVERRIDE_LOW); writel_relaxed(ovre, clk_base + LVL2_CLK_GATE_OVRE); fence_udelay(1, clk_base); } static void tegra210_ape_mbist_war(struct tegra210_domain_mbist_war *mbist) { void __iomem *i2s_base; unsigned int i; u32 ovrc, ovre; ovrc = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRC); ovre = readl_relaxed(clk_base + LVL2_CLK_GATE_OVRE); writel_relaxed(ovrc | BIT(1), clk_base + LVL2_CLK_GATE_OVRC); writel_relaxed(ovre | BIT(10) | BIT(11), clk_base + LVL2_CLK_GATE_OVRE); fence_udelay(1, clk_base); i2s_base = ahub_base + TEGRA210_I2S_BASE; for (i = 0; i < TEGRA210_I2S_CTRLS; i++) { u32 i2s_ctrl; i2s_ctrl = readl_relaxed(i2s_base + TEGRA210_I2S_CTRL); writel_relaxed(i2s_ctrl | BIT(10), i2s_base + TEGRA210_I2S_CTRL); writel_relaxed(0, i2s_base + TEGRA210_I2S_CG); readl(i2s_base + TEGRA210_I2S_CG); writel_relaxed(1, i2s_base + TEGRA210_I2S_CG); writel_relaxed(i2s_ctrl, i2s_base + TEGRA210_I2S_CTRL); readl(i2s_base + TEGRA210_I2S_CTRL); i2s_base += TEGRA210_I2S_SIZE; } writel_relaxed(ovrc, clk_base + LVL2_CLK_GATE_OVRC); writel_relaxed(ovre, clk_base + LVL2_CLK_GATE_OVRE); fence_udelay(1, clk_base); } static inline void _pll_misc_chk_default(void __iomem *base, struct tegra_clk_pll_params *params, u8 misc_num, u32 default_val, u32 mask) { u32 boot_val = readl_relaxed(base + params->ext_misc_reg[misc_num]); boot_val &= mask; default_val &= mask; if (boot_val != default_val) { pr_warn("boot misc%d 0x%x: expected 0x%x\n", misc_num, boot_val, default_val); pr_warn(" (comparison mask = 0x%x)\n", mask); params->defaults_set = false; } } /* * PLLCX: PLLC, PLLC2, PLLC3, PLLA1 * Hybrid PLLs with dynamic ramp. Dynamic ramp is allowed for any transition * that changes NDIV only, while PLL is already locked. */ static void pllcx_check_defaults(struct tegra_clk_pll_params *params) { u32 default_val; default_val = PLLCX_MISC0_DEFAULT_VALUE & (~PLLCX_MISC0_RESET); _pll_misc_chk_default(clk_base, params, 0, default_val, PLLCX_MISC0_WRITE_MASK); default_val = PLLCX_MISC1_DEFAULT_VALUE & (~PLLCX_MISC1_IDDQ); _pll_misc_chk_default(clk_base, params, 1, default_val, PLLCX_MISC1_WRITE_MASK); default_val = PLLCX_MISC2_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, params, 2, default_val, PLLCX_MISC2_WRITE_MASK); default_val = PLLCX_MISC3_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, params, 3, default_val, PLLCX_MISC3_WRITE_MASK); } static void tegra210_pllcx_set_defaults(const char *name, struct tegra_clk_pll *pllcx) { pllcx->params->defaults_set = true; if (readl_relaxed(clk_base + pllcx->params->base_reg) & PLL_ENABLE) { /* PLL is ON: only check if defaults already set */ pllcx_check_defaults(pllcx->params); if (!pllcx->params->defaults_set) pr_warn("%s already enabled. Postponing set full defaults\n", name); return; } /* Defaults assert PLL reset, and set IDDQ */ writel_relaxed(PLLCX_MISC0_DEFAULT_VALUE, clk_base + pllcx->params->ext_misc_reg[0]); writel_relaxed(PLLCX_MISC1_DEFAULT_VALUE, clk_base + pllcx->params->ext_misc_reg[1]); writel_relaxed(PLLCX_MISC2_DEFAULT_VALUE, clk_base + pllcx->params->ext_misc_reg[2]); writel_relaxed(PLLCX_MISC3_DEFAULT_VALUE, clk_base + pllcx->params->ext_misc_reg[3]); udelay(1); } static void _pllc_set_defaults(struct tegra_clk_pll *pllcx) { tegra210_pllcx_set_defaults("PLL_C", pllcx); } static void _pllc2_set_defaults(struct tegra_clk_pll *pllcx) { tegra210_pllcx_set_defaults("PLL_C2", pllcx); } static void _pllc3_set_defaults(struct tegra_clk_pll *pllcx) { tegra210_pllcx_set_defaults("PLL_C3", pllcx); } static void _plla1_set_defaults(struct tegra_clk_pll *pllcx) { tegra210_pllcx_set_defaults("PLL_A1", pllcx); } /* * PLLA * PLL with dynamic ramp and fractional SDM. Dynamic ramp is not used. * Fractional SDM is allowed to provide exact audio rates. */ static void tegra210_plla_set_defaults(struct tegra_clk_pll *plla) { u32 mask; u32 val = readl_relaxed(clk_base + plla->params->base_reg); plla->params->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ if (val & PLLA_BASE_IDDQ) { pr_warn("PLL_A boot enabled with IDDQ set\n"); plla->params->defaults_set = false; } pr_warn("PLL_A already enabled. Postponing set full defaults\n"); val = PLLA_MISC0_DEFAULT_VALUE; /* ignore lock enable */ mask = PLLA_MISC0_LOCK_ENABLE | PLLA_MISC0_LOCK_OVERRIDE; _pll_misc_chk_default(clk_base, plla->params, 0, val, ~mask & PLLA_MISC0_WRITE_MASK); val = PLLA_MISC2_DEFAULT_VALUE; /* ignore all but control bit */ _pll_misc_chk_default(clk_base, plla->params, 2, val, PLLA_MISC2_EN_DYNRAMP); /* Enable lock detect */ val = readl_relaxed(clk_base + plla->params->ext_misc_reg[0]); val &= ~mask; val |= PLLA_MISC0_DEFAULT_VALUE & mask; writel_relaxed(val, clk_base + plla->params->ext_misc_reg[0]); udelay(1); return; } /* set IDDQ, enable lock detect, disable dynamic ramp and SDM */ val |= PLLA_BASE_IDDQ; writel_relaxed(val, clk_base + plla->params->base_reg); writel_relaxed(PLLA_MISC0_DEFAULT_VALUE, clk_base + plla->params->ext_misc_reg[0]); writel_relaxed(PLLA_MISC2_DEFAULT_VALUE, clk_base + plla->params->ext_misc_reg[2]); udelay(1); } /* * PLLD * PLL with fractional SDM. */ static void tegra210_plld_set_defaults(struct tegra_clk_pll *plld) { u32 val; u32 mask = 0xffff; plld->params->defaults_set = true; if (readl_relaxed(clk_base + plld->params->base_reg) & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ val = PLLD_MISC1_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, plld->params, 1, val, PLLD_MISC1_WRITE_MASK); /* ignore lock, DSI and SDM controls, make sure IDDQ not set */ val = PLLD_MISC0_DEFAULT_VALUE & (~PLLD_MISC0_IDDQ); mask |= PLLD_MISC0_DSI_CLKENABLE | PLLD_MISC0_LOCK_ENABLE | PLLD_MISC0_LOCK_OVERRIDE | PLLD_MISC0_EN_SDM; _pll_misc_chk_default(clk_base, plld->params, 0, val, ~mask & PLLD_MISC0_WRITE_MASK); if (!plld->params->defaults_set) pr_warn("PLL_D already enabled. Postponing set full defaults\n"); /* Enable lock detect */ mask = PLLD_MISC0_LOCK_ENABLE | PLLD_MISC0_LOCK_OVERRIDE; val = readl_relaxed(clk_base + plld->params->ext_misc_reg[0]); val &= ~mask; val |= PLLD_MISC0_DEFAULT_VALUE & mask; writel_relaxed(val, clk_base + plld->params->ext_misc_reg[0]); udelay(1); return; } val = readl_relaxed(clk_base + plld->params->ext_misc_reg[0]); val &= PLLD_MISC0_DSI_CLKENABLE; val |= PLLD_MISC0_DEFAULT_VALUE; /* set IDDQ, enable lock detect, disable SDM */ writel_relaxed(val, clk_base + plld->params->ext_misc_reg[0]); writel_relaxed(PLLD_MISC1_DEFAULT_VALUE, clk_base + plld->params->ext_misc_reg[1]); udelay(1); } /* * PLLD2, PLLDP * PLL with fractional SDM and Spread Spectrum (SDM is a must if SSC is used). */ static void plldss_defaults(const char *pll_name, struct tegra_clk_pll *plldss, u32 misc0_val, u32 misc1_val, u32 misc2_val, u32 misc3_val) { u32 default_val; u32 val = readl_relaxed(clk_base + plldss->params->base_reg); plldss->params->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ if (val & PLLDSS_BASE_IDDQ) { pr_warn("plldss boot enabled with IDDQ set\n"); plldss->params->defaults_set = false; } /* ignore lock enable */ default_val = misc0_val; _pll_misc_chk_default(clk_base, plldss->params, 0, default_val, PLLDSS_MISC0_WRITE_MASK & (~PLLDSS_MISC0_LOCK_ENABLE)); /* * If SSC is used, check all settings, otherwise just confirm * that SSC is not used on boot as well. Do nothing when using * this function for PLLC4 that has only MISC0. */ if (plldss->params->ssc_ctrl_en_mask) { default_val = misc1_val; _pll_misc_chk_default(clk_base, plldss->params, 1, default_val, PLLDSS_MISC1_CFG_WRITE_MASK); default_val = misc2_val; _pll_misc_chk_default(clk_base, plldss->params, 2, default_val, PLLDSS_MISC2_CTRL1_WRITE_MASK); default_val = misc3_val; _pll_misc_chk_default(clk_base, plldss->params, 3, default_val, PLLDSS_MISC3_CTRL2_WRITE_MASK); } else if (plldss->params->ext_misc_reg[1]) { default_val = misc1_val; _pll_misc_chk_default(clk_base, plldss->params, 1, default_val, PLLDSS_MISC1_CFG_WRITE_MASK & (~PLLDSS_MISC1_CFG_EN_SDM)); } if (!plldss->params->defaults_set) pr_warn("%s already enabled. Postponing set full defaults\n", pll_name); /* Enable lock detect */ if (val & PLLDSS_BASE_LOCK_OVERRIDE) { val &= ~PLLDSS_BASE_LOCK_OVERRIDE; writel_relaxed(val, clk_base + plldss->params->base_reg); } val = readl_relaxed(clk_base + plldss->params->ext_misc_reg[0]); val &= ~PLLDSS_MISC0_LOCK_ENABLE; val |= misc0_val & PLLDSS_MISC0_LOCK_ENABLE; writel_relaxed(val, clk_base + plldss->params->ext_misc_reg[0]); udelay(1); return; } /* set IDDQ, enable lock detect, configure SDM/SSC */ val |= PLLDSS_BASE_IDDQ; val &= ~PLLDSS_BASE_LOCK_OVERRIDE; writel_relaxed(val, clk_base + plldss->params->base_reg); /* When using this function for PLLC4 exit here */ if (!plldss->params->ext_misc_reg[1]) { writel_relaxed(misc0_val, clk_base + plldss->params->ext_misc_reg[0]); udelay(1); return; } writel_relaxed(misc0_val, clk_base + plldss->params->ext_misc_reg[0]); /* if SSC used set by 1st enable */ writel_relaxed(misc1_val & (~PLLDSS_MISC1_CFG_EN_SSC), clk_base + plldss->params->ext_misc_reg[1]); writel_relaxed(misc2_val, clk_base + plldss->params->ext_misc_reg[2]); writel_relaxed(misc3_val, clk_base + plldss->params->ext_misc_reg[3]); udelay(1); } static void tegra210_plld2_set_defaults(struct tegra_clk_pll *plld2) { plldss_defaults("PLL_D2", plld2, PLLD2_MISC0_DEFAULT_VALUE, PLLD2_MISC1_CFG_DEFAULT_VALUE, PLLD2_MISC2_CTRL1_DEFAULT_VALUE, PLLD2_MISC3_CTRL2_DEFAULT_VALUE); } static void tegra210_plldp_set_defaults(struct tegra_clk_pll *plldp) { plldss_defaults("PLL_DP", plldp, PLLDP_MISC0_DEFAULT_VALUE, PLLDP_MISC1_CFG_DEFAULT_VALUE, PLLDP_MISC2_CTRL1_DEFAULT_VALUE, PLLDP_MISC3_CTRL2_DEFAULT_VALUE); } /* * PLLC4 * Base and misc0 layout is the same as PLLD2/PLLDP, but no SDM/SSC support. * VCO is exposed to the clock tree via fixed 1/3 and 1/5 dividers. */ static void tegra210_pllc4_set_defaults(struct tegra_clk_pll *pllc4) { plldss_defaults("PLL_C4", pllc4, PLLC4_MISC0_DEFAULT_VALUE, 0, 0, 0); } /* * PLLRE * VCO is exposed to the clock tree directly along with post-divider output */ static void tegra210_pllre_set_defaults(struct tegra_clk_pll *pllre) { u32 mask; u32 val = readl_relaxed(clk_base + pllre->params->base_reg); pllre->params->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ val &= PLLRE_BASE_DEFAULT_MASK; if (val != PLLRE_BASE_DEFAULT_VALUE) { pr_warn("pllre boot base 0x%x : expected 0x%x\n", val, PLLRE_BASE_DEFAULT_VALUE); pr_warn("(comparison mask = 0x%x)\n", PLLRE_BASE_DEFAULT_MASK); pllre->params->defaults_set = false; } /* Ignore lock enable */ val = PLLRE_MISC0_DEFAULT_VALUE & (~PLLRE_MISC0_IDDQ); mask = PLLRE_MISC0_LOCK_ENABLE | PLLRE_MISC0_LOCK_OVERRIDE; _pll_misc_chk_default(clk_base, pllre->params, 0, val, ~mask & PLLRE_MISC0_WRITE_MASK); /* The PLL doesn't work if it's in IDDQ. */ val = readl_relaxed(clk_base + pllre->params->ext_misc_reg[0]); if (val & PLLRE_MISC0_IDDQ) pr_warn("unexpected IDDQ bit set for enabled clock\n"); /* Enable lock detect */ val &= ~mask; val |= PLLRE_MISC0_DEFAULT_VALUE & mask; writel_relaxed(val, clk_base + pllre->params->ext_misc_reg[0]); udelay(1); if (!pllre->params->defaults_set) pr_warn("PLL_RE already enabled. Postponing set full defaults\n"); return; } /* set IDDQ, enable lock detect */ val &= ~PLLRE_BASE_DEFAULT_MASK; val |= PLLRE_BASE_DEFAULT_VALUE & PLLRE_BASE_DEFAULT_MASK; writel_relaxed(val, clk_base + pllre->params->base_reg); writel_relaxed(PLLRE_MISC0_DEFAULT_VALUE, clk_base + pllre->params->ext_misc_reg[0]); udelay(1); } static void pllx_get_dyn_steps(struct clk_hw *hw, u32 *step_a, u32 *step_b) { unsigned long input_rate; /* cf rate */ if (!IS_ERR_OR_NULL(hw->clk)) input_rate = clk_hw_get_rate(clk_hw_get_parent(hw)); else input_rate = 38400000; input_rate /= tegra_pll_get_fixed_mdiv(hw, input_rate); switch (input_rate) { case 12000000: case 12800000: case 13000000: *step_a = 0x2B; *step_b = 0x0B; return; case 19200000: *step_a = 0x12; *step_b = 0x08; return; case 38400000: *step_a = 0x04; *step_b = 0x05; return; default: pr_err("%s: Unexpected reference rate %lu\n", __func__, input_rate); BUG(); } } static void pllx_check_defaults(struct tegra_clk_pll *pll) { u32 default_val; default_val = PLLX_MISC0_DEFAULT_VALUE; /* ignore lock enable */ _pll_misc_chk_default(clk_base, pll->params, 0, default_val, PLLX_MISC0_WRITE_MASK & (~PLLX_MISC0_LOCK_ENABLE)); default_val = PLLX_MISC1_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, pll->params, 1, default_val, PLLX_MISC1_WRITE_MASK); /* ignore all but control bit */ default_val = PLLX_MISC2_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, pll->params, 2, default_val, PLLX_MISC2_EN_DYNRAMP); default_val = PLLX_MISC3_DEFAULT_VALUE & (~PLLX_MISC3_IDDQ); _pll_misc_chk_default(clk_base, pll->params, 3, default_val, PLLX_MISC3_WRITE_MASK); default_val = PLLX_MISC4_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, pll->params, 4, default_val, PLLX_MISC4_WRITE_MASK); default_val = PLLX_MISC5_DEFAULT_VALUE; _pll_misc_chk_default(clk_base, pll->params, 5, default_val, PLLX_MISC5_WRITE_MASK); } static void tegra210_pllx_set_defaults(struct tegra_clk_pll *pllx) { u32 val; u32 step_a, step_b; pllx->params->defaults_set = true; /* Get ready dyn ramp state machine settings */ pllx_get_dyn_steps(&pllx->hw, &step_a, &step_b); val = PLLX_MISC2_DEFAULT_VALUE & (~PLLX_MISC2_DYNRAMP_STEPA_MASK) & (~PLLX_MISC2_DYNRAMP_STEPB_MASK); val |= step_a << PLLX_MISC2_DYNRAMP_STEPA_SHIFT; val |= step_b << PLLX_MISC2_DYNRAMP_STEPB_SHIFT; if (readl_relaxed(clk_base + pllx->params->base_reg) & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ pllx_check_defaults(pllx); if (!pllx->params->defaults_set) pr_warn("PLL_X already enabled. Postponing set full defaults\n"); /* Configure dyn ramp, disable lock override */ writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]); /* Enable lock detect */ val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[0]); val &= ~PLLX_MISC0_LOCK_ENABLE; val |= PLLX_MISC0_DEFAULT_VALUE & PLLX_MISC0_LOCK_ENABLE; writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[0]); udelay(1); return; } /* Enable lock detect and CPU output */ writel_relaxed(PLLX_MISC0_DEFAULT_VALUE, clk_base + pllx->params->ext_misc_reg[0]); /* Setup */ writel_relaxed(PLLX_MISC1_DEFAULT_VALUE, clk_base + pllx->params->ext_misc_reg[1]); /* Configure dyn ramp state machine, disable lock override */ writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]); /* Set IDDQ */ writel_relaxed(PLLX_MISC3_DEFAULT_VALUE, clk_base + pllx->params->ext_misc_reg[3]); /* Disable SDM */ writel_relaxed(PLLX_MISC4_DEFAULT_VALUE, clk_base + pllx->params->ext_misc_reg[4]); writel_relaxed(PLLX_MISC5_DEFAULT_VALUE, clk_base + pllx->params->ext_misc_reg[5]); udelay(1); } /* PLLMB */ static void tegra210_pllmb_set_defaults(struct tegra_clk_pll *pllmb) { u32 mask, val = readl_relaxed(clk_base + pllmb->params->base_reg); pllmb->params->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ val = PLLMB_MISC1_DEFAULT_VALUE & (~PLLMB_MISC1_IDDQ); mask = PLLMB_MISC1_LOCK_ENABLE | PLLMB_MISC1_LOCK_OVERRIDE; _pll_misc_chk_default(clk_base, pllmb->params, 0, val, ~mask & PLLMB_MISC1_WRITE_MASK); if (!pllmb->params->defaults_set) pr_warn("PLL_MB already enabled. Postponing set full defaults\n"); /* Enable lock detect */ val = readl_relaxed(clk_base + pllmb->params->ext_misc_reg[0]); val &= ~mask; val |= PLLMB_MISC1_DEFAULT_VALUE & mask; writel_relaxed(val, clk_base + pllmb->params->ext_misc_reg[0]); udelay(1); return; } /* set IDDQ, enable lock detect */ writel_relaxed(PLLMB_MISC1_DEFAULT_VALUE, clk_base + pllmb->params->ext_misc_reg[0]); udelay(1); } /* * PLLP * VCO is exposed to the clock tree directly along with post-divider output. * Both VCO and post-divider output rates are fixed at 408MHz and 204MHz, * respectively. */ static void pllp_check_defaults(struct tegra_clk_pll *pll, bool enabled) { u32 val, mask; /* Ignore lock enable (will be set), make sure not in IDDQ if enabled */ val = PLLP_MISC0_DEFAULT_VALUE & (~PLLP_MISC0_IDDQ); mask = PLLP_MISC0_LOCK_ENABLE | PLLP_MISC0_LOCK_OVERRIDE; if (!enabled) mask |= PLLP_MISC0_IDDQ; _pll_misc_chk_default(clk_base, pll->params, 0, val, ~mask & PLLP_MISC0_WRITE_MASK); /* Ignore branch controls */ val = PLLP_MISC1_DEFAULT_VALUE; mask = PLLP_MISC1_HSIO_EN | PLLP_MISC1_XUSB_EN; _pll_misc_chk_default(clk_base, pll->params, 1, val, ~mask & PLLP_MISC1_WRITE_MASK); } static void tegra210_pllp_set_defaults(struct tegra_clk_pll *pllp) { u32 mask; u32 val = readl_relaxed(clk_base + pllp->params->base_reg); pllp->params->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ pllp_check_defaults(pllp, true); if (!pllp->params->defaults_set) pr_warn("PLL_P already enabled. Postponing set full defaults\n"); /* Enable lock detect */ val = readl_relaxed(clk_base + pllp->params->ext_misc_reg[0]); mask = PLLP_MISC0_LOCK_ENABLE | PLLP_MISC0_LOCK_OVERRIDE; val &= ~mask; val |= PLLP_MISC0_DEFAULT_VALUE & mask; writel_relaxed(val, clk_base + pllp->params->ext_misc_reg[0]); udelay(1); return; } /* set IDDQ, enable lock detect */ writel_relaxed(PLLP_MISC0_DEFAULT_VALUE, clk_base + pllp->params->ext_misc_reg[0]); /* Preserve branch control */ val = readl_relaxed(clk_base + pllp->params->ext_misc_reg[1]); mask = PLLP_MISC1_HSIO_EN | PLLP_MISC1_XUSB_EN; val &= mask; val |= ~mask & PLLP_MISC1_DEFAULT_VALUE; writel_relaxed(val, clk_base + pllp->params->ext_misc_reg[1]); udelay(1); } /* * PLLU * VCO is exposed to the clock tree directly along with post-divider output. * Both VCO and post-divider output rates are fixed at 480MHz and 240MHz, * respectively. */ static void pllu_check_defaults(struct tegra_clk_pll_params *params, bool hw_control) { u32 val, mask; /* Ignore lock enable (will be set) and IDDQ if under h/w control */ val = PLLU_MISC0_DEFAULT_VALUE & (~PLLU_MISC0_IDDQ); mask = PLLU_MISC0_LOCK_ENABLE | (hw_control ? PLLU_MISC0_IDDQ : 0); _pll_misc_chk_default(clk_base, params, 0, val, ~mask & PLLU_MISC0_WRITE_MASK); val = PLLU_MISC1_DEFAULT_VALUE; mask = PLLU_MISC1_LOCK_OVERRIDE; _pll_misc_chk_default(clk_base, params, 1, val, ~mask & PLLU_MISC1_WRITE_MASK); } static void tegra210_pllu_set_defaults(struct tegra_clk_pll_params *pllu) { u32 val = readl_relaxed(clk_base + pllu->base_reg); pllu->defaults_set = true; if (val & PLL_ENABLE) { /* * PLL is ON: check if defaults already set, then set those * that can be updated in flight. */ pllu_check_defaults(pllu, false); if (!pllu->defaults_set) pr_warn("PLL_U already enabled. Postponing set full defaults\n"); /* Enable lock detect */ val = readl_relaxed(clk_base + pllu->ext_misc_reg[0]); val &= ~PLLU_MISC0_LOCK_ENABLE; val |= PLLU_MISC0_DEFAULT_VALUE & PLLU_MISC0_LOCK_ENABLE; writel_relaxed(val, clk_base + pllu->ext_misc_reg[0]); val = readl_relaxed(clk_base + pllu->ext_misc_reg[1]); val &= ~PLLU_MISC1_LOCK_OVERRIDE; val |= PLLU_MISC1_DEFAULT_VALUE & PLLU_MISC1_LOCK_OVERRIDE; writel_relaxed(val, clk_base + pllu->ext_misc_reg[1]); udelay(1); return; } /* set IDDQ, enable lock detect */ writel_relaxed(PLLU_MISC0_DEFAULT_VALUE, clk_base + pllu->ext_misc_reg[0]); writel_relaxed(PLLU_MISC1_DEFAULT_VALUE, clk_base + pllu->ext_misc_reg[1]); udelay(1); } #define mask(w) ((1 << (w)) - 1) #define divm_mask(p) mask(p->params->div_nmp->divm_width) #define divn_mask(p) mask(p->params->div_nmp->divn_width) #define divp_mask(p) (p->params->flags & TEGRA_PLLU ? PLLU_POST_DIVP_MASK :\ mask(p->params->div_nmp->divp_width)) #define divm_shift(p) ((p)->params->div_nmp->divm_shift) #define divn_shift(p) ((p)->params->div_nmp->divn_shift) #define divp_shift(p) ((p)->params->div_nmp->divp_shift) #define divm_mask_shifted(p) (divm_mask(p) << divm_shift(p)) #define divn_mask_shifted(p) (divn_mask(p) << divn_shift(p)) #define divp_mask_shifted(p) (divp_mask(p) << divp_shift(p)) #define PLL_LOCKDET_DELAY 2 /* Lock detection safety delays */ static int tegra210_wait_for_mask(struct tegra_clk_pll *pll, u32 reg, u32 mask) { int i; u32 val = 0; for (i = 0; i < pll->params->lock_delay / PLL_LOCKDET_DELAY + 1; i++) { udelay(PLL_LOCKDET_DELAY); val = readl_relaxed(clk_base + reg); if ((val & mask) == mask) { udelay(PLL_LOCKDET_DELAY); return 0; } } return -ETIMEDOUT; } static int tegra210_pllx_dyn_ramp(struct tegra_clk_pll *pllx, struct tegra_clk_pll_freq_table *cfg) { u32 val, base, ndiv_new_mask; ndiv_new_mask = (divn_mask(pllx) >> pllx->params->div_nmp->divn_shift) << PLLX_MISC2_NDIV_NEW_SHIFT; val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[2]); val &= (~ndiv_new_mask); val |= cfg->n << PLLX_MISC2_NDIV_NEW_SHIFT; writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]); udelay(1); val = readl_relaxed(clk_base + pllx->params->ext_misc_reg[2]); val |= PLLX_MISC2_EN_DYNRAMP; writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]); udelay(1); tegra210_wait_for_mask(pllx, pllx->params->ext_misc_reg[2], PLLX_MISC2_DYNRAMP_DONE); base = readl_relaxed(clk_base + pllx->params->base_reg) & (~divn_mask_shifted(pllx)); base |= cfg->n << pllx->params->div_nmp->divn_shift; writel_relaxed(base, clk_base + pllx->params->base_reg); udelay(1); val &= ~PLLX_MISC2_EN_DYNRAMP; writel_relaxed(val, clk_base + pllx->params->ext_misc_reg[2]); udelay(1); pr_debug("%s: dynamic ramp to m = %u n = %u p = %u, Fout = %lu kHz\n", __clk_get_name(pllx->hw.clk), cfg->m, cfg->n, cfg->p, cfg->input_rate / cfg->m * cfg->n / pllx->params->pdiv_tohw[cfg->p].pdiv / 1000); return 0; } /* * Common configuration for PLLs with fixed input divider policy: * - always set fixed M-value based on the reference rate * - always set P-value value 1:1 for output rates above VCO minimum, and * choose minimum necessary P-value for output rates below VCO maximum * - calculate N-value based on selected M and P * - calculate SDM_DIN fractional part */ static int tegra210_pll_fixed_mdiv_cfg(struct clk_hw *hw, struct tegra_clk_pll_freq_table *cfg, unsigned long rate, unsigned long input_rate) { struct tegra_clk_pll *pll = to_clk_pll(hw); struct tegra_clk_pll_params *params = pll->params; int p; unsigned long cf, p_rate; u32 pdiv; if (!rate) return -EINVAL; if (!(params->flags & TEGRA_PLL_VCO_OUT)) { p = DIV_ROUND_UP(params->vco_min, rate); p = params->round_p_to_pdiv(p, &pdiv); } else { p = rate >= params->vco_min ? 1 : -EINVAL; } if (p < 0) return -EINVAL; cfg->m = tegra_pll_get_fixed_mdiv(hw, input_rate); cfg->p = p; /* Store P as HW value, as that is what is expected */ cfg->p = tegra_pll_p_div_to_hw(pll, cfg->p); p_rate = rate * p; if (p_rate > params->vco_max) p_rate = params->vco_max; cf = input_rate / cfg->m; cfg->n = p_rate / cf; cfg->sdm_data = 0; cfg->output_rate = input_rate; if (params->sdm_ctrl_reg) { unsigned long rem = p_rate - cf * cfg->n; /* If ssc is enabled SDM enabled as well, even for integer n */ if (rem || params->ssc_ctrl_reg) { u64 s = rem * PLL_SDM_COEFF; do_div(s, cf); s -= PLL_SDM_COEFF / 2; cfg->sdm_data = sdin_din_to_data(s); } cfg->output_rate *= sdin_get_n_eff(cfg); cfg->output_rate /= p * cfg->m * PLL_SDM_COEFF; } else { cfg->output_rate *= cfg->n; cfg->output_rate /= p * cfg->m; } cfg->input_rate = input_rate; return 0; } /* * clk_pll_set_gain - set gain to m, n to calculate correct VCO rate * * @cfg: struct tegra_clk_pll_freq_table * cfg * * For Normal mode: * Fvco = Fref * NDIV / MDIV * * For fractional mode: * Fvco = Fref * (NDIV + 0.5 + SDM_DIN / PLL_SDM_COEFF) / MDIV */ static void tegra210_clk_pll_set_gain(struct tegra_clk_pll_freq_table *cfg) { cfg->n = sdin_get_n_eff(cfg); cfg->m *= PLL_SDM_COEFF; } static unsigned long tegra210_clk_adjust_vco_min(struct tegra_clk_pll_params *params, unsigned long parent_rate) { unsigned long vco_min = params->vco_min; params->vco_min += DIV_ROUND_UP(parent_rate, PLL_SDM_COEFF); vco_min = min(vco_min, params->vco_min); return vco_min; } static struct div_nmp pllx_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 20, .divp_width = 5, }; /* * PLL post divider maps - two types: quasi-linear and exponential * post divider. */ #define PLL_QLIN_PDIV_MAX 16 static const struct pdiv_map pll_qlin_pdiv_to_hw[] = { { .pdiv = 1, .hw_val = 0 }, { .pdiv = 2, .hw_val = 1 }, { .pdiv = 3, .hw_val = 2 }, { .pdiv = 4, .hw_val = 3 }, { .pdiv = 5, .hw_val = 4 }, { .pdiv = 6, .hw_val = 5 }, { .pdiv = 8, .hw_val = 6 }, { .pdiv = 9, .hw_val = 7 }, { .pdiv = 10, .hw_val = 8 }, { .pdiv = 12, .hw_val = 9 }, { .pdiv = 15, .hw_val = 10 }, { .pdiv = 16, .hw_val = 11 }, { .pdiv = 18, .hw_val = 12 }, { .pdiv = 20, .hw_val = 13 }, { .pdiv = 24, .hw_val = 14 }, { .pdiv = 30, .hw_val = 15 }, { .pdiv = 32, .hw_val = 16 }, }; static u32 pll_qlin_p_to_pdiv(u32 p, u32 *pdiv) { int i; if (p) { for (i = 0; i <= PLL_QLIN_PDIV_MAX; i++) { if (p <= pll_qlin_pdiv_to_hw[i].pdiv) { if (pdiv) *pdiv = i; return pll_qlin_pdiv_to_hw[i].pdiv; } } } return -EINVAL; } #define PLL_EXPO_PDIV_MAX 7 static const struct pdiv_map pll_expo_pdiv_to_hw[] = { { .pdiv = 1, .hw_val = 0 }, { .pdiv = 2, .hw_val = 1 }, { .pdiv = 4, .hw_val = 2 }, { .pdiv = 8, .hw_val = 3 }, { .pdiv = 16, .hw_val = 4 }, { .pdiv = 32, .hw_val = 5 }, { .pdiv = 64, .hw_val = 6 }, { .pdiv = 128, .hw_val = 7 }, }; static u32 pll_expo_p_to_pdiv(u32 p, u32 *pdiv) { if (p) { u32 i = fls(p); if (i == ffs(p)) i--; if (i <= PLL_EXPO_PDIV_MAX) { if (pdiv) *pdiv = i; return 1 << i; } } return -EINVAL; } static struct tegra_clk_pll_freq_table pll_x_freq_table[] = { /* 1 GHz */ { 12000000, 1000000000, 166, 1, 2, 0 }, /* actual: 996.0 MHz */ { 13000000, 1000000000, 153, 1, 2, 0 }, /* actual: 994.0 MHz */ { 38400000, 1000000000, 156, 3, 2, 0 }, /* actual: 998.4 MHz */ { 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_x_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 38400000, .vco_min = 1350000000, .vco_max = 3000000000UL, .base_reg = PLLX_BASE, .misc_reg = PLLX_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_enable_bit_idx = PLL_MISC_LOCK_ENABLE, .lock_delay = 300, .ext_misc_reg[0] = PLLX_MISC0, .ext_misc_reg[1] = PLLX_MISC1, .ext_misc_reg[2] = PLLX_MISC2, .ext_misc_reg[3] = PLLX_MISC3, .ext_misc_reg[4] = PLLX_MISC4, .ext_misc_reg[5] = PLLX_MISC5, .iddq_reg = PLLX_MISC3, .iddq_bit_idx = PLLXP_IDDQ_BIT, .max_p = PLL_QLIN_PDIV_MAX, .mdiv_default = 2, .dyn_ramp_reg = PLLX_MISC2, .stepa_shift = 16, .stepb_shift = 24, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllx_nmp, .freq_table = pll_x_freq_table, .flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_HAS_LOCK_ENABLE, .dyn_ramp = tegra210_pllx_dyn_ramp, .set_defaults = tegra210_pllx_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct div_nmp pllc_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 10, .divn_width = 8, .divp_shift = 20, .divp_width = 5, }; static struct tegra_clk_pll_freq_table pll_cx_freq_table[] = { { 12000000, 510000000, 85, 1, 2, 0 }, { 13000000, 510000000, 78, 1, 2, 0 }, /* actual: 507.0 MHz */ { 38400000, 510000000, 79, 3, 2, 0 }, /* actual: 505.6 MHz */ { 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_c_params = { .input_min = 12000000, .input_max = 700000000, .cf_min = 12000000, .cf_max = 50000000, .vco_min = 600000000, .vco_max = 1200000000, .base_reg = PLLC_BASE, .misc_reg = PLLC_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLC_MISC1, .iddq_bit_idx = PLLCX_IDDQ_BIT, .reset_reg = PLLC_MISC0, .reset_bit_idx = PLLCX_RESET_BIT, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLC_MISC0, .ext_misc_reg[1] = PLLC_MISC1, .ext_misc_reg[2] = PLLC_MISC2, .ext_misc_reg[3] = PLLC_MISC3, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .mdiv_default = 3, .div_nmp = &pllc_nmp, .freq_table = pll_cx_freq_table, .flags = TEGRA_PLL_USE_LOCK, .set_defaults = _pllc_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct div_nmp pllcx_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 10, .divn_width = 8, .divp_shift = 20, .divp_width = 5, }; static struct tegra_clk_pll_params pll_c2_params = { .input_min = 12000000, .input_max = 700000000, .cf_min = 12000000, .cf_max = 50000000, .vco_min = 600000000, .vco_max = 1200000000, .base_reg = PLLC2_BASE, .misc_reg = PLLC2_MISC0, .iddq_reg = PLLC2_MISC1, .iddq_bit_idx = PLLCX_IDDQ_BIT, .reset_reg = PLLC2_MISC0, .reset_bit_idx = PLLCX_RESET_BIT, .lock_mask = PLLCX_BASE_LOCK, .lock_delay = 300, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .mdiv_default = 3, .div_nmp = &pllcx_nmp, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLC2_MISC0, .ext_misc_reg[1] = PLLC2_MISC1, .ext_misc_reg[2] = PLLC2_MISC2, .ext_misc_reg[3] = PLLC2_MISC3, .freq_table = pll_cx_freq_table, .flags = TEGRA_PLL_USE_LOCK, .set_defaults = _pllc2_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_params pll_c3_params = { .input_min = 12000000, .input_max = 700000000, .cf_min = 12000000, .cf_max = 50000000, .vco_min = 600000000, .vco_max = 1200000000, .base_reg = PLLC3_BASE, .misc_reg = PLLC3_MISC0, .lock_mask = PLLCX_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLC3_MISC1, .iddq_bit_idx = PLLCX_IDDQ_BIT, .reset_reg = PLLC3_MISC0, .reset_bit_idx = PLLCX_RESET_BIT, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .mdiv_default = 3, .div_nmp = &pllcx_nmp, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLC3_MISC0, .ext_misc_reg[1] = PLLC3_MISC1, .ext_misc_reg[2] = PLLC3_MISC2, .ext_misc_reg[3] = PLLC3_MISC3, .freq_table = pll_cx_freq_table, .flags = TEGRA_PLL_USE_LOCK, .set_defaults = _pllc3_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct div_nmp pllss_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 19, .divp_width = 5, }; static struct tegra_clk_pll_freq_table pll_c4_vco_freq_table[] = { { 12000000, 600000000, 50, 1, 1, 0 }, { 13000000, 600000000, 46, 1, 1, 0 }, /* actual: 598.0 MHz */ { 38400000, 600000000, 62, 4, 1, 0 }, /* actual: 595.2 MHz */ { 0, 0, 0, 0, 0, 0 }, }; static const struct clk_div_table pll_vco_post_div_table[] = { { .val = 0, .div = 1 }, { .val = 1, .div = 2 }, { .val = 2, .div = 3 }, { .val = 3, .div = 4 }, { .val = 4, .div = 5 }, { .val = 5, .div = 6 }, { .val = 6, .div = 8 }, { .val = 7, .div = 10 }, { .val = 8, .div = 12 }, { .val = 9, .div = 16 }, { .val = 10, .div = 12 }, { .val = 11, .div = 16 }, { .val = 12, .div = 20 }, { .val = 13, .div = 24 }, { .val = 14, .div = 32 }, { .val = 0, .div = 0 }, }; static struct tegra_clk_pll_params pll_c4_vco_params = { .input_min = 9600000, .input_max = 800000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 500000000, .vco_max = 1080000000, .base_reg = PLLC4_BASE, .misc_reg = PLLC4_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLC4_MISC0, .iddq_reg = PLLC4_BASE, .iddq_bit_idx = PLLSS_IDDQ_BIT, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .mdiv_default = 3, .div_nmp = &pllss_nmp, .freq_table = pll_c4_vco_freq_table, .set_defaults = tegra210_pllc4_set_defaults, .flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_freq_table pll_m_freq_table[] = { { 12000000, 800000000, 66, 1, 1, 0 }, /* actual: 792.0 MHz */ { 13000000, 800000000, 61, 1, 1, 0 }, /* actual: 793.0 MHz */ { 38400000, 297600000, 93, 4, 3, 0 }, { 38400000, 400000000, 125, 4, 3, 0 }, { 38400000, 532800000, 111, 4, 2, 0 }, { 38400000, 665600000, 104, 3, 2, 0 }, { 38400000, 800000000, 125, 3, 2, 0 }, { 38400000, 931200000, 97, 4, 1, 0 }, { 38400000, 1065600000, 111, 4, 1, 0 }, { 38400000, 1200000000, 125, 4, 1, 0 }, { 38400000, 1331200000, 104, 3, 1, 0 }, { 38400000, 1459200000, 76, 2, 1, 0 }, { 38400000, 1600000000, 125, 3, 1, 0 }, { 0, 0, 0, 0, 0, 0 }, }; static struct div_nmp pllm_nmp = { .divm_shift = 0, .divm_width = 8, .override_divm_shift = 0, .divn_shift = 8, .divn_width = 8, .override_divn_shift = 8, .divp_shift = 20, .divp_width = 5, .override_divp_shift = 27, }; static struct tegra_clk_pll_params pll_m_params = { .input_min = 9600000, .input_max = 500000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 800000000, .vco_max = 1866000000, .base_reg = PLLM_BASE, .misc_reg = PLLM_MISC2, .lock_mask = PLL_BASE_LOCK, .lock_enable_bit_idx = PLLM_MISC_LOCK_ENABLE, .lock_delay = 300, .iddq_reg = PLLM_MISC2, .iddq_bit_idx = PLLM_IDDQ_BIT, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLM_MISC2, .ext_misc_reg[1] = PLLM_MISC1, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllm_nmp, .pmc_divnm_reg = PMC_PLLM_WB0_OVERRIDE, .pmc_divp_reg = PMC_PLLM_WB0_OVERRIDE_2, .freq_table = pll_m_freq_table, .flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_HAS_LOCK_ENABLE, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_params pll_mb_params = { .input_min = 9600000, .input_max = 500000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 800000000, .vco_max = 1866000000, .base_reg = PLLMB_BASE, .misc_reg = PLLMB_MISC1, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLMB_MISC1, .iddq_bit_idx = PLLMB_IDDQ_BIT, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLMB_MISC1, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllm_nmp, .freq_table = pll_m_freq_table, .flags = TEGRA_PLL_USE_LOCK, .set_defaults = tegra210_pllmb_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_freq_table pll_e_freq_table[] = { /* PLLE special case: use cpcon field to store cml divider value */ { 672000000, 100000000, 125, 42, 0, 13 }, { 624000000, 100000000, 125, 39, 0, 13 }, { 336000000, 100000000, 125, 21, 0, 13 }, { 312000000, 100000000, 200, 26, 0, 14 }, { 38400000, 100000000, 125, 2, 0, 14 }, { 12000000, 100000000, 200, 1, 0, 14 }, { 0, 0, 0, 0, 0, 0 }, }; static struct div_nmp plle_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 24, .divp_width = 5, }; static struct tegra_clk_pll_params pll_e_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 38400000, .vco_min = 1600000000, .vco_max = 2500000000U, .base_reg = PLLE_BASE, .misc_reg = PLLE_MISC0, .aux_reg = PLLE_AUX, .lock_mask = PLLE_MISC_LOCK, .lock_enable_bit_idx = PLLE_MISC_LOCK_ENABLE, .lock_delay = 300, .div_nmp = &plle_nmp, .freq_table = pll_e_freq_table, .flags = TEGRA_PLL_FIXED | TEGRA_PLL_LOCK_MISC | TEGRA_PLL_USE_LOCK | TEGRA_PLL_HAS_LOCK_ENABLE, .fixed_rate = 100000000, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_freq_table pll_re_vco_freq_table[] = { { 12000000, 672000000, 56, 1, 1, 0 }, { 13000000, 672000000, 51, 1, 1, 0 }, /* actual: 663.0 MHz */ { 38400000, 672000000, 70, 4, 1, 0 }, { 0, 0, 0, 0, 0, 0 }, }; static struct div_nmp pllre_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 16, .divp_width = 5, }; static struct tegra_clk_pll_params pll_re_vco_params = { .input_min = 9600000, .input_max = 800000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 350000000, .vco_max = 700000000, .base_reg = PLLRE_BASE, .misc_reg = PLLRE_MISC0, .lock_mask = PLLRE_MISC_LOCK, .lock_delay = 300, .max_p = PLL_QLIN_PDIV_MAX, .ext_misc_reg[0] = PLLRE_MISC0, .iddq_reg = PLLRE_MISC0, .iddq_bit_idx = PLLRE_IDDQ_BIT, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllre_nmp, .freq_table = pll_re_vco_freq_table, .flags = TEGRA_PLL_USE_LOCK | TEGRA_PLL_LOCK_MISC | TEGRA_PLL_VCO_OUT, .set_defaults = tegra210_pllre_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct div_nmp pllp_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 10, .divn_width = 8, .divp_shift = 20, .divp_width = 5, }; static struct tegra_clk_pll_freq_table pll_p_freq_table[] = { { 12000000, 408000000, 34, 1, 1, 0 }, { 38400000, 408000000, 85, 8, 1, 0 }, /* cf = 4.8MHz, allowed exception */ { 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_p_params = { .input_min = 9600000, .input_max = 800000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 350000000, .vco_max = 700000000, .base_reg = PLLP_BASE, .misc_reg = PLLP_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLP_MISC0, .iddq_bit_idx = PLLXP_IDDQ_BIT, .ext_misc_reg[0] = PLLP_MISC0, .ext_misc_reg[1] = PLLP_MISC1, .div_nmp = &pllp_nmp, .freq_table = pll_p_freq_table, .fixed_rate = 408000000, .flags = TEGRA_PLL_FIXED | TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT, .set_defaults = tegra210_pllp_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct tegra_clk_pll_params pll_a1_params = { .input_min = 12000000, .input_max = 700000000, .cf_min = 12000000, .cf_max = 50000000, .vco_min = 600000000, .vco_max = 1200000000, .base_reg = PLLA1_BASE, .misc_reg = PLLA1_MISC0, .lock_mask = PLLCX_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLA1_MISC1, .iddq_bit_idx = PLLCX_IDDQ_BIT, .reset_reg = PLLA1_MISC0, .reset_bit_idx = PLLCX_RESET_BIT, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllc_nmp, .ext_misc_reg[0] = PLLA1_MISC0, .ext_misc_reg[1] = PLLA1_MISC1, .ext_misc_reg[2] = PLLA1_MISC2, .ext_misc_reg[3] = PLLA1_MISC3, .freq_table = pll_cx_freq_table, .flags = TEGRA_PLL_USE_LOCK, .set_defaults = _plla1_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, }; static struct div_nmp plla_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 20, .divp_width = 5, }; static struct tegra_clk_pll_freq_table pll_a_freq_table[] = { { 12000000, 282240000, 47, 1, 2, 1, 0xf148 }, /* actual: 282240234 */ { 12000000, 368640000, 61, 1, 2, 1, 0xfe15 }, /* actual: 368640381 */ { 12000000, 240000000, 60, 1, 3, 1, 0 }, { 13000000, 282240000, 43, 1, 2, 1, 0xfd7d }, /* actual: 282239807 */ { 13000000, 368640000, 56, 1, 2, 1, 0x06d8 }, /* actual: 368640137 */ { 13000000, 240000000, 55, 1, 3, 1, 0 }, /* actual: 238.3 MHz */ { 38400000, 282240000, 44, 3, 2, 1, 0xf333 }, /* actual: 282239844 */ { 38400000, 368640000, 57, 3, 2, 1, 0x0333 }, /* actual: 368639844 */ { 38400000, 240000000, 75, 3, 3, 1, 0 }, { 0, 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_a_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 19200000, .vco_min = 500000000, .vco_max = 1000000000, .base_reg = PLLA_BASE, .misc_reg = PLLA_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .iddq_reg = PLLA_BASE, .iddq_bit_idx = PLLA_IDDQ_BIT, .div_nmp = &plla_nmp, .sdm_din_reg = PLLA_MISC1, .sdm_din_mask = PLLA_SDM_DIN_MASK, .sdm_ctrl_reg = PLLA_MISC2, .sdm_ctrl_en_mask = PLLA_SDM_EN_MASK, .ext_misc_reg[0] = PLLA_MISC0, .ext_misc_reg[1] = PLLA_MISC1, .ext_misc_reg[2] = PLLA_MISC2, .freq_table = pll_a_freq_table, .flags = TEGRA_PLL_USE_LOCK | TEGRA_MDIV_NEW, .set_defaults = tegra210_plla_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, .set_gain = tegra210_clk_pll_set_gain, .adjust_vco = tegra210_clk_adjust_vco_min, }; static struct div_nmp plld_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 11, .divn_width = 8, .divp_shift = 20, .divp_width = 3, }; static struct tegra_clk_pll_freq_table pll_d_freq_table[] = { { 12000000, 594000000, 99, 1, 2, 0, 0 }, { 13000000, 594000000, 91, 1, 2, 0, 0xfc4f }, /* actual: 594000183 */ { 38400000, 594000000, 30, 1, 2, 0, 0x0e00 }, { 0, 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_d_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 38400000, .vco_min = 750000000, .vco_max = 1500000000, .base_reg = PLLD_BASE, .misc_reg = PLLD_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 1000, .iddq_reg = PLLD_MISC0, .iddq_bit_idx = PLLD_IDDQ_BIT, .round_p_to_pdiv = pll_expo_p_to_pdiv, .pdiv_tohw = pll_expo_pdiv_to_hw, .div_nmp = &plld_nmp, .sdm_din_reg = PLLD_MISC0, .sdm_din_mask = PLLA_SDM_DIN_MASK, .sdm_ctrl_reg = PLLD_MISC0, .sdm_ctrl_en_mask = PLLD_SDM_EN_MASK, .ext_misc_reg[0] = PLLD_MISC0, .ext_misc_reg[1] = PLLD_MISC1, .freq_table = pll_d_freq_table, .flags = TEGRA_PLL_USE_LOCK, .mdiv_default = 1, .set_defaults = tegra210_plld_set_defaults, .calc_rate = tegra210_pll_fixed_mdiv_cfg, .set_gain = tegra210_clk_pll_set_gain, .adjust_vco = tegra210_clk_adjust_vco_min, }; static struct tegra_clk_pll_freq_table tegra210_pll_d2_freq_table[] = { { 12000000, 594000000, 99, 1, 2, 0, 0xf000 }, { 13000000, 594000000, 91, 1, 2, 0, 0xfc4f }, /* actual: 594000183 */ { 38400000, 594000000, 30, 1, 2, 0, 0x0e00 }, { 0, 0, 0, 0, 0, 0, 0 }, }; /* s/w policy, always tegra_pll_ref */ static struct tegra_clk_pll_params pll_d2_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 38400000, .vco_min = 750000000, .vco_max = 1500000000, .base_reg = PLLD2_BASE, .misc_reg = PLLD2_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLD2_BASE, .iddq_bit_idx = PLLSS_IDDQ_BIT, .sdm_din_reg = PLLD2_MISC3, .sdm_din_mask = PLLA_SDM_DIN_MASK, .sdm_ctrl_reg = PLLD2_MISC1, .sdm_ctrl_en_mask = PLLD2_SDM_EN_MASK, /* disable spread-spectrum for pll_d2 */ .ssc_ctrl_reg = 0, .ssc_ctrl_en_mask = 0, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllss_nmp, .ext_misc_reg[0] = PLLD2_MISC0, .ext_misc_reg[1] = PLLD2_MISC1, .ext_misc_reg[2] = PLLD2_MISC2, .ext_misc_reg[3] = PLLD2_MISC3, .max_p = PLL_QLIN_PDIV_MAX, .mdiv_default = 1, .freq_table = tegra210_pll_d2_freq_table, .set_defaults = tegra210_plld2_set_defaults, .flags = TEGRA_PLL_USE_LOCK, .calc_rate = tegra210_pll_fixed_mdiv_cfg, .set_gain = tegra210_clk_pll_set_gain, .adjust_vco = tegra210_clk_adjust_vco_min, }; static struct tegra_clk_pll_freq_table pll_dp_freq_table[] = { { 12000000, 270000000, 90, 1, 4, 0, 0xf000 }, { 13000000, 270000000, 83, 1, 4, 0, 0xf000 }, /* actual: 269.8 MHz */ { 38400000, 270000000, 28, 1, 4, 0, 0xf400 }, { 0, 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_dp_params = { .input_min = 12000000, .input_max = 800000000, .cf_min = 12000000, .cf_max = 38400000, .vco_min = 750000000, .vco_max = 1500000000, .base_reg = PLLDP_BASE, .misc_reg = PLLDP_MISC, .lock_mask = PLL_BASE_LOCK, .lock_delay = 300, .iddq_reg = PLLDP_BASE, .iddq_bit_idx = PLLSS_IDDQ_BIT, .sdm_din_reg = PLLDP_SS_CTRL2, .sdm_din_mask = PLLA_SDM_DIN_MASK, .sdm_ctrl_reg = PLLDP_SS_CFG, .sdm_ctrl_en_mask = PLLDP_SDM_EN_MASK, .ssc_ctrl_reg = PLLDP_SS_CFG, .ssc_ctrl_en_mask = PLLDP_SSC_EN_MASK, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllss_nmp, .ext_misc_reg[0] = PLLDP_MISC, .ext_misc_reg[1] = PLLDP_SS_CFG, .ext_misc_reg[2] = PLLDP_SS_CTRL1, .ext_misc_reg[3] = PLLDP_SS_CTRL2, .max_p = PLL_QLIN_PDIV_MAX, .mdiv_default = 1, .freq_table = pll_dp_freq_table, .set_defaults = tegra210_plldp_set_defaults, .flags = TEGRA_PLL_USE_LOCK, .calc_rate = tegra210_pll_fixed_mdiv_cfg, .set_gain = tegra210_clk_pll_set_gain, .adjust_vco = tegra210_clk_adjust_vco_min, }; static struct div_nmp pllu_nmp = { .divm_shift = 0, .divm_width = 8, .divn_shift = 8, .divn_width = 8, .divp_shift = 16, .divp_width = 5, }; static struct tegra_clk_pll_freq_table pll_u_freq_table[] = { { 12000000, 480000000, 40, 1, 1, 0 }, { 13000000, 480000000, 36, 1, 1, 0 }, /* actual: 468.0 MHz */ { 38400000, 480000000, 25, 2, 1, 0 }, { 0, 0, 0, 0, 0, 0 }, }; static struct tegra_clk_pll_params pll_u_vco_params = { .input_min = 9600000, .input_max = 800000000, .cf_min = 9600000, .cf_max = 19200000, .vco_min = 350000000, .vco_max = 700000000, .base_reg = PLLU_BASE, .misc_reg = PLLU_MISC0, .lock_mask = PLL_BASE_LOCK, .lock_delay = 1000, .iddq_reg = PLLU_MISC0, .iddq_bit_idx = PLLU_IDDQ_BIT, .ext_misc_reg[0] = PLLU_MISC0, .ext_misc_reg[1] = PLLU_MISC1, .round_p_to_pdiv = pll_qlin_p_to_pdiv, .pdiv_tohw = pll_qlin_pdiv_to_hw, .div_nmp = &pllu_nmp, .freq_table = pll_u_freq_table, .flags = TEGRA_PLLU | TEGRA_PLL_USE_LOCK | TEGRA_PLL_VCO_OUT, }; struct utmi_clk_param { /* Oscillator Frequency in KHz */ u32 osc_frequency; /* UTMIP PLL Enable Delay Count */ u8 enable_delay_count; /* UTMIP PLL Stable count */ u16 stable_count; /* UTMIP PLL Active delay count */ u8 active_delay_count; /* UTMIP PLL Xtal frequency count */ u16 xtal_freq_count; }; static const struct utmi_clk_param utmi_parameters[] = { { .osc_frequency = 38400000, .enable_delay_count = 0x0, .stable_count = 0x0, .active_delay_count = 0x6, .xtal_freq_count = 0x80 }, { .osc_frequency = 13000000, .enable_delay_count = 0x02, .stable_count = 0x33, .active_delay_count = 0x05, .xtal_freq_count = 0x7f }, { .osc_frequency = 19200000, .enable_delay_count = 0x03, .stable_count = 0x4b, .active_delay_count = 0x06, .xtal_freq_count = 0xbb }, { .osc_frequency = 12000000, .enable_delay_count = 0x02, .stable_count = 0x2f, .active_delay_count = 0x08, .xtal_freq_count = 0x76 }, { .osc_frequency = 26000000, .enable_delay_count = 0x04, .stable_count = 0x66, .active_delay_count = 0x09, .xtal_freq_count = 0xfe }, { .osc_frequency = 16800000, .enable_delay_count = 0x03, .stable_count = 0x41, .active_delay_count = 0x0a, .xtal_freq_count = 0xa4 }, }; static struct tegra_clk tegra210_clks[tegra_clk_max] __initdata = { [tegra_clk_ispb] = { .dt_id = TEGRA210_CLK_ISPB, .present = true }, [tegra_clk_rtc] = { .dt_id = TEGRA210_CLK_RTC, .present = true }, [tegra_clk_timer] = { .dt_id = TEGRA210_CLK_TIMER, .present = true }, [tegra_clk_uarta_8] = { .dt_id = TEGRA210_CLK_UARTA, .present = true }, [tegra_clk_i2s1] = { .dt_id = TEGRA210_CLK_I2S1, .present = true }, [tegra_clk_i2c1] = { .dt_id = TEGRA210_CLK_I2C1, .present = true }, [tegra_clk_sdmmc1_9] = { .dt_id = TEGRA210_CLK_SDMMC1, .present = true }, [tegra_clk_pwm] = { .dt_id = TEGRA210_CLK_PWM, .present = true }, [tegra_clk_i2s2] = { .dt_id = TEGRA210_CLK_I2S2, .present = true }, [tegra_clk_usbd] = { .dt_id = TEGRA210_CLK_USBD, .present = true }, [tegra_clk_isp_9] = { .dt_id = TEGRA210_CLK_ISP, .present = true }, [tegra_clk_disp2_8] = { .dt_id = TEGRA210_CLK_DISP2, .present = true }, [tegra_clk_disp1_8] = { .dt_id = TEGRA210_CLK_DISP1, .present = true }, [tegra_clk_host1x_9] = { .dt_id = TEGRA210_CLK_HOST1X, .present = true }, [tegra_clk_i2s0] = { .dt_id = TEGRA210_CLK_I2S0, .present = true }, [tegra_clk_apbdma] = { .dt_id = TEGRA210_CLK_APBDMA, .present = true }, [tegra_clk_kfuse] = { .dt_id = TEGRA210_CLK_KFUSE, .present = true }, [tegra_clk_sbc1_9] = { .dt_id = TEGRA210_CLK_SBC1, .present = true }, [tegra_clk_sbc2_9] = { .dt_id = TEGRA210_CLK_SBC2, .present = true }, [tegra_clk_sbc3_9] = { .dt_id = TEGRA210_CLK_SBC3, .present = true }, [tegra_clk_i2c5] = { .dt_id = TEGRA210_CLK_I2C5, .present = true }, [tegra_clk_csi] = { .dt_id = TEGRA210_CLK_CSI, .present = true }, [tegra_clk_i2c2] = { .dt_id = TEGRA210_CLK_I2C2, .present = true }, [tegra_clk_uartc_8] = { .dt_id = TEGRA210_CLK_UARTC, .present = true }, [tegra_clk_mipi_cal] = { .dt_id = TEGRA210_CLK_MIPI_CAL, .present = true }, [tegra_clk_usb2] = { .dt_id = TEGRA210_CLK_USB2, .present = true }, [tegra_clk_bsev] = { .dt_id = TEGRA210_CLK_BSEV, .present = true }, [tegra_clk_uartd_8] = { .dt_id = TEGRA210_CLK_UARTD, .present = true }, [tegra_clk_i2c3] = { .dt_id = TEGRA210_CLK_I2C3, .present = true }, [tegra_clk_sbc4_9] = { .dt_id = TEGRA210_CLK_SBC4, .present = true }, [tegra_clk_sdmmc3_9] = { .dt_id = TEGRA210_CLK_SDMMC3, .present = true }, [tegra_clk_pcie] = { .dt_id = TEGRA210_CLK_PCIE, .present = true }, [tegra_clk_owr_8] = { .dt_id = TEGRA210_CLK_OWR, .present = true }, [tegra_clk_afi] = { .dt_id = TEGRA210_CLK_AFI, .present = true }, [tegra_clk_csite_8] = { .dt_id = TEGRA210_CLK_CSITE, .present = true }, [tegra_clk_soc_therm_8] = { .dt_id = TEGRA210_CLK_SOC_THERM, .present = true }, [tegra_clk_dtv] = { .dt_id = TEGRA210_CLK_DTV, .present = true }, [tegra_clk_i2cslow] = { .dt_id = TEGRA210_CLK_I2CSLOW, .present = true }, [tegra_clk_tsec_8] = { .dt_id = TEGRA210_CLK_TSEC, .present = true }, [tegra_clk_xusb_host] = { .dt_id = TEGRA210_CLK_XUSB_HOST, .present = true }, [tegra_clk_csus] = { .dt_id = TEGRA210_CLK_CSUS, .present = true }, [tegra_clk_mselect] = { .dt_id = TEGRA210_CLK_MSELECT, .present = true }, [tegra_clk_tsensor] = { .dt_id = TEGRA210_CLK_TSENSOR, .present = true }, [tegra_clk_i2s3] = { .dt_id = TEGRA210_CLK_I2S3, .present = true }, [tegra_clk_i2s4] = { .dt_id = TEGRA210_CLK_I2S4, .present = true }, [tegra_clk_i2c4] = { .dt_id = TEGRA210_CLK_I2C4, .present = true }, [tegra_clk_d_audio] = { .dt_id = TEGRA210_CLK_D_AUDIO, .present = true }, [tegra_clk_hda2codec_2x_8] = { .dt_id = TEGRA210_CLK_HDA2CODEC_2X, .present = true }, [tegra_clk_spdif_2x] = { .dt_id = TEGRA210_CLK_SPDIF_2X, .present = true }, [tegra_clk_actmon] = { .dt_id = TEGRA210_CLK_ACTMON, .present = true }, [tegra_clk_extern1] = { .dt_id = TEGRA210_CLK_EXTERN1, .present = true }, [tegra_clk_extern2] = { .dt_id = TEGRA210_CLK_EXTERN2, .present = true }, [tegra_clk_extern3] = { .dt_id = TEGRA210_CLK_EXTERN3, .present = true }, [tegra_clk_sata_oob_8] = { .dt_id = TEGRA210_CLK_SATA_OOB, .present = true }, [tegra_clk_sata_8] = { .dt_id = TEGRA210_CLK_SATA, .present = true }, [tegra_clk_hda_8] = { .dt_id = TEGRA210_CLK_HDA, .present = true }, [tegra_clk_hda2hdmi] = { .dt_id = TEGRA210_CLK_HDA2HDMI, .present = true }, [tegra_clk_cilab] = { .dt_id = TEGRA210_CLK_CILAB, .present = true }, [tegra_clk_cilcd] = { .dt_id = TEGRA210_CLK_CILCD, .present = true }, [tegra_clk_cile] = { .dt_id = TEGRA210_CLK_CILE, .present = true }, [tegra_clk_dsialp] = { .dt_id = TEGRA210_CLK_DSIALP, .present = true }, [tegra_clk_dsiblp] = { .dt_id = TEGRA210_CLK_DSIBLP, .present = true }, [tegra_clk_entropy_8] = { .dt_id = TEGRA210_CLK_ENTROPY, .present = true }, [tegra_clk_xusb_ss] = { .dt_id = TEGRA210_CLK_XUSB_SS, .present = true }, [tegra_clk_i2c6] = { .dt_id = TEGRA210_CLK_I2C6, .present = true }, [tegra_clk_vim2_clk] = { .dt_id = TEGRA210_CLK_VIM2_CLK, .present = true }, [tegra_clk_clk72Mhz_8] = { .dt_id = TEGRA210_CLK_CLK72MHZ, .present = true }, [tegra_clk_vic03_8] = { .dt_id = TEGRA210_CLK_VIC03, .present = true }, [tegra_clk_dpaux] = { .dt_id = TEGRA210_CLK_DPAUX, .present = true }, [tegra_clk_dpaux1] = { .dt_id = TEGRA210_CLK_DPAUX1, .present = true }, [tegra_clk_sor0] = { .dt_id = TEGRA210_CLK_SOR0, .present = true }, [tegra_clk_sor0_out] = { .dt_id = TEGRA210_CLK_SOR0_OUT, .present = true }, [tegra_clk_sor1] = { .dt_id = TEGRA210_CLK_SOR1, .present = true }, [tegra_clk_sor1_out] = { .dt_id = TEGRA210_CLK_SOR1_OUT, .present = true }, [tegra_clk_gpu] = { .dt_id = TEGRA210_CLK_GPU, .present = true }, [tegra_clk_pll_g_ref] = { .dt_id = TEGRA210_CLK_PLL_G_REF, .present = true, }, [tegra_clk_uartb_8] = { .dt_id = TEGRA210_CLK_UARTB, .present = true }, [tegra_clk_spdif_in_8] = { .dt_id = TEGRA210_CLK_SPDIF_IN, .present = true }, [tegra_clk_spdif_out] = { .dt_id = TEGRA210_CLK_SPDIF_OUT, .present = true }, [tegra_clk_vi_10] = { .dt_id = TEGRA210_CLK_VI, .present = true }, [tegra_clk_vi_sensor_8] = { .dt_id = TEGRA210_CLK_VI_SENSOR, .present = true }, [tegra_clk_fuse] = { .dt_id = TEGRA210_CLK_FUSE, .present = true }, [tegra_clk_fuse_burn] = { .dt_id = TEGRA210_CLK_FUSE_BURN, .present = true }, [tegra_clk_clk_32k] = { .dt_id = TEGRA210_CLK_CLK_32K, .present = true }, [tegra_clk_clk_m] = { .dt_id = TEGRA210_CLK_CLK_M, .present = true }, [tegra_clk_osc] = { .dt_id = TEGRA210_CLK_OSC, .present = true }, [tegra_clk_osc_div2] = { .dt_id = TEGRA210_CLK_OSC_DIV2, .present = true }, [tegra_clk_osc_div4] = { .dt_id = TEGRA210_CLK_OSC_DIV4, .present = true }, [tegra_clk_pll_ref] = { .dt_id = TEGRA210_CLK_PLL_REF, .present = true }, [tegra_clk_pll_c] = { .dt_id = TEGRA210_CLK_PLL_C, .present = true }, [tegra_clk_pll_c_out1] = { .dt_id = TEGRA210_CLK_PLL_C_OUT1, .present = true }, [tegra_clk_pll_c2] = { .dt_id = TEGRA210_CLK_PLL_C2, .present = true }, [tegra_clk_pll_c3] = { .dt_id = TEGRA210_CLK_PLL_C3, .present = true }, [tegra_clk_pll_m] = { .dt_id = TEGRA210_CLK_PLL_M, .present = true }, [tegra_clk_pll_p] = { .dt_id = TEGRA210_CLK_PLL_P, .present = true }, [tegra_clk_pll_p_out1] = { .dt_id = TEGRA210_CLK_PLL_P_OUT1, .present = true }, [tegra_clk_pll_p_out3] = { .dt_id = TEGRA210_CLK_PLL_P_OUT3, .present = true }, [tegra_clk_pll_p_out4_cpu] = { .dt_id = TEGRA210_CLK_PLL_P_OUT4, .present = true }, [tegra_clk_pll_p_out_hsio] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_HSIO, .present = true }, [tegra_clk_pll_p_out_xusb] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_XUSB, .present = true }, [tegra_clk_pll_p_out_cpu] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_CPU, .present = true }, [tegra_clk_pll_p_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_P_OUT_ADSP, .present = true }, [tegra_clk_pll_a] = { .dt_id = TEGRA210_CLK_PLL_A, .present = true }, [tegra_clk_pll_a_out0] = { .dt_id = TEGRA210_CLK_PLL_A_OUT0, .present = true }, [tegra_clk_pll_d] = { .dt_id = TEGRA210_CLK_PLL_D, .present = true }, [tegra_clk_pll_d_out0] = { .dt_id = TEGRA210_CLK_PLL_D_OUT0, .present = true }, [tegra_clk_pll_d2] = { .dt_id = TEGRA210_CLK_PLL_D2, .present = true }, [tegra_clk_pll_d2_out0] = { .dt_id = TEGRA210_CLK_PLL_D2_OUT0, .present = true }, [tegra_clk_pll_u] = { .dt_id = TEGRA210_CLK_PLL_U, .present = true }, [tegra_clk_pll_u_out] = { .dt_id = TEGRA210_CLK_PLL_U_OUT, .present = true }, [tegra_clk_pll_u_out1] = { .dt_id = TEGRA210_CLK_PLL_U_OUT1, .present = true }, [tegra_clk_pll_u_out2] = { .dt_id = TEGRA210_CLK_PLL_U_OUT2, .present = true }, [tegra_clk_pll_u_480m] = { .dt_id = TEGRA210_CLK_PLL_U_480M, .present = true }, [tegra_clk_pll_u_60m] = { .dt_id = TEGRA210_CLK_PLL_U_60M, .present = true }, [tegra_clk_pll_u_48m] = { .dt_id = TEGRA210_CLK_PLL_U_48M, .present = true }, [tegra_clk_pll_x] = { .dt_id = TEGRA210_CLK_PLL_X, .present = true }, [tegra_clk_pll_x_out0] = { .dt_id = TEGRA210_CLK_PLL_X_OUT0, .present = true }, [tegra_clk_pll_re_vco] = { .dt_id = TEGRA210_CLK_PLL_RE_VCO, .present = true }, [tegra_clk_pll_re_out] = { .dt_id = TEGRA210_CLK_PLL_RE_OUT, .present = true }, [tegra_clk_spdif_in_sync] = { .dt_id = TEGRA210_CLK_SPDIF_IN_SYNC, .present = true }, [tegra_clk_i2s0_sync] = { .dt_id = TEGRA210_CLK_I2S0_SYNC, .present = true }, [tegra_clk_i2s1_sync] = { .dt_id = TEGRA210_CLK_I2S1_SYNC, .present = true }, [tegra_clk_i2s2_sync] = { .dt_id = TEGRA210_CLK_I2S2_SYNC, .present = true }, [tegra_clk_i2s3_sync] = { .dt_id = TEGRA210_CLK_I2S3_SYNC, .present = true }, [tegra_clk_i2s4_sync] = { .dt_id = TEGRA210_CLK_I2S4_SYNC, .present = true }, [tegra_clk_vimclk_sync] = { .dt_id = TEGRA210_CLK_VIMCLK_SYNC, .present = true }, [tegra_clk_audio0] = { .dt_id = TEGRA210_CLK_AUDIO0, .present = true }, [tegra_clk_audio1] = { .dt_id = TEGRA210_CLK_AUDIO1, .present = true }, [tegra_clk_audio2] = { .dt_id = TEGRA210_CLK_AUDIO2, .present = true }, [tegra_clk_audio3] = { .dt_id = TEGRA210_CLK_AUDIO3, .present = true }, [tegra_clk_audio4] = { .dt_id = TEGRA210_CLK_AUDIO4, .present = true }, [tegra_clk_spdif] = { .dt_id = TEGRA210_CLK_SPDIF, .present = true }, [tegra_clk_xusb_gate] = { .dt_id = TEGRA210_CLK_XUSB_GATE, .present = true }, [tegra_clk_xusb_host_src_8] = { .dt_id = TEGRA210_CLK_XUSB_HOST_SRC, .present = true }, [tegra_clk_xusb_falcon_src_8] = { .dt_id = TEGRA210_CLK_XUSB_FALCON_SRC, .present = true }, [tegra_clk_xusb_fs_src] = { .dt_id = TEGRA210_CLK_XUSB_FS_SRC, .present = true }, [tegra_clk_xusb_ss_src_8] = { .dt_id = TEGRA210_CLK_XUSB_SS_SRC, .present = true }, [tegra_clk_xusb_ss_div2] = { .dt_id = TEGRA210_CLK_XUSB_SS_DIV2, .present = true }, [tegra_clk_xusb_dev_src_8] = { .dt_id = TEGRA210_CLK_XUSB_DEV_SRC, .present = true }, [tegra_clk_xusb_dev] = { .dt_id = TEGRA210_CLK_XUSB_DEV, .present = true }, [tegra_clk_xusb_hs_src_4] = { .dt_id = TEGRA210_CLK_XUSB_HS_SRC, .present = true }, [tegra_clk_xusb_ssp_src] = { .dt_id = TEGRA210_CLK_XUSB_SSP_SRC, .present = true }, [tegra_clk_usb2_hsic_trk] = { .dt_id = TEGRA210_CLK_USB2_HSIC_TRK, .present = true }, [tegra_clk_hsic_trk] = { .dt_id = TEGRA210_CLK_HSIC_TRK, .present = true }, [tegra_clk_usb2_trk] = { .dt_id = TEGRA210_CLK_USB2_TRK, .present = true }, [tegra_clk_sclk] = { .dt_id = TEGRA210_CLK_SCLK, .present = true }, [tegra_clk_sclk_mux] = { .dt_id = TEGRA210_CLK_SCLK_MUX, .present = true }, [tegra_clk_hclk] = { .dt_id = TEGRA210_CLK_HCLK, .present = true }, [tegra_clk_pclk] = { .dt_id = TEGRA210_CLK_PCLK, .present = true }, [tegra_clk_cclk_g] = { .dt_id = TEGRA210_CLK_CCLK_G, .present = true }, [tegra_clk_cclk_lp] = { .dt_id = TEGRA210_CLK_CCLK_LP, .present = true }, [tegra_clk_dfll_ref] = { .dt_id = TEGRA210_CLK_DFLL_REF, .present = true }, [tegra_clk_dfll_soc] = { .dt_id = TEGRA210_CLK_DFLL_SOC, .present = true }, [tegra_clk_vi_sensor2_8] = { .dt_id = TEGRA210_CLK_VI_SENSOR2, .present = true }, [tegra_clk_pll_p_out5] = { .dt_id = TEGRA210_CLK_PLL_P_OUT5, .present = true }, [tegra_clk_pll_c4] = { .dt_id = TEGRA210_CLK_PLL_C4, .present = true }, [tegra_clk_pll_dp] = { .dt_id = TEGRA210_CLK_PLL_DP, .present = true }, [tegra_clk_audio0_mux] = { .dt_id = TEGRA210_CLK_AUDIO0_MUX, .present = true }, [tegra_clk_audio1_mux] = { .dt_id = TEGRA210_CLK_AUDIO1_MUX, .present = true }, [tegra_clk_audio2_mux] = { .dt_id = TEGRA210_CLK_AUDIO2_MUX, .present = true }, [tegra_clk_audio3_mux] = { .dt_id = TEGRA210_CLK_AUDIO3_MUX, .present = true }, [tegra_clk_audio4_mux] = { .dt_id = TEGRA210_CLK_AUDIO4_MUX, .present = true }, [tegra_clk_spdif_mux] = { .dt_id = TEGRA210_CLK_SPDIF_MUX, .present = true }, [tegra_clk_maud] = { .dt_id = TEGRA210_CLK_MAUD, .present = true }, [tegra_clk_mipibif] = { .dt_id = TEGRA210_CLK_MIPIBIF, .present = true }, [tegra_clk_qspi] = { .dt_id = TEGRA210_CLK_QSPI, .present = true }, [tegra_clk_sdmmc_legacy] = { .dt_id = TEGRA210_CLK_SDMMC_LEGACY, .present = true }, [tegra_clk_tsecb] = { .dt_id = TEGRA210_CLK_TSECB, .present = true }, [tegra_clk_uartape] = { .dt_id = TEGRA210_CLK_UARTAPE, .present = true }, [tegra_clk_vi_i2c] = { .dt_id = TEGRA210_CLK_VI_I2C, .present = true }, [tegra_clk_ape] = { .dt_id = TEGRA210_CLK_APE, .present = true }, [tegra_clk_dbgapb] = { .dt_id = TEGRA210_CLK_DBGAPB, .present = true }, [tegra_clk_nvdec] = { .dt_id = TEGRA210_CLK_NVDEC, .present = true }, [tegra_clk_nvenc] = { .dt_id = TEGRA210_CLK_NVENC, .present = true }, [tegra_clk_nvjpg] = { .dt_id = TEGRA210_CLK_NVJPG, .present = true }, [tegra_clk_pll_c4_out0] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT0, .present = true }, [tegra_clk_pll_c4_out1] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT1, .present = true }, [tegra_clk_pll_c4_out2] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT2, .present = true }, [tegra_clk_pll_c4_out3] = { .dt_id = TEGRA210_CLK_PLL_C4_OUT3, .present = true }, [tegra_clk_apb2ape] = { .dt_id = TEGRA210_CLK_APB2APE, .present = true }, [tegra_clk_pll_a1] = { .dt_id = TEGRA210_CLK_PLL_A1, .present = true }, [tegra_clk_ispa] = { .dt_id = TEGRA210_CLK_ISPA, .present = true }, [tegra_clk_cec] = { .dt_id = TEGRA210_CLK_CEC, .present = true }, [tegra_clk_dmic1] = { .dt_id = TEGRA210_CLK_DMIC1, .present = true }, [tegra_clk_dmic2] = { .dt_id = TEGRA210_CLK_DMIC2, .present = true }, [tegra_clk_dmic3] = { .dt_id = TEGRA210_CLK_DMIC3, .present = true }, [tegra_clk_dmic1_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC1_SYNC_CLK, .present = true }, [tegra_clk_dmic2_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC2_SYNC_CLK, .present = true }, [tegra_clk_dmic3_sync_clk] = { .dt_id = TEGRA210_CLK_DMIC3_SYNC_CLK, .present = true }, [tegra_clk_dmic1_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC1_SYNC_CLK_MUX, .present = true }, [tegra_clk_dmic2_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC2_SYNC_CLK_MUX, .present = true }, [tegra_clk_dmic3_sync_clk_mux] = { .dt_id = TEGRA210_CLK_DMIC3_SYNC_CLK_MUX, .present = true }, [tegra_clk_dp2] = { .dt_id = TEGRA210_CLK_DP2, .present = true }, [tegra_clk_iqc1] = { .dt_id = TEGRA210_CLK_IQC1, .present = true }, [tegra_clk_iqc2] = { .dt_id = TEGRA210_CLK_IQC2, .present = true }, [tegra_clk_pll_a_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_A_OUT_ADSP, .present = true }, [tegra_clk_pll_a_out0_out_adsp] = { .dt_id = TEGRA210_CLK_PLL_A_OUT0_OUT_ADSP, .present = true }, [tegra_clk_adsp] = { .dt_id = TEGRA210_CLK_ADSP, .present = true }, [tegra_clk_adsp_neon] = { .dt_id = TEGRA210_CLK_ADSP_NEON, .present = true }, }; static struct tegra_devclk devclks[] __initdata = { { .con_id = "clk_m", .dt_id = TEGRA210_CLK_CLK_M }, { .con_id = "pll_ref", .dt_id = TEGRA210_CLK_PLL_REF }, { .con_id = "clk_32k", .dt_id = TEGRA210_CLK_CLK_32K }, { .con_id = "osc", .dt_id = TEGRA210_CLK_OSC }, { .con_id = "osc_div2", .dt_id = TEGRA210_CLK_OSC_DIV2 }, { .con_id = "osc_div4", .dt_id = TEGRA210_CLK_OSC_DIV4 }, { .con_id = "pll_c", .dt_id = TEGRA210_CLK_PLL_C }, { .con_id = "pll_c_out1", .dt_id = TEGRA210_CLK_PLL_C_OUT1 }, { .con_id = "pll_c2", .dt_id = TEGRA210_CLK_PLL_C2 }, { .con_id = "pll_c3", .dt_id = TEGRA210_CLK_PLL_C3 }, { .con_id = "pll_p", .dt_id = TEGRA210_CLK_PLL_P }, { .con_id = "pll_p_out1", .dt_id = TEGRA210_CLK_PLL_P_OUT1 }, { .con_id = "pll_p_out2", .dt_id = TEGRA210_CLK_PLL_P_OUT2 }, { .con_id = "pll_p_out3", .dt_id = TEGRA210_CLK_PLL_P_OUT3 }, { .con_id = "pll_p_out4", .dt_id = TEGRA210_CLK_PLL_P_OUT4 }, { .con_id = "pll_m", .dt_id = TEGRA210_CLK_PLL_M }, { .con_id = "pll_x", .dt_id = TEGRA210_CLK_PLL_X }, { .con_id = "pll_x_out0", .dt_id = TEGRA210_CLK_PLL_X_OUT0 }, { .con_id = "pll_u", .dt_id = TEGRA210_CLK_PLL_U }, { .con_id = "pll_u_out", .dt_id = TEGRA210_CLK_PLL_U_OUT }, { .con_id = "pll_u_out1", .dt_id = TEGRA210_CLK_PLL_U_OUT1 }, { .con_id = "pll_u_out2", .dt_id = TEGRA210_CLK_PLL_U_OUT2 }, { .con_id = "pll_u_480M", .dt_id = TEGRA210_CLK_PLL_U_480M }, { .con_id = "pll_u_60M", .dt_id = TEGRA210_CLK_PLL_U_60M }, { .con_id = "pll_u_48M", .dt_id = TEGRA210_CLK_PLL_U_48M }, { .con_id = "pll_d", .dt_id = TEGRA210_CLK_PLL_D }, { .con_id = "pll_d_out0", .dt_id = TEGRA210_CLK_PLL_D_OUT0 }, { .con_id = "pll_d2", .dt_id = TEGRA210_CLK_PLL_D2 }, { .con_id = "pll_d2_out0", .dt_id = TEGRA210_CLK_PLL_D2_OUT0 }, { .con_id = "pll_a", .dt_id = TEGRA210_CLK_PLL_A }, { .con_id = "pll_a_out0", .dt_id = TEGRA210_CLK_PLL_A_OUT0 }, { .con_id = "pll_re_vco", .dt_id = TEGRA210_CLK_PLL_RE_VCO }, { .con_id = "pll_re_out", .dt_id = TEGRA210_CLK_PLL_RE_OUT }, { .con_id = "spdif_in_sync", .dt_id = TEGRA210_CLK_SPDIF_IN_SYNC }, { .con_id = "i2s0_sync", .dt_id = TEGRA210_CLK_I2S0_SYNC }, { .con_id = "i2s1_sync", .dt_id = TEGRA210_CLK_I2S1_SYNC }, { .con_id = "i2s2_sync", .dt_id = TEGRA210_CLK_I2S2_SYNC }, { .con_id = "i2s3_sync", .dt_id = TEGRA210_CLK_I2S3_SYNC }, { .con_id = "i2s4_sync", .dt_id = TEGRA210_CLK_I2S4_SYNC }, { .con_id = "vimclk_sync", .dt_id = TEGRA210_CLK_VIMCLK_SYNC }, { .con_id = "audio0", .dt_id = TEGRA210_CLK_AUDIO0 }, { .con_id = "audio1", .dt_id = TEGRA210_CLK_AUDIO1 }, { .con_id = "audio2", .dt_id = TEGRA210_CLK_AUDIO2 }, { .con_id = "audio3", .dt_id = TEGRA210_CLK_AUDIO3 }, { .con_id = "audio4", .dt_id = TEGRA210_CLK_AUDIO4 }, { .con_id = "spdif", .dt_id = TEGRA210_CLK_SPDIF }, { .con_id = "spdif_2x", .dt_id = TEGRA210_CLK_SPDIF_2X }, { .con_id = "extern1", .dt_id = TEGRA210_CLK_EXTERN1 }, { .con_id = "extern2", .dt_id = TEGRA210_CLK_EXTERN2 }, { .con_id = "extern3", .dt_id = TEGRA210_CLK_EXTERN3 }, { .con_id = "cclk_g", .dt_id = TEGRA210_CLK_CCLK_G }, { .con_id = "cclk_lp", .dt_id = TEGRA210_CLK_CCLK_LP }, { .con_id = "sclk", .dt_id = TEGRA210_CLK_SCLK }, { .con_id = "hclk", .dt_id = TEGRA210_CLK_HCLK }, { .con_id = "pclk", .dt_id = TEGRA210_CLK_PCLK }, { .con_id = "fuse", .dt_id = TEGRA210_CLK_FUSE }, { .dev_id = "rtc-tegra", .dt_id = TEGRA210_CLK_RTC }, { .dev_id = "timer", .dt_id = TEGRA210_CLK_TIMER }, { .con_id = "pll_c4_out0", .dt_id = TEGRA210_CLK_PLL_C4_OUT0 }, { .con_id = "pll_c4_out1", .dt_id = TEGRA210_CLK_PLL_C4_OUT1 }, { .con_id = "pll_c4_out2", .dt_id = TEGRA210_CLK_PLL_C4_OUT2 }, { .con_id = "pll_c4_out3", .dt_id = TEGRA210_CLK_PLL_C4_OUT3 }, { .con_id = "dpaux", .dt_id = TEGRA210_CLK_DPAUX }, }; static struct tegra_audio_clk_info tegra210_audio_plls[] = { { "pll_a", &pll_a_params, tegra_clk_pll_a, "pll_ref" }, { "pll_a1", &pll_a1_params, tegra_clk_pll_a1, "pll_ref" }, }; static const char * const aclk_parents[] = { "pll_a1", "pll_c", "pll_p", "pll_a_out0", "pll_c2", "pll_c3", "clk_m" }; static const unsigned int nvjpg_slcg_clkids[] = { TEGRA210_CLK_NVDEC }; static const unsigned int nvdec_slcg_clkids[] = { TEGRA210_CLK_NVJPG }; static const unsigned int sor_slcg_clkids[] = { TEGRA210_CLK_HDA2CODEC_2X, TEGRA210_CLK_HDA2HDMI, TEGRA210_CLK_DISP1, TEGRA210_CLK_DISP2 }; static const unsigned int disp_slcg_clkids[] = { TEGRA210_CLK_LA, TEGRA210_CLK_HOST1X}; static const unsigned int xusba_slcg_clkids[] = { TEGRA210_CLK_XUSB_HOST, TEGRA210_CLK_XUSB_DEV }; static const unsigned int xusbb_slcg_clkids[] = { TEGRA210_CLK_XUSB_HOST, TEGRA210_CLK_XUSB_SS }; static const unsigned int xusbc_slcg_clkids[] = { TEGRA210_CLK_XUSB_DEV, TEGRA210_CLK_XUSB_SS }; static const unsigned int venc_slcg_clkids[] = { TEGRA210_CLK_HOST1X, TEGRA210_CLK_PLL_D }; static const unsigned int ape_slcg_clkids[] = { TEGRA210_CLK_ACLK, TEGRA210_CLK_I2S0, TEGRA210_CLK_I2S1, TEGRA210_CLK_I2S2, TEGRA210_CLK_I2S3, TEGRA210_CLK_I2S4, TEGRA210_CLK_SPDIF_OUT, TEGRA210_CLK_D_AUDIO }; static const unsigned int vic_slcg_clkids[] = { TEGRA210_CLK_HOST1X }; static struct tegra210_domain_mbist_war tegra210_pg_mbist_war[] = { [TEGRA_POWERGATE_VENC] = { .handle_lvl2_ovr = tegra210_venc_mbist_war, .num_clks = ARRAY_SIZE(venc_slcg_clkids), .clk_init_data = venc_slcg_clkids, }, [TEGRA_POWERGATE_SATA] = { .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRC, .lvl2_mask = BIT(0) | BIT(17) | BIT(19), }, [TEGRA_POWERGATE_MPE] = { .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRE, .lvl2_mask = BIT(29), }, [TEGRA_POWERGATE_SOR] = { .handle_lvl2_ovr = tegra210_generic_mbist_war, .num_clks = ARRAY_SIZE(sor_slcg_clkids), .clk_init_data = sor_slcg_clkids, .lvl2_offset = LVL2_CLK_GATE_OVRA, .lvl2_mask = BIT(1) | BIT(2), }, [TEGRA_POWERGATE_DIS] = { .handle_lvl2_ovr = tegra210_disp_mbist_war, .num_clks = ARRAY_SIZE(disp_slcg_clkids), .clk_init_data = disp_slcg_clkids, }, [TEGRA_POWERGATE_DISB] = { .num_clks = ARRAY_SIZE(disp_slcg_clkids), .clk_init_data = disp_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRA, .lvl2_mask = BIT(2), }, [TEGRA_POWERGATE_XUSBA] = { .num_clks = ARRAY_SIZE(xusba_slcg_clkids), .clk_init_data = xusba_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRC, .lvl2_mask = BIT(30) | BIT(31), }, [TEGRA_POWERGATE_XUSBB] = { .num_clks = ARRAY_SIZE(xusbb_slcg_clkids), .clk_init_data = xusbb_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRC, .lvl2_mask = BIT(30) | BIT(31), }, [TEGRA_POWERGATE_XUSBC] = { .num_clks = ARRAY_SIZE(xusbc_slcg_clkids), .clk_init_data = xusbc_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRC, .lvl2_mask = BIT(30) | BIT(31), }, [TEGRA_POWERGATE_VIC] = { .num_clks = ARRAY_SIZE(vic_slcg_clkids), .clk_init_data = vic_slcg_clkids, .handle_lvl2_ovr = tegra210_vic_mbist_war, }, [TEGRA_POWERGATE_NVDEC] = { .num_clks = ARRAY_SIZE(nvdec_slcg_clkids), .clk_init_data = nvdec_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRE, .lvl2_mask = BIT(9) | BIT(31), }, [TEGRA_POWERGATE_NVJPG] = { .num_clks = ARRAY_SIZE(nvjpg_slcg_clkids), .clk_init_data = nvjpg_slcg_clkids, .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRE, .lvl2_mask = BIT(9) | BIT(31), }, [TEGRA_POWERGATE_AUD] = { .num_clks = ARRAY_SIZE(ape_slcg_clkids), .clk_init_data = ape_slcg_clkids, .handle_lvl2_ovr = tegra210_ape_mbist_war, }, [TEGRA_POWERGATE_VE2] = { .handle_lvl2_ovr = tegra210_generic_mbist_war, .lvl2_offset = LVL2_CLK_GATE_OVRD, .lvl2_mask = BIT(22), }, }; int tegra210_clk_handle_mbist_war(unsigned int id) { int err; struct tegra210_domain_mbist_war *mbist_war; if (id >= ARRAY_SIZE(tegra210_pg_mbist_war)) { WARN(1, "unknown domain id in MBIST WAR handler\n"); return -EINVAL; } mbist_war = &tegra210_pg_mbist_war[id]; if (!mbist_war->handle_lvl2_ovr) return 0; if (mbist_war->num_clks && !mbist_war->clks) return -ENODEV; err = clk_bulk_prepare_enable(mbist_war->num_clks, mbist_war->clks); if (err < 0) return err; mutex_lock(&lvl2_ovr_lock); mbist_war->handle_lvl2_ovr(mbist_war); mutex_unlock(&lvl2_ovr_lock); clk_bulk_disable_unprepare(mbist_war->num_clks, mbist_war->clks); return 0; } void tegra210_put_utmipll_in_iddq(void) { u32 reg; reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); if (reg & UTMIPLL_HW_PWRDN_CFG0_UTMIPLL_LOCK) { pr_err("trying to assert IDDQ while UTMIPLL is locked\n"); return; } reg |= UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE; writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0); } EXPORT_SYMBOL_GPL(tegra210_put_utmipll_in_iddq); void tegra210_put_utmipll_out_iddq(void) { u32 reg; reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE; writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0); } EXPORT_SYMBOL_GPL(tegra210_put_utmipll_out_iddq); static void tegra210_utmi_param_configure(void) { u32 reg; int i; for (i = 0; i < ARRAY_SIZE(utmi_parameters); i++) { if (osc_freq == utmi_parameters[i].osc_frequency) break; } if (i >= ARRAY_SIZE(utmi_parameters)) { pr_err("%s: Unexpected oscillator freq %lu\n", __func__, osc_freq); return; } reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); reg &= ~UTMIPLL_HW_PWRDN_CFG0_IDDQ_OVERRIDE; writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0); udelay(10); reg = readl_relaxed(clk_base + UTMIP_PLL_CFG2); /* Program UTMIP PLL stable and active counts */ /* [FIXME] arclk_rst.h says WRONG! This should be 1ms -> 0x50 Check! */ reg &= ~UTMIP_PLL_CFG2_STABLE_COUNT(~0); reg |= UTMIP_PLL_CFG2_STABLE_COUNT(utmi_parameters[i].stable_count); reg &= ~UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(~0); reg |= UTMIP_PLL_CFG2_ACTIVE_DLY_COUNT(utmi_parameters[i].active_delay_count); writel_relaxed(reg, clk_base + UTMIP_PLL_CFG2); /* Program UTMIP PLL delay and oscillator frequency counts */ reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1); reg &= ~UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(~0); reg |= UTMIP_PLL_CFG1_ENABLE_DLY_COUNT(utmi_parameters[i].enable_delay_count); reg &= ~UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(~0); reg |= UTMIP_PLL_CFG1_XTAL_FREQ_COUNT(utmi_parameters[i].xtal_freq_count); reg |= UTMIP_PLL_CFG1_FORCE_PLLU_POWERDOWN; writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1); /* Remove power downs from UTMIP PLL control bits */ reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1); reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN; reg |= UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP; writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1); udelay(20); /* Enable samplers for SNPS, XUSB_HOST, XUSB_DEV */ reg = readl_relaxed(clk_base + UTMIP_PLL_CFG2); reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERUP; reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERUP; reg |= UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERUP; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_A_POWERDOWN; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_B_POWERDOWN; reg &= ~UTMIP_PLL_CFG2_FORCE_PD_SAMP_D_POWERDOWN; writel_relaxed(reg, clk_base + UTMIP_PLL_CFG2); /* Setup HW control of UTMIPLL */ reg = readl_relaxed(clk_base + UTMIP_PLL_CFG1); reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERDOWN; reg &= ~UTMIP_PLL_CFG1_FORCE_PLL_ENABLE_POWERUP; writel_relaxed(reg, clk_base + UTMIP_PLL_CFG1); reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); reg |= UTMIPLL_HW_PWRDN_CFG0_USE_LOCKDET; reg &= ~UTMIPLL_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL; writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0); udelay(1); reg = readl_relaxed(clk_base + XUSB_PLL_CFG0); reg &= ~XUSB_PLL_CFG0_UTMIPLL_LOCK_DLY; writel_relaxed(reg, clk_base + XUSB_PLL_CFG0); udelay(1); /* Enable HW control UTMIPLL */ reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); reg |= UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE; writel_relaxed(reg, clk_base + UTMIPLL_HW_PWRDN_CFG0); } static int tegra210_enable_pllu(void) { struct tegra_clk_pll_freq_table *fentry; struct tegra_clk_pll pllu; u32 reg; int ret; for (fentry = pll_u_freq_table; fentry->input_rate; fentry++) { if (fentry->input_rate == pll_ref_freq) break; } if (!fentry->input_rate) { pr_err("Unknown PLL_U reference frequency %lu\n", pll_ref_freq); return -EINVAL; } /* clear IDDQ bit */ pllu.params = &pll_u_vco_params; reg = readl_relaxed(clk_base + pllu.params->ext_misc_reg[0]); reg &= ~BIT(pllu.params->iddq_bit_idx); writel_relaxed(reg, clk_base + pllu.params->ext_misc_reg[0]); fence_udelay(5, clk_base); reg = readl_relaxed(clk_base + PLLU_BASE); reg &= ~GENMASK(20, 0); reg |= fentry->m; reg |= fentry->n << 8; reg |= fentry->p << 16; writel(reg, clk_base + PLLU_BASE); fence_udelay(1, clk_base); reg |= PLL_ENABLE; writel(reg, clk_base + PLLU_BASE); /* * During clocks resume, same PLLU init and enable sequence get * executed. So, readx_poll_timeout_atomic can't be used here as it * uses ktime_get() and timekeeping resume doesn't happen by that * time. So, using tegra210_wait_for_mask for PLL LOCK. */ ret = tegra210_wait_for_mask(&pllu, PLLU_BASE, PLL_BASE_LOCK); if (ret) { pr_err("Timed out waiting for PLL_U to lock\n"); return -ETIMEDOUT; } return 0; } static int tegra210_init_pllu(void) { u32 reg; int err; tegra210_pllu_set_defaults(&pll_u_vco_params); /* skip initialization when pllu is in hw controlled mode */ reg = readl_relaxed(clk_base + PLLU_BASE); if (reg & PLLU_BASE_OVERRIDE) { if (!(reg & PLL_ENABLE)) { err = tegra210_enable_pllu(); if (err < 0) { WARN_ON(1); return err; } } /* enable hw controlled mode */ reg = readl_relaxed(clk_base + PLLU_BASE); reg &= ~PLLU_BASE_OVERRIDE; writel(reg, clk_base + PLLU_BASE); reg = readl_relaxed(clk_base + PLLU_HW_PWRDN_CFG0); reg |= PLLU_HW_PWRDN_CFG0_IDDQ_PD_INCLUDE | PLLU_HW_PWRDN_CFG0_USE_SWITCH_DETECT | PLLU_HW_PWRDN_CFG0_USE_LOCKDET; reg &= ~(PLLU_HW_PWRDN_CFG0_CLK_ENABLE_SWCTL | PLLU_HW_PWRDN_CFG0_CLK_SWITCH_SWCTL); writel_relaxed(reg, clk_base + PLLU_HW_PWRDN_CFG0); reg = readl_relaxed(clk_base + XUSB_PLL_CFG0); reg &= ~XUSB_PLL_CFG0_PLLU_LOCK_DLY_MASK; writel_relaxed(reg, clk_base + XUSB_PLL_CFG0); fence_udelay(1, clk_base); reg = readl_relaxed(clk_base + PLLU_HW_PWRDN_CFG0); reg |= PLLU_HW_PWRDN_CFG0_SEQ_ENABLE; writel_relaxed(reg, clk_base + PLLU_HW_PWRDN_CFG0); fence_udelay(1, clk_base); reg = readl_relaxed(clk_base + PLLU_BASE); reg &= ~PLLU_BASE_CLKENABLE_USB; writel_relaxed(reg, clk_base + PLLU_BASE); } /* enable UTMIPLL hw control if not yet done by the bootloader */ reg = readl_relaxed(clk_base + UTMIPLL_HW_PWRDN_CFG0); if (!(reg & UTMIPLL_HW_PWRDN_CFG0_SEQ_ENABLE)) tegra210_utmi_param_configure(); return 0; } /* * The SOR hardware blocks are driven by two clocks: a module clock that is * used to access registers and a pixel clock that is sourced from the same * pixel clock that also drives the head attached to the SOR. The module * clock is typically called sorX (with X being the SOR instance) and the * pixel clock is called sorX_out. The source for the SOR pixel clock is * referred to as the "parent" clock. * * On Tegra186 and newer, clocks are provided by the BPMP. Unfortunately the * BPMP implementation for the SOR clocks doesn't exactly match the above in * some aspects. For example, the SOR module is really clocked by the pad or * sor_safe clocks, but BPMP models the sorX clock as being sourced by the * pixel clocks. Conversely the sorX_out clock is sourced by the sor_safe or * pad clocks on BPMP. * * In order to allow the display driver to deal with all SoC generations in * a unified way, implement the BPMP semantics in this driver. */ static const char * const sor0_parents[] = { "pll_d_out0", }; static const char * const sor0_out_parents[] = { "sor_safe", "sor0_pad_clkout", }; static const char * const sor1_parents[] = { "pll_p", "pll_d_out0", "pll_d2_out0", "clk_m", }; static u32 sor1_parents_idx[] = { 0, 2, 5, 6 }; static const struct clk_div_table mc_div_table_tegra210[] = { { .val = 0, .div = 2 }, { .val = 1, .div = 4 }, { .val = 2, .div = 1 }, { .val = 3, .div = 2 }, { .val = 0, .div = 0 }, }; static void tegra210_clk_register_mc(const char *name, const char *parent_name) { struct clk *clk; clk = clk_register_divider_table(NULL, name, parent_name, CLK_IS_CRITICAL, clk_base + CLK_SOURCE_EMC, 15, 2, CLK_DIVIDER_READ_ONLY, mc_div_table_tegra210, &emc_lock); clks[TEGRA210_CLK_MC] = clk; } static const char * const sor1_out_parents[] = { /* * Bit 0 of the mux selects sor1_pad_clkout, irrespective of bit 1, so * the sor1_pad_clkout parent appears twice in the list below. This is * merely to support clk_get_parent() if firmware happened to set * these bits to 0b11. While not an invalid setting, code should * always set the bits to 0b01 to select sor1_pad_clkout. */ "sor_safe", "sor1_pad_clkout", "sor1_out", "sor1_pad_clkout", }; static struct tegra_periph_init_data tegra210_periph[] = { /* * On Tegra210, the sor0 clock doesn't have a mux it bitfield 31:29, * but it is hardwired to the pll_d_out0 clock. */ TEGRA_INIT_DATA_TABLE("sor0", NULL, NULL, sor0_parents, CLK_SOURCE_SOR0, 29, 0x0, 0, 0, 0, 0, 0, 182, 0, tegra_clk_sor0, NULL, 0, &sor0_lock), TEGRA_INIT_DATA_TABLE("sor0_out", NULL, NULL, sor0_out_parents, CLK_SOURCE_SOR0, 14, 0x1, 0, 0, 0, 0, 0, 0, TEGRA_PERIPH_NO_GATE, tegra_clk_sor0_out, NULL, 0, &sor0_lock), TEGRA_INIT_DATA_TABLE("sor1", NULL, NULL, sor1_parents, CLK_SOURCE_SOR1, 29, 0x7, 0, 0, 8, 1, TEGRA_DIVIDER_ROUND_UP, 183, 0, tegra_clk_sor1, sor1_parents_idx, 0, &sor1_lock), TEGRA_INIT_DATA_TABLE("sor1_out", NULL, NULL, sor1_out_parents, CLK_SOURCE_SOR1, 14, 0x3, 0, 0, 0, 0, 0, 0, TEGRA_PERIPH_NO_GATE, tegra_clk_sor1_out, NULL, 0, &sor1_lock), }; static const char * const la_parents[] = { "pll_p", "pll_c2", "pll_c", "pll_c3", "pll_re_out1", "pll_a1", "clk_m", "pll_c4_out0" }; static struct tegra_clk_periph tegra210_la = TEGRA_CLK_PERIPH(29, 7, 9, 0, 8, 1, TEGRA_DIVIDER_ROUND_UP, 76, 0, NULL, NULL); static __init void tegra210_periph_clk_init(struct device_node *np, void __iomem *clk_base, void __iomem *pmc_base) { struct clk *clk; unsigned int i; /* xusb_ss_div2 */ clk = clk_register_fixed_factor(NULL, "xusb_ss_div2", "xusb_ss_src", 0, 1, 2); clks[TEGRA210_CLK_XUSB_SS_DIV2] = clk; clk = tegra_clk_register_periph_fixed("sor_safe", "pll_p", 0, clk_base, 1, 17, 222); clks[TEGRA210_CLK_SOR_SAFE] = clk; clk = tegra_clk_register_periph_fixed("dpaux", "sor_safe", 0, clk_base, 1, 17, 181); clks[TEGRA210_CLK_DPAUX] = clk; clk = tegra_clk_register_periph_fixed("dpaux1", "sor_safe", 0, clk_base, 1, 17, 207); clks[TEGRA210_CLK_DPAUX1] = clk; /* pll_d_dsi_out */ clk = clk_register_gate(NULL, "pll_d_dsi_out", "pll_d_out0", 0, clk_base + PLLD_MISC0, 21, 0, &pll_d_lock); clks[TEGRA210_CLK_PLL_D_DSI_OUT] = clk; /* dsia */ clk = tegra_clk_register_periph_gate("dsia", "pll_d_dsi_out", 0, clk_base, 0, 48, periph_clk_enb_refcnt); clks[TEGRA210_CLK_DSIA] = clk; /* dsib */ clk = tegra_clk_register_periph_gate("dsib", "pll_d_dsi_out", 0, clk_base, 0, 82, periph_clk_enb_refcnt); clks[TEGRA210_CLK_DSIB] = clk; /* csi_tpg */ clk = clk_register_gate(NULL, "csi_tpg", "pll_d", CLK_SET_RATE_PARENT, clk_base + PLLD_BASE, 23, 0, &pll_d_lock); clk_register_clkdev(clk, "csi_tpg", NULL); clks[TEGRA210_CLK_CSI_TPG] = clk; /* la */ clk = tegra_clk_register_periph("la", la_parents, ARRAY_SIZE(la_parents), &tegra210_la, clk_base, CLK_SOURCE_LA, 0); clks[TEGRA210_CLK_LA] = clk; /* cml0 */ clk = clk_register_gate(NULL, "cml0", "pll_e", 0, clk_base + PLLE_AUX, 0, 0, &pll_e_lock); clk_register_clkdev(clk, "cml0", NULL); clks[TEGRA210_CLK_CML0] = clk; /* cml1 */ clk = clk_register_gate(NULL, "cml1", "pll_e", 0, clk_base + PLLE_AUX, 1, 0, &pll_e_lock); clk_register_clkdev(clk, "cml1", NULL); clks[TEGRA210_CLK_CML1] = clk; clk = tegra_clk_register_super_clk("aclk", aclk_parents, ARRAY_SIZE(aclk_parents), 0, clk_base + 0x6e0, 0, NULL); clks[TEGRA210_CLK_ACLK] = clk; clk = tegra_clk_register_sdmmc_mux_div("sdmmc2", clk_base, CLK_SOURCE_SDMMC2, 9, TEGRA_DIVIDER_ROUND_UP, 0, NULL); clks[TEGRA210_CLK_SDMMC2] = clk; clk = tegra_clk_register_sdmmc_mux_div("sdmmc4", clk_base, CLK_SOURCE_SDMMC4, 15, TEGRA_DIVIDER_ROUND_UP, 0, NULL); clks[TEGRA210_CLK_SDMMC4] = clk; for (i = 0; i < ARRAY_SIZE(tegra210_periph); i++) { struct tegra_periph_init_data *init = &tegra210_periph[i]; struct clk **clkp; clkp = tegra_lookup_dt_id(init->clk_id, tegra210_clks); if (!clkp) { pr_warn("clock %u not found\n", init->clk_id); continue; } clk = tegra_clk_register_periph_data(clk_base, init); *clkp = clk; } tegra_periph_clk_init(clk_base, pmc_base, tegra210_clks, &pll_p_params); /* emc */ clk = tegra210_clk_register_emc(np, clk_base); clks[TEGRA210_CLK_EMC] = clk; /* mc */ tegra210_clk_register_mc("mc", "emc"); } static void __init tegra210_pll_init(void __iomem *clk_base, void __iomem *pmc) { struct clk *clk; /* PLLC */ clk = tegra_clk_register_pllc_tegra210("pll_c", "pll_ref", clk_base, pmc, 0, &pll_c_params, NULL); if (!WARN_ON(IS_ERR(clk))) clk_register_clkdev(clk, "pll_c", NULL); clks[TEGRA210_CLK_PLL_C] = clk; /* PLLC_OUT1 */ clk = tegra_clk_register_divider("pll_c_out1_div", "pll_c", clk_base + PLLC_OUT, 0, TEGRA_DIVIDER_ROUND_UP, 8, 8, 1, NULL); clk = tegra_clk_register_pll_out("pll_c_out1", "pll_c_out1_div", clk_base + PLLC_OUT, 1, 0, CLK_SET_RATE_PARENT, 0, NULL); clk_register_clkdev(clk, "pll_c_out1", NULL); clks[TEGRA210_CLK_PLL_C_OUT1] = clk; /* PLLC_UD */ clk = clk_register_fixed_factor(NULL, "pll_c_ud", "pll_c", CLK_SET_RATE_PARENT, 1, 1); clk_register_clkdev(clk, "pll_c_ud", NULL); clks[TEGRA210_CLK_PLL_C_UD] = clk; /* PLLC2 */ clk = tegra_clk_register_pllc_tegra210("pll_c2", "pll_ref", clk_base, pmc, 0, &pll_c2_params, NULL); clk_register_clkdev(clk, "pll_c2", NULL); clks[TEGRA210_CLK_PLL_C2] = clk; /* PLLC3 */ clk = tegra_clk_register_pllc_tegra210("pll_c3", "pll_ref", clk_base, pmc, 0, &pll_c3_params, NULL); clk_register_clkdev(clk, "pll_c3", NULL); clks[TEGRA210_CLK_PLL_C3] = clk; /* PLLM */ clk = tegra_clk_register_pllm("pll_m", "osc", clk_base, pmc, CLK_SET_RATE_GATE, &pll_m_params, NULL); clk_register_clkdev(clk, "pll_m", NULL); clks[TEGRA210_CLK_PLL_M] = clk; /* PLLMB */ clk = tegra_clk_register_pllmb("pll_mb", "osc", clk_base, pmc, CLK_SET_RATE_GATE, &pll_mb_params, NULL); clk_register_clkdev(clk, "pll_mb", NULL); clks[TEGRA210_CLK_PLL_MB] = clk; /* PLLM_UD */ clk = clk_register_fixed_factor(NULL, "pll_m_ud", "pll_m", CLK_SET_RATE_PARENT, 1, 1); clk_register_clkdev(clk, "pll_m_ud", NULL); clks[TEGRA210_CLK_PLL_M_UD] = clk; /* PLLMB_UD */ clk = clk_register_fixed_factor(NULL, "pll_mb_ud", "pll_mb", CLK_SET_RATE_PARENT, 1, 1); clk_register_clkdev(clk, "pll_mb_ud", NULL); clks[TEGRA210_CLK_PLL_MB_UD] = clk; /* PLLP_UD */ clk = clk_register_fixed_factor(NULL, "pll_p_ud", "pll_p", 0, 1, 1); clks[TEGRA210_CLK_PLL_P_UD] = clk; /* PLLU_VCO */ if (!tegra210_init_pllu()) { clk = clk_register_fixed_rate(NULL, "pll_u_vco", "pll_ref", 0, 480*1000*1000); clk_register_clkdev(clk, "pll_u_vco", NULL); clks[TEGRA210_CLK_PLL_U] = clk; } /* PLLU_OUT */ clk = clk_register_divider_table(NULL, "pll_u_out", "pll_u_vco", 0, clk_base + PLLU_BASE, 16, 4, 0, pll_vco_post_div_table, NULL); clk_register_clkdev(clk, "pll_u_out", NULL); clks[TEGRA210_CLK_PLL_U_OUT] = clk; /* PLLU_OUT1 */ clk = tegra_clk_register_divider("pll_u_out1_div", "pll_u_out", clk_base + PLLU_OUTA, 0, TEGRA_DIVIDER_ROUND_UP, 8, 8, 1, &pll_u_lock); clk = tegra_clk_register_pll_out("pll_u_out1", "pll_u_out1_div", clk_base + PLLU_OUTA, 1, 0, CLK_SET_RATE_PARENT, 0, &pll_u_lock); clk_register_clkdev(clk, "pll_u_out1", NULL); clks[TEGRA210_CLK_PLL_U_OUT1] = clk; /* PLLU_OUT2 */ clk = tegra_clk_register_divider("pll_u_out2_div", "pll_u_out", clk_base + PLLU_OUTA, 0, TEGRA_DIVIDER_ROUND_UP, 24, 8, 1, &pll_u_lock); clk = tegra_clk_register_pll_out("pll_u_out2", "pll_u_out2_div", clk_base + PLLU_OUTA, 17, 16, CLK_SET_RATE_PARENT, 0, &pll_u_lock); clk_register_clkdev(clk, "pll_u_out2", NULL); clks[TEGRA210_CLK_PLL_U_OUT2] = clk; /* PLLU_480M */ clk = clk_register_gate(NULL, "pll_u_480M", "pll_u_vco", CLK_SET_RATE_PARENT, clk_base + PLLU_BASE, 22, 0, &pll_u_lock); clk_register_clkdev(clk, "pll_u_480M", NULL); clks[TEGRA210_CLK_PLL_U_480M] = clk; /* PLLU_60M */ clk = clk_register_gate(NULL, "pll_u_60M", "pll_u_out2", CLK_SET_RATE_PARENT, clk_base + PLLU_BASE, 23, 0, &pll_u_lock); clk_register_clkdev(clk, "pll_u_60M", NULL); clks[TEGRA210_CLK_PLL_U_60M] = clk; /* PLLU_48M */ clk = clk_register_gate(NULL, "pll_u_48M", "pll_u_out1", CLK_SET_RATE_PARENT, clk_base + PLLU_BASE, 25, 0, &pll_u_lock); clk_register_clkdev(clk, "pll_u_48M", NULL); clks[TEGRA210_CLK_PLL_U_48M] = clk; /* PLLD */ clk = tegra_clk_register_pll("pll_d", "pll_ref", clk_base, pmc, 0, &pll_d_params, &pll_d_lock); clk_register_clkdev(clk, "pll_d", NULL); clks[TEGRA210_CLK_PLL_D] = clk; /* PLLD_OUT0 */ clk = clk_register_fixed_factor(NULL, "pll_d_out0", "pll_d", CLK_SET_RATE_PARENT, 1, 2); clk_register_clkdev(clk, "pll_d_out0", NULL); clks[TEGRA210_CLK_PLL_D_OUT0] = clk; /* PLLRE */ clk = tegra_clk_register_pllre_tegra210("pll_re_vco", "pll_ref", clk_base, pmc, 0, &pll_re_vco_params, &pll_re_lock, pll_ref_freq); clk_register_clkdev(clk, "pll_re_vco", NULL); clks[TEGRA210_CLK_PLL_RE_VCO] = clk; clk = clk_register_divider_table(NULL, "pll_re_out", "pll_re_vco", 0, clk_base + PLLRE_BASE, 16, 5, 0, pll_vco_post_div_table, &pll_re_lock); clk_register_clkdev(clk, "pll_re_out", NULL); clks[TEGRA210_CLK_PLL_RE_OUT] = clk; clk = tegra_clk_register_divider("pll_re_out1_div", "pll_re_vco", clk_base + PLLRE_OUT1, 0, TEGRA_DIVIDER_ROUND_UP, 8, 8, 1, NULL); clk = tegra_clk_register_pll_out("pll_re_out1", "pll_re_out1_div", clk_base + PLLRE_OUT1, 1, 0, CLK_SET_RATE_PARENT, 0, NULL); clks[TEGRA210_CLK_PLL_RE_OUT1] = clk; /* PLLE */ clk = tegra_clk_register_plle_tegra210("pll_e", "pll_ref", clk_base, 0, &pll_e_params, NULL); clk_register_clkdev(clk, "pll_e", NULL); clks[TEGRA210_CLK_PLL_E] = clk; /* PLLC4 */ clk = tegra_clk_register_pllre("pll_c4_vco", "pll_ref", clk_base, pmc, 0, &pll_c4_vco_params, NULL, pll_ref_freq); clk_register_clkdev(clk, "pll_c4_vco", NULL); clks[TEGRA210_CLK_PLL_C4] = clk; /* PLLC4_OUT0 */ clk = clk_register_divider_table(NULL, "pll_c4_out0", "pll_c4_vco", 0, clk_base + PLLC4_BASE, 19, 4, 0, pll_vco_post_div_table, NULL); clk_register_clkdev(clk, "pll_c4_out0", NULL); clks[TEGRA210_CLK_PLL_C4_OUT0] = clk; /* PLLC4_OUT1 */ clk = clk_register_fixed_factor(NULL, "pll_c4_out1", "pll_c4_vco", CLK_SET_RATE_PARENT, 1, 3); clk_register_clkdev(clk, "pll_c4_out1", NULL); clks[TEGRA210_CLK_PLL_C4_OUT1] = clk; /* PLLC4_OUT2 */ clk = clk_register_fixed_factor(NULL, "pll_c4_out2", "pll_c4_vco", CLK_SET_RATE_PARENT, 1, 5); clk_register_clkdev(clk, "pll_c4_out2", NULL); clks[TEGRA210_CLK_PLL_C4_OUT2] = clk; /* PLLC4_OUT3 */ clk = tegra_clk_register_divider("pll_c4_out3_div", "pll_c4_out0", clk_base + PLLC4_OUT, 0, TEGRA_DIVIDER_ROUND_UP, 8, 8, 1, NULL); clk = tegra_clk_register_pll_out("pll_c4_out3", "pll_c4_out3_div", clk_base + PLLC4_OUT, 1, 0, CLK_SET_RATE_PARENT, 0, NULL); clk_register_clkdev(clk, "pll_c4_out3", NULL); clks[TEGRA210_CLK_PLL_C4_OUT3] = clk; /* PLLDP */ clk = tegra_clk_register_pllss_tegra210("pll_dp", "pll_ref", clk_base, 0, &pll_dp_params, NULL); clk_register_clkdev(clk, "pll_dp", NULL); clks[TEGRA210_CLK_PLL_DP] = clk; /* PLLD2 */ clk = tegra_clk_register_pllss_tegra210("pll_d2", "pll_ref", clk_base, 0, &pll_d2_params, NULL); clk_register_clkdev(clk, "pll_d2", NULL); clks[TEGRA210_CLK_PLL_D2] = clk; /* PLLD2_OUT0 */ clk = clk_register_fixed_factor(NULL, "pll_d2_out0", "pll_d2", CLK_SET_RATE_PARENT, 1, 1); clk_register_clkdev(clk, "pll_d2_out0", NULL); clks[TEGRA210_CLK_PLL_D2_OUT0] = clk; /* PLLP_OUT2 */ clk = clk_register_fixed_factor(NULL, "pll_p_out2", "pll_p", CLK_SET_RATE_PARENT, 1, 2); clk_register_clkdev(clk, "pll_p_out2", NULL); clks[TEGRA210_CLK_PLL_P_OUT2] = clk; } /* Tegra210 CPU clock and reset control functions */ static void tegra210_wait_cpu_in_reset(u32 cpu) { unsigned int reg; do { reg = readl(clk_base + CLK_RST_CONTROLLER_CPU_CMPLX_STATUS); cpu_relax(); } while (!