// SPDX-License-Identifier: GPL-2.0 /* * bpf_kwork.c * * Copyright (c) 2022 Huawei Inc, Yang Jihong <yangjihong1@huawei.com> */ #include <time.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <unistd.h> #include <linux/time64.h> #include "util/debug.h" #include "util/evsel.h" #include "util/kwork.h" #include <bpf/bpf.h> #include <perf/cpumap.h> #include "util/bpf_skel/kwork_trace.skel.h" /* * This should be in sync with "util/kwork_trace.bpf.c" */ #define MAX_KWORKNAME 128 struct work_key { u32 type; u32 cpu; u64 id; }; struct report_data { u64 nr; u64 total_time; u64 max_time; u64 max_time_start; u64 max_time_end; }; struct kwork_class_bpf { struct kwork_class *class; void (*load_prepare)(struct perf_kwork *kwork); int (*get_work_name)(struct work_key *key, char **ret_name); }; static struct kwork_trace_bpf *skel; static struct timespec ts_start; static struct timespec ts_end; void perf_kwork__trace_start(void) { clock_gettime(CLOCK_MONOTONIC, &ts_start); skel->bss->enabled = 1; } void perf_kwork__trace_finish(void) { clock_gettime(CLOCK_MONOTONIC, &ts_end); skel->bss->enabled = 0; } static int get_work_name_from_map(struct work_key *key, char **ret_name) { char name[MAX_KWORKNAME] = { 0 }; int fd = bpf_map__fd(skel->maps.perf_kwork_names); *ret_name = NULL; if (fd < 0) { pr_debug("Invalid names map fd\n"); return 0; } if ((bpf_map_lookup_elem(fd, key, name) == 0) && (strlen(name) != 0)) { *ret_name = strdup(name); if (*ret_name == NULL) { pr_err("Failed to copy work name\n"); return -1; } } return 0; } static void irq_load_prepare(struct perf_kwork *kwork) { if (kwork->report == KWORK_REPORT_RUNTIME) { bpf_program__set_autoload(skel->progs.report_irq_handler_entry, true); bpf_program__set_autoload(skel->progs.report_irq_handler_exit, true); } } static struct kwork_class_bpf kwork_irq_bpf = { .load_prepare = irq_load_prepare, .get_work_name = get_work_name_from_map, }; static void softirq_load_prepare(struct perf_kwork *kwork) { if (kwork->report == KWORK_REPORT_RUNTIME) { bpf_program__set_autoload(skel->progs.report_softirq_entry, true); bpf_program__set_autoload(skel->progs.report_softirq_exit, true); } else if (kwork->report == KWORK_REPORT_LATENCY) { bpf_program__set_autoload(skel->progs.latency_softirq_raise, true); bpf_program__set_autoload(skel->progs.latency_softirq_entry, true); } } static struct kwork_class_bpf kwork_softirq_bpf = { .load_prepare = softirq_load_prepare, .get_work_name = get_work_name_from_map, }; static void workqueue_load_prepare(struct perf_kwork *kwork) { if (kwork->report == KWORK_REPORT_RUNTIME) { bpf_program__set_autoload(skel->progs.report_workqueue_execute_start, true); bpf_program__set_autoload(skel->progs.report_workqueue_execute_end, true); } else if (kwork->report == KWORK_REPORT_LATENCY) { bpf_program__set_autoload(skel->progs.latency_workqueue_activate_work, true); bpf_program__set_autoload(skel->progs.latency_workqueue_execute_start, true); } } static struct kwork_class_bpf kwork_workqueue_bpf = { .load_prepare = workqueue_load_prepare, .get_work_name = get_work_name_from_map, }; static struct kwork_class_bpf * kwork_class_bpf_supported_list[KWORK_CLASS_MAX] = { [KWORK_CLASS_IRQ] = &kwork_irq_bpf, [KWORK_CLASS_SOFTIRQ] = &kwork_softirq_bpf, [KWORK_CLASS_WORKQUEUE] = &kwork_workqueue_bpf, }; static bool valid_kwork_class_type(enum kwork_class_type type) { return type >= 0 && type < KWORK_CLASS_MAX ? true : false; } static int setup_filters(struct perf_kwork *kwork) { u8 val = 1; int i, nr_cpus, key, fd; struct perf_cpu_map *map; if (kwork->cpu_list != NULL) { fd = bpf_map__fd(skel->maps.perf_kwork_cpu_filter); if (fd < 0) { pr_debug("Invalid cpu filter fd\n"); return -1; } map = perf_cpu_map__new(kwork->cpu_list); if (map == NULL) { pr_debug("Invalid cpu_list\n"); return -1; } nr_cpus = libbpf_num_possible_cpus(); for (i = 0; i < perf_cpu_map__nr(map); i++) { struct perf_cpu cpu = perf_cpu_map__cpu(map, i); if (cpu.cpu >= nr_cpus) { perf_cpu_map__put(map); pr_err("Requested cpu %d too large\n", cpu.cpu); return -1; } bpf_map_update_elem(fd, &cpu.cpu, &val, BPF_ANY); } perf_cpu_map__put(map); skel->bss->has_cpu_filter = 1; } if (kwork->profile_name != NULL) { if (strlen(kwork->profile_name) >= MAX_KWORKNAME) { pr_err("Requested name filter %s too large, limit to %d\n", kwork->profile_name, MAX_KWORKNAME - 1); return -1; } fd = bpf_map__fd(skel->maps.perf_kwork_name_filter); if (fd < 0) { pr_debug("Invalid name filter fd\n"); return -1; } key = 0; bpf_map_update_elem(fd, &key, kwork->profile_name, BPF_ANY); skel->bss->has_name_filter = 1; } return 0; } int perf_kwork__trace_prepare_bpf(struct perf_kwork *kwork) { struct bpf_program *prog; struct kwork_class *class; struct kwork_class_bpf *class_bpf; enum kwork_class_type type; skel = kwork_trace_bpf__open(); if (!skel) { pr_debug("Failed to open kwork trace skeleton\n"); return -1; } /* * set all progs to non-autoload, * then set corresponding progs according to config */ bpf_object__for_each_program(prog, skel->obj) bpf_program__set_autoload(prog, false); list_for_each_entry(class, &kwork->class_list, list) { type = class->type; if (!valid_kwork_class_type(type) || (kwork_class_bpf_supported_list[type] == NULL)) { pr_err("Unsupported bpf trace class %s\n", class->name); goto out; } class_bpf = kwork_class_bpf_supported_list[type]; class_bpf->class = class; if (class_bpf->load_prepare != NULL) class_bpf->load_prepare(kwork); } if (kwork_trace_bpf__load(skel)) { pr_debug("Failed to load kwork trace skeleton\n"); goto out; } if (setup_filters(kwork)) goto out; if (kwork_trace_bpf__attach(skel)) { pr_debug("Failed to attach kwork trace skeleton\n"); goto out; } return 0; out: kwork_trace_bpf__destroy(skel); return -1; } static int add_work(struct perf_kwork *kwork, struct work_key *key, struct report_data *data) { struct kwork_work *work; struct kwork_class_bpf *bpf_trace; struct kwork_work tmp = { .id = key->id, .name = NULL, .cpu = key->cpu, }; enum kwork_class_type type = key->type; if (!valid_kwork_class_type(type)) { pr_debug("Invalid class type %d to add work\n", type); return -1; } bpf_trace = kwork_class_bpf_supported_list[type]; tmp.class = bpf_trace->class; if ((bpf_trace->get_work_name != NULL) && (bpf_trace->get_work_name(key, &tmp.name))) return -1; work = perf_kwork_add_work(kwork, tmp.class, &tmp); if (work == NULL) return -1; if (kwork->report == KWORK_REPORT_RUNTIME) { work->nr_atoms = data->nr; work->total_runtime = data->total_time; work->max_runtime = data->max_time; work->max_runtime_start = data->max_time_start; work->max_runtime_end = data->max_time_end; } else if (kwork->report == KWORK_REPORT_LATENCY) { work->nr_atoms = data->nr; work->total_latency = data->total_time; work->max_latency = data->max_time; work->max_latency_start = data->max_time_start; work->max_latency_end = data->max_time_end; } else { pr_debug("Invalid bpf report type %d\n", kwork->report); return -1; } kwork->timestart = (u64)ts_start.tv_sec * NSEC_PER_SEC + ts_start.tv_nsec; kwork->timeend = (u64)ts_end.tv_sec * NSEC_PER_SEC + ts_end.tv_nsec; return 0; } int perf_kwork__report_read_bpf(struct perf_kwork *kwork) { struct report_data data; struct work_key key = { .type = 0, .cpu = 0, .id = 0, }; struct work_key prev = { .type = 0, .cpu = 0, .id = 0, }; int fd = bpf_map__fd(skel->maps.perf_kwork_report); if (fd < 0) { pr_debug("Invalid report fd\n"); return -1; } while (!bpf_map_get_next_key(fd, &prev, &key)) { if ((bpf_map_lookup_elem(fd, &key, &data)) != 0) { pr_debug("Failed to lookup report elem\n"); return -1; } if ((data.nr != 0) && (add_work(kwork, &key, &data) != 0)) return -1; prev = key; } return 0; } void perf_kwork__report_cleanup_bpf(void) { kwork_trace_bpf__destroy(skel); }