// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #include <linux/irqflags.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> #include <asm/tlbflush.h> struct tlb_inv_context { unsigned long flags; u64 tcr; u64 sctlr; }; static void __tlb_switch_to_guest(struct kvm_s2_mmu *mmu, struct tlb_inv_context *cxt) { u64 val; local_irq_save(cxt->flags); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { /* * For CPUs that are affected by ARM errata 1165522 or 1530923, * we cannot trust stage-1 to be in a correct state at that * point. Since we do not want to force a full load of the * vcpu state, we prevent the EL1 page-table walker to * allocate new TLBs. This is done by setting the EPD bits * in the TCR_EL1 register. We also need to prevent it to * allocate IPA->PA walks, so we enable the S1 MMU... */ val = cxt->tcr = read_sysreg_el1(SYS_TCR); val |= TCR_EPD1_MASK | TCR_EPD0_MASK; write_sysreg_el1(val, SYS_TCR); val = cxt->sctlr = read_sysreg_el1(SYS_SCTLR); val |= SCTLR_ELx_M; write_sysreg_el1(val, SYS_SCTLR); } /* * With VHE enabled, we have HCR_EL2.{E2H,TGE} = {1,1}, and * most TLB operations target EL2/EL0. In order to affect the * guest TLBs (EL1/EL0), we need to change one of these two * bits. Changing E2H is impossible (goodbye TTBR1_EL2), so * let's flip TGE before executing the TLB operation. * * ARM erratum 1165522 requires some special handling (again), * as we need to make sure both stages of translation are in * place before clearing TGE. __load_stage2() already * has an ISB in order to deal with this. */ __load_stage2(mmu, mmu->arch); val = read_sysreg(hcr_el2); val &= ~HCR_TGE; write_sysreg(val, hcr_el2); isb(); } static void __tlb_switch_to_host(struct tlb_inv_context *cxt) { /* * We're done with the TLB operation, let's restore the host's * view of HCR_EL2. */ write_sysreg(0, vttbr_el2); write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2); isb(); if (cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { /* Restore the registers to what they were */ write_sysreg_el1(cxt->tcr, SYS_TCR); write_sysreg_el1(cxt->sctlr, SYS_SCTLR); } local_irq_restore(cxt->flags); } void __kvm_tlb_flush_vmid_ipa(struct kvm_s2_mmu *mmu, phys_addr_t ipa, int level) { struct tlb_inv_context cxt; dsb(ishst); /* Switch to requested VMID */ __tlb_switch_to_guest(mmu, &cxt); /* * We could do so much better if we had the VA as well. * Instead, we invalidate Stage-2 for this IPA, and the * whole of Stage-1. Weep... */ ipa >>= 12; __tlbi_level(ipas2e1is, ipa, level); /* * We have to ensure completion of the invalidation at Stage-2, * since a table walk on another CPU could refill a TLB with a * complete (S1 + S2) walk based on the old Stage-2 mapping if * the Stage-1 invalidation happened first. */ dsb(ish); __tlbi(vmalle1is); dsb(ish); isb(); __tlb_switch_to_host(&cxt); } void __kvm_tlb_flush_vmid_ipa_nsh(struct kvm_s2_mmu *mmu, phys_addr_t ipa, int level) { struct tlb_inv_context cxt; dsb(nshst); /* Switch to requested VMID */ __tlb_switch_to_guest(mmu, &cxt); /* * We could do so much better if we had the VA as well. * Instead, we invalidate Stage-2 for this IPA, and the * whole of Stage-1. Weep... */ ipa >>= 12; __tlbi_level(ipas2e1, ipa, level); /* * We have to ensure completion of the invalidation at Stage-2, * since a table walk on another CPU could refill a TLB with a * complete (S1 + S2) walk based on the old Stage-2 mapping if * the Stage-1 invalidation happened first. */ dsb(nsh); __tlbi(vmalle1); dsb(nsh); isb(); __tlb_switch_to_host(&cxt); } void __kvm_tlb_flush_vmid_range(struct kvm_s2_mmu *mmu, phys_addr_t start, unsigned long pages) { struct tlb_inv_context cxt; unsigned long stride; /* * Since the range of addresses may not be mapped at * the same level, assume the worst case as PAGE_SIZE */ stride = PAGE_SIZE; start = round_down(start, stride); dsb(ishst); /* Switch to requested VMID */ __tlb_switch_to_guest(mmu, &cxt); __flush_s2_tlb_range_op(ipas2e1is, start, pages, stride, 0); dsb(ish); __tlbi(vmalle1is); dsb(ish); isb(); __tlb_switch_to_host(&cxt); } void __kvm_tlb_flush_vmid(struct kvm_s2_mmu *mmu) { struct tlb_inv_context cxt; dsb(ishst); /* Switch to requested VMID */ __tlb_switch_to_guest(mmu, &cxt); __tlbi(vmalls12e1is); dsb(ish); isb(); __tlb_switch_to_host(&cxt); } void __kvm_flush_cpu_context(struct kvm_s2_mmu *mmu) { struct tlb_inv_context cxt; /* Switch to requested VMID */ __tlb_switch_to_guest(mmu, &cxt); __tlbi(vmalle1); asm volatile("ic iallu"); dsb(nsh); isb(); __tlb_switch_to_host(&cxt); } void __kvm_flush_vm_context(void) { dsb(ishst); __tlbi(alle1is); /* * VIPT and PIPT caches are not affected by VMID, so no maintenance * is necessary across a VMID rollover. * * VPIPT caches constrain lookup and maintenance to the active VMID, * so we need to invalidate lines with a stale VMID to avoid an ABA * race after multiple rollovers. * */ if (icache_is_vpipt()) asm volatile("ic ialluis"); dsb(ish); }