(reg & (1 << cpu))); /* check CPU been reset or not */ } static void tegra210_disable_cpu_clock(u32 cpu) { /* flow controller would take care in the power sequence. */ } #ifdef CONFIG_PM_SLEEP #define car_readl(_base, _off) readl_relaxed(clk_base + (_base) + ((_off) * 4)) #define car_writel(_val, _base, _off) \ writel_relaxed(_val, clk_base + (_base) + ((_off) * 4)) static u32 spare_reg_ctx, misc_clk_enb_ctx, clk_msk_arm_ctx; static u32 cpu_softrst_ctx[3]; static int tegra210_clk_suspend(void) { unsigned int i; clk_save_context(); /* * Save the bootloader configured clock registers SPARE_REG0, * MISC_CLK_ENB, CLK_MASK_ARM, CPU_SOFTRST_CTRL. */ spare_reg_ctx = readl_relaxed(clk_base + SPARE_REG0); misc_clk_enb_ctx = readl_relaxed(clk_base + MISC_CLK_ENB); clk_msk_arm_ctx = readl_relaxed(clk_base + CLK_MASK_ARM); for (i = 0; i < ARRAY_SIZE(cpu_softrst_ctx); i++) cpu_softrst_ctx[i] = car_readl(CPU_SOFTRST_CTRL, i); tegra_clk_periph_suspend(); return 0; } static void tegra210_clk_resume(void) { unsigned int i; tegra_clk_osc_resume(clk_base); /* * Restore the bootloader configured clock registers SPARE_REG0, * MISC_CLK_ENB, CLK_MASK_ARM, CPU_SOFTRST_CTRL from saved context. */ writel_relaxed(spare_reg_ctx, clk_base + SPARE_REG0); writel_relaxed(misc_clk_enb_ctx, clk_base + MISC_CLK_ENB); writel_relaxed(clk_msk_arm_ctx, clk_base + CLK_MASK_ARM); for (i = 0; i < ARRAY_SIZE(cpu_softrst_ctx); i++) car_writel(cpu_softrst_ctx[i], CPU_SOFTRST_CTRL, i); /* * Tegra clock programming sequence recommends peripheral clock to * be enabled prior to changing its clock source and divider to * prevent glitchless frequency switch. * So, enable all peripheral clocks before restoring their source * and dividers. */ writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_L, clk_base + CLK_OUT_ENB_L); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_H, clk_base + CLK_OUT_ENB_H); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_U, clk_base + CLK_OUT_ENB_U); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_V, clk_base + CLK_OUT_ENB_V); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_W, clk_base + CLK_OUT_ENB_W); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_X, clk_base + CLK_OUT_ENB_X); writel_relaxed(TEGRA210_CLK_ENB_VLD_MSK_Y, clk_base + CLK_OUT_ENB_Y); /* wait for all writes to happen to have all the clocks enabled */ fence_udelay(2, clk_base); /* restore PLLs and all peripheral clock rates */ tegra210_init_pllu(); clk_restore_context(); /* restore saved context of peripheral clocks and reset state */ tegra_clk_periph_resume(); } static void tegra210_cpu_clock_suspend(void) { /* switch coresite to clk_m, save off original source */ tegra210_cpu_clk_sctx.clk_csite_src = readl(clk_base + CLK_SOURCE_CSITE); writel(3 << 30, clk_base + CLK_SOURCE_CSITE); } static void tegra210_cpu_clock_resume(void) { writel(tegra210_cpu_clk_sctx.clk_csite_src, clk_base + CLK_SOURCE_CSITE); } #endif static struct syscore_ops tegra_clk_syscore_ops = { #ifdef CONFIG_PM_SLEEP .suspend = tegra210_clk_suspend, .resume = tegra210_clk_resume, #endif }; static struct tegra_cpu_car_ops tegra210_cpu_car_ops = { .wait_for_reset = tegra210_wait_cpu_in_reset, .disable_clock = tegra210_disable_cpu_clock, #ifdef CONFIG_PM_SLEEP .suspend = tegra210_cpu_clock_suspend, .resume = tegra210_cpu_clock_resume, #endif }; static const struct of_device_id pmc_match[] __initconst = { { .compatible = "nvidia,tegra210-pmc" }, { }, }; static struct tegra_clk_init_table init_table[] __initdata = { { TEGRA210_CLK_UARTA, TEGRA210_CLK_PLL_P, 408000000, 0 }, { TEGRA210_CLK_UARTB, TEGRA210_CLK_PLL_P, 408000000, 0 }, { TEGRA210_CLK_UARTC, TEGRA210_CLK_PLL_P, 408000000, 0 }, { TEGRA210_CLK_UARTD, TEGRA210_CLK_PLL_P, 408000000, 0 }, { TEGRA210_CLK_PLL_A, TEGRA210_CLK_CLK_MAX, 564480000, 0 }, { TEGRA210_CLK_PLL_A_OUT0, TEGRA210_CLK_CLK_MAX, 11289600, 0 }, { TEGRA210_CLK_I2S0, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 }, { TEGRA210_CLK_I2S1, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 }, { TEGRA210_CLK_I2S2, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 }, { TEGRA210_CLK_I2S3, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 }, { TEGRA210_CLK_I2S4, TEGRA210_CLK_PLL_A_OUT0, 11289600, 0 }, { TEGRA210_CLK_HOST1X, TEGRA210_CLK_PLL_P, 136000000, 1 }, { TEGRA210_CLK_SCLK_MUX, TEGRA210_CLK_PLL_P, 0, 1 }, { TEGRA210_CLK_SCLK, TEGRA210_CLK_CLK_MAX, 102000000, 0 }, { TEGRA210_CLK_DFLL_SOC, TEGRA210_CLK_PLL_P, 51000000, 1 }, { TEGRA210_CLK_DFLL_REF, TEGRA210_CLK_PLL_P, 51000000, 1 }, { TEGRA210_CLK_SBC4, TEGRA210_CLK_PLL_P, 12000000, 1 }, { TEGRA210_CLK_PLL_U_OUT1, TEGRA210_CLK_CLK_MAX, 48000000, 1 }, { TEGRA210_CLK_XUSB_GATE, TEGRA210_CLK_CLK_MAX, 0, 1 }, { TEGRA210_CLK_XUSB_SS_SRC, TEGRA210_CLK_PLL_U_480M, 120000000, 0 }, { TEGRA210_CLK_XUSB_FS_SRC, TEGRA210_CLK_PLL_U_48M, 48000000, 0 }, { TEGRA210_CLK_XUSB_HS_SRC, TEGRA210_CLK_XUSB_SS_SRC, 120000000, 0 }, { TEGRA210_CLK_XUSB_SSP_SRC, TEGRA210_CLK_XUSB_SS_SRC, 120000000, 0 }, { TEGRA210_CLK_XUSB_FALCON_SRC, TEGRA210_CLK_PLL_P_OUT_XUSB, 204000000, 0 }, { TEGRA210_CLK_XUSB_HOST_SRC, TEGRA210_CLK_PLL_P_OUT_XUSB, 102000000, 0 }, { TEGRA210_CLK_XUSB_DEV_SRC, TEGRA210_CLK_PLL_P_OUT_XUSB, 102000000, 0 }, { TEGRA210_CLK_SATA, TEGRA210_CLK_PLL_P, 104000000, 0 }, { TEGRA210_CLK_SATA_OOB, TEGRA210_CLK_PLL_P, 204000000, 0 }, { TEGRA210_CLK_MSELECT, TEGRA210_CLK_CLK_MAX, 0, 1 }, { TEGRA210_CLK_CSITE, TEGRA210_CLK_CLK_MAX, 0, 1 }, /* TODO find a way to enable this on-demand */ { TEGRA210_CLK_DBGAPB, TEGRA210_CLK_CLK_MAX, 0, 1 }, { TEGRA210_CLK_TSENSOR, TEGRA210_CLK_CLK_M, 400000, 0 }, { TEGRA210_CLK_I2C1, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_I2C2, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_I2C3, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_I2C4, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_I2C5, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_I2C6, TEGRA210_CLK_PLL_P, 0, 0 }, { TEGRA210_CLK_PLL_DP, TEGRA210_CLK_CLK_MAX, 270000000, 0 }, { TEGRA210_CLK_SOC_THERM, TEGRA210_CLK_PLL_P, 51000000, 0 }, { TEGRA210_CLK_CCLK_G, TEGRA210_CLK_CLK_MAX, 0, 1 }, { TEGRA210_CLK_PLL_U_OUT2, TEGRA210_CLK_CLK_MAX, 60000000, 1 }, { TEGRA210_CLK_SPDIF_IN_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_I2S0_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_I2S1_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_I2S2_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_I2S3_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_I2S4_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_VIMCLK_SYNC, TEGRA210_CLK_CLK_MAX, 24576000, 0 }, { TEGRA210_CLK_HDA, TEGRA210_CLK_PLL_P, 51000000, 0 }, { TEGRA210_CLK_HDA2CODEC_2X, TEGRA210_CLK_PLL_P, 48000000, 0 }, { TEGRA210_CLK_PWM, TEGRA210_CLK_PLL_P, 48000000, 0 }, /* This MUST be the last entry. */ { TEGRA210_CLK_CLK_MAX, TEGRA210_CLK_CLK_MAX, 0, 0 }, }; /** * tegra210_clock_apply_init_table - initialize clocks on Tegra210 SoCs * * Program an initial clock rate and enable or disable clocks needed * by the rest of the kernel, for Tegra210 SoCs. It is intended to be * called by assigning a pointer to it to tegra_clk_apply_init_table - * this will be called as an arch_initcall. No return value. */ static void __init tegra210_clock_apply_init_table(void) { tegra_init_from_table(init_table, clks, TEGRA210_CLK_CLK_MAX); } /** * tegra210_car_barrier - wait for pending writes to the CAR to complete * * Wait for any outstanding writes to the CAR MMIO space from this CPU * to complete before continuing execution. No return value. */ static void tegra210_car_barrier(void) { readl_relaxed(clk_base + RST_DFLL_DVCO); } /** * tegra210_clock_assert_dfll_dvco_reset - assert the DFLL's DVCO reset * * Assert the reset line of the DFLL's DVCO. No return value. */ static void tegra210_clock_assert_dfll_dvco_reset(void) { u32 v; v = readl_relaxed(clk_base + RST_DFLL_DVCO); v |= (1 << DVFS_DFLL_RESET_SHIFT); writel_relaxed(v, clk_base + RST_DFLL_DVCO); tegra210_car_barrier(); } /** * tegra210_clock_deassert_dfll_dvco_reset - deassert the DFLL's DVCO reset * * Deassert the reset line of the DFLL's DVCO, allowing the DVCO to * operate. No return value. */ static void tegra210_clock_deassert_dfll_dvco_reset(void) { u32 v; v = readl_relaxed(clk_base + RST_DFLL_DVCO); v &= ~(1 << DVFS_DFLL_RESET_SHIFT); writel_relaxed(v, clk_base + RST_DFLL_DVCO); tegra210_car_barrier(); } static int tegra210_reset_assert(unsigned long id) { if (id == TEGRA210_RST_DFLL_DVCO) tegra210_clock_assert_dfll_dvco_reset(); else if (id == TEGRA210_RST_ADSP) writel(GENMASK(26, 21) | BIT(7), clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_SET); else return -EINVAL; return 0; } static int tegra210_reset_deassert(unsigned long id) { if (id == TEGRA210_RST_DFLL_DVCO) tegra210_clock_deassert_dfll_dvco_reset(); else if (id == TEGRA210_RST_ADSP) { writel(BIT(21), clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_CLR); /* * Considering adsp cpu clock (min: 12.5MHZ, max: 1GHz) * a delay of 5us ensures that it's at least * 6 * adsp_cpu_cycle_period long. */ udelay(5); writel(GENMASK(26, 22) | BIT(7), clk_base + CLK_RST_CONTROLLER_RST_DEV_Y_CLR); } else return -EINVAL; return 0; } static void tegra210_mbist_clk_init(void) { unsigned int i, j; for (i = 0; i < ARRAY_SIZE(tegra210_pg_mbist_war); i++) { unsigned int num_clks = tegra210_pg_mbist_war[i].num_clks; struct clk_bulk_data *clk_data; if (!num_clks) continue; clk_data = kmalloc_array(num_clks, sizeof(*clk_data), GFP_KERNEL); if (WARN_ON(!clk_data)) return; tegra210_pg_mbist_war[i].clks = clk_data; for (j = 0; j < num_clks; j++) { int clk_id = tegra210_pg_mbist_war[i].clk_init_data[j]; struct clk *clk = clks[clk_id]; if (WARN(IS_ERR(clk), "clk_id: %d\n", clk_id)) { kfree(clk_data); tegra210_pg_mbist_war[i].clks = NULL; break; } clk_data[j].clk = clk; } } } /** * tegra210_clock_init - Tegra210-specific clock initialization * @np: struct device_node * of the DT node for the SoC CAR IP block * * Register most SoC clocks for the Tegra210 system-on-chip. Intended * to be called by the OF init code when a DT node with the * "nvidia,tegra210-car" string is encountered, and declared with * CLK_OF_DECLARE. No return value. */ static void __init tegra210_clock_init(struct device_node *np) { struct device_node *node; u32 value, clk_m_div; clk_base = of_iomap(np, 0); if (!clk_base) { pr_err("ioremap tegra210 CAR failed\n"); return; } node = of_find_matching_node(NULL, pmc_match); if (!node) { pr_err("Failed to find pmc node\n"); WARN_ON(1); return; } pmc_base = of_iomap(node, 0); of_node_put(node); if (!pmc_base) { pr_err("Can't map pmc registers\n"); WARN_ON(1); return; } ahub_base = ioremap(TEGRA210_AHUB_BASE, SZ_64K); if (!ahub_base) { pr_err("ioremap tegra210 APE failed\n"); return; } dispa_base = ioremap(TEGRA210_DISPA_BASE, SZ_256K); if (!dispa_base) { pr_err("ioremap tegra210 DISPA failed\n"); return; } vic_base = ioremap(TEGRA210_VIC_BASE, SZ_256K); if (!vic_base) { pr_err("ioremap tegra210 VIC failed\n"); return; } clks = tegra_clk_init(clk_base, TEGRA210_CLK_CLK_MAX, TEGRA210_CAR_BANK_COUNT); if (!clks) return; value = readl(clk_base + SPARE_REG0) >> CLK_M_DIVISOR_SHIFT; clk_m_div = (value & CLK_M_DIVISOR_MASK) + 1; if (tegra_osc_clk_init(clk_base, tegra210_clks, tegra210_input_freq, ARRAY_SIZE(tegra210_input_freq), clk_m_div, &osc_freq, &pll_ref_freq) < 0) return; tegra_fixed_clk_init(tegra210_clks); tegra210_pll_init(clk_base, pmc_base); tegra210_periph_clk_init(np, clk_base, pmc_base); tegra_audio_clk_init(clk_base, pmc_base, tegra210_clks, tegra210_audio_plls, ARRAY_SIZE(tegra210_audio_plls), 24576000); /* For Tegra210, PLLD is the only source for DSIA & DSIB */ value = readl(clk_base + PLLD_BASE); value &= ~BIT(25); writel(value, clk_base + PLLD_BASE); tegra_clk_apply_init_table = tegra210_clock_apply_init_table; tegra_super_clk_gen5_init(clk_base, pmc_base, tegra210_clks, &pll_x_params); tegra_init_special_resets(2, tegra210_reset_assert, tegra210_reset_deassert); tegra_add_of_provider(np, of_clk_src_onecell_get); tegra_register_devclks(devclks, ARRAY_SIZE(devclks)); tegra210_mbist_clk_init(); tegra_cpu_car_ops = &tegra210_cpu_car_ops; register_syscore_ops(&tegra_clk_syscore_ops); } CLK_OF_DECLARE(tegra210, "nvidia,tegra210-car", tegra210_clock_init);