// SPDX-License-Identifier: GPL-2.0+ /* * Voltage regulators coupler for NVIDIA Tegra30 * Copyright (C) 2019 GRATE-DRIVER project * * Voltage constraints borrowed from downstream kernel sources * Copyright (C) 2010-2011 NVIDIA Corporation */ #define pr_fmt(fmt) "tegra voltage-coupler: " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/reboot.h> #include <linux/regulator/coupler.h> #include <linux/regulator/driver.h> #include <linux/regulator/machine.h> #include <linux/suspend.h> #include <soc/tegra/fuse.h> #include <soc/tegra/pmc.h> struct tegra_regulator_coupler { struct regulator_coupler coupler; struct regulator_dev *core_rdev; struct regulator_dev *cpu_rdev; struct notifier_block reboot_notifier; struct notifier_block suspend_notifier; int core_min_uV, cpu_min_uV; bool sys_reboot_mode_req; bool sys_reboot_mode; bool sys_suspend_mode_req; bool sys_suspend_mode; }; static inline struct tegra_regulator_coupler * to_tegra_coupler(struct regulator_coupler *coupler) { return container_of(coupler, struct tegra_regulator_coupler, coupler); } static int tegra30_core_limit(struct tegra_regulator_coupler *tegra, struct regulator_dev *core_rdev) { int core_min_uV = 0; int core_max_uV; int core_cur_uV; int err; /* * Tegra30 SoC has critical DVFS-capable devices that are * permanently-active or active at a boot time, like EMC * (DRAