/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H #define _ASM_POWERPC_NOHASH_32_PGTABLE_H #include <asm-generic/pgtable-nopmd.h> #ifndef __ASSEMBLY__ #include <linux/sched.h> #include <linux/threads.h> #include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */ #ifdef CONFIG_44x extern int icache_44x_need_flush; #endif #endif /* __ASSEMBLY__ */ #define PTE_INDEX_SIZE PTE_SHIFT #define PMD_INDEX_SIZE 0 #define PUD_INDEX_SIZE 0 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT) #define PMD_CACHE_INDEX PMD_INDEX_SIZE #define PUD_CACHE_INDEX PUD_INDEX_SIZE #ifndef __ASSEMBLY__ #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE) #define PMD_TABLE_SIZE 0 #define PUD_TABLE_SIZE 0 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1) #endif /* __ASSEMBLY__ */ #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) /* * The normal case is that PTEs are 32-bits and we have a 1-page * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus * * For any >32-bit physical address platform, we can use the following * two level page table layout where the pgdir is 8KB and the MS 13 bits * are an index to the second level table. The combined pgdir/pmd first * level has 2048 entries and the second level has 512 64-bit PTE entries. * -Matt */ /* PGDIR_SHIFT determines what a top-level page table entry can map */ #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Bits to mask out from a PGD to get to the PUD page */ #define PGD_MASKED_BITS 0 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \ (unsigned long long)pte_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) #ifndef __ASSEMBLY__ int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot); void unmap_kernel_page(unsigned long va); #endif /* !__ASSEMBLY__ */ /* * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary * value (for now) on others, from where we can start layout kernel * virtual space that goes below PKMAP and FIXMAP */ #include <asm/fixmap.h> /* * ioremap_bot starts at that address. Early ioremaps move down from there, * until mem_init() at which point this becomes the top of the vmalloc * and ioremap space */ #ifdef CONFIG_HIGHMEM #define IOREMAP_TOP PKMAP_BASE #else #define IOREMAP_TOP FIXADDR_START #endif /* PPC32 shares vmalloc area with ioremap */ #define IOREMAP_START VMALLOC_START #define IOREMAP_END VMALLOC_END /* * Just any arbitrary offset to the start of the vmalloc VM area: the * current 16MB value just means that there will be a 64MB "hole" after the * physical memory until the kernel virtual memory starts. That means that * any out-of-bounds memory accesses will hopefully be caught. * The vmalloc() routines leaves a hole of 4kB between each vmalloced * area for the same reason. ;) * * We no longer map larger than phys RAM with the BATs so we don't have * to worry about the VMALLOC_OFFSET causing problems. We do have to worry * about clashes between our early calls to ioremap() that start growing down * from IOREMAP_TOP being run into the VM area allocations (growing upwards * from VMALLOC_START). For this reason we have ioremap_bot to check when * we actually run into our mappings setup in the early boot with the VM * system. This really does become a problem for machines with good amounts * of RAM. -- Cort */ #define VMALLOC_OFFSET (0x1000000) /* 16M */ #ifdef PPC_PIN_SIZE #define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) #else #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))) #endif #ifdef CONFIG_KASAN_VMALLOC #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT) #else #define VMALLOC_END ioremap_bot #endif /* * Bits in a linux-style PTE. These match the bits in the * (hardware-defined) PowerPC PTE as closely as possible. */ #if defined(CONFIG_40x) #include <asm/nohash/32/pte-40x.h> #elif defined(CONFIG_44x) #include <asm/nohash/32/pte-44x.h> #elif defined(CONFIG_PPC_85xx) && defined(CONFIG_PTE_64BIT) #include <asm/nohash/pte-e500.h> #elif defined(CONFIG_PPC_85xx) #include <asm/nohash/32/pte-85xx.h> #elif defined(CONFIG_PPC_8xx) #include <asm/nohash/32/pte-8xx.h> #endif /* * Location of the PFN in the PTE. Most 32-bit platforms use the same * as _PAGE_SHIFT here (ie, naturally aligned). * Platform who don't just pre-define the value so we don't override it here. */ #ifndef PTE_RPN_SHIFT #define PTE_RPN_SHIFT (PAGE_SHIFT) #endif /* * The mask covered by the RPN must be a ULL on 32-bit platforms with * 64-bit PTEs. */ #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT) #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1)) #define MAX_POSSIBLE_PHYSMEM_BITS 36 #else #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) #define MAX_POSSIBLE_PHYSMEM_BITS 32 #endif /* * _PAGE_CHG_MASK masks of bits that are to be preserved across * pgprot changes. */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) #ifndef __ASSEMBLY__ #define pte_clear(mm, addr, ptep) \ do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0) #ifndef pte_mkwrite_novma static inline pte_t pte_mkwrite_novma(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); } #endif static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } #ifndef pte_wrprotect static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); } #endif #ifndef pte_mkexec static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) | _PAGE_EXEC); } #endif #define pmd_none(pmd) (!pmd_val(pmd)) #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD) #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK) static inline void pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } /* * PTE updates. This function is called whenever an existing * valid PTE is updated. This does -not- include set_pte_at() * which nowadays only sets a new PTE. * * Depending on the type of MMU, we may need to use atomic updates * and the PTE may be either 32 or 64 bit wide. In the later case, * when using atomic updates, only the low part of the PTE is * accessed atomically. * * In addition, on 44x, we also maintain a global flag indicating * that an executable user mapping was modified, which is needed * to properly flush the virtually tagged instruction cache of * those implementations. * * On the 8xx, the page tables are a bit special. For 16k pages, we have * 4 identical entries. For 512k pages, we have 128 entries as if it was * 4k pages, but they are flagged as 512k pages for the hardware. * For other page sizes, we have a single entry in the table. */ #ifdef CONFIG_PPC_8xx static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr); static int hugepd_ok(hugepd_t hpd); static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge) { if (!huge) return PAGE_SIZE / SZ_4K; else if (hugepd_ok(*((hugepd_t *)pmd))) return 1; else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE)) return SZ_16K / SZ_4K; else return SZ_512K / SZ_4K; } static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, unsigned long clr, unsigned long set, int huge) { pte_basic_t *entry = (pte_basic_t *)p; pte_basic_t old = pte_val(*p); pte_basic_t new = (old & ~(pte_basic_t)clr) | set; int num, i; pmd_t *pmd = pmd_off(mm, addr); num = number_of_cells_per_pte(pmd, new, huge); for (i = 0; i < num; i += PAGE_SIZE / SZ_4K, new += PAGE_SIZE) { *entry++ = new; if (IS_ENABLED(CONFIG_PPC_16K_PAGES) && num != 1) { *entry++ = new; *entry++ = new; *entry++ = new; } } return old; } #ifdef CONFIG_PPC_16K_PAGES #define ptep_get ptep_get static inline pte_t ptep_get(pte_t *ptep) { pte_basic_t val = READ_ONCE(ptep->pte); pte_t pte = {val, val, val, val}; return pte; } #endif /* CONFIG_PPC_16K_PAGES */ #else static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p, unsigned long clr, unsigned long set, int huge) { pte_basic_t old = pte_val(*p); pte_basic_t new = (old & ~(pte_basic_t)clr) | set; *p = __pte(new); #ifdef CONFIG_44x if ((old & _PAGE_USER) && (old & _PAGE_EXEC)) icache_44x_need_flush = 1; #endif return old; } #endif #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); return (old & _PAGE_ACCESSED) != 0; } #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep) #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { return __pte(pte_update(mm, addr, ptep, ~0, 0, 0)); } #define __HAVE_ARCH_PTEP_SET_WRPROTECT #ifndef ptep_set_wrprotect static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); } #endif #ifndef __ptep_set_access_flags static inline void __ptep_set_access_flags(struct vm_area_struct *vma, pte_t *ptep, pte_t entry, unsigned long address, int psize) { unsigned long set = pte_val(entry) & (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); int huge = psize > mmu_virtual_psize ? 1 : 0; pte_update(vma->vm_mm, address, ptep, 0, set, huge); flush_tlb_page(vma, address); } #endif static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } /* * Note that on Book E processors, the pmd contains the kernel virtual * (lowmem) address of the pte page. The physical address is less useful * because everything runs with translation enabled (even the TLB miss * handler). On everything else the pmd contains the physical address * of the pte page. -- paulus */ #ifndef CONFIG_BOOKE #define pmd_pfn(pmd) (pmd_val(pmd) >> PAGE_SHIFT) #else #define pmd_page_vaddr(pmd) \ ((const void *)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1))) #define pmd_pfn(pmd) (__pa(pmd_val(pmd)) >> PAGE_SHIFT) #endif #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) /* * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that * are !pte_none() && !pte_present(). * * Format of swap PTEs (32bit PTEs): * * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 * <------------------ offset -------------------> < type -> E 0 0 * * E is the exclusive marker that is not stored in swap entries. * * For 64bit PTEs, the offset is extended by 32bit. */ #define __swp_type(entry) ((entry).val & 0x1f) #define __swp_offset(entry) ((entry).val >> 5) #define __swp_entry(type, offset) ((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) }) #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 }) #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 }) /* We borrow LSB 2 to store the exclusive marker in swap PTEs. */ #define _PAGE_SWP_EXCLUSIVE 0x000004 #endif /* !__ASSEMBLY__ */ #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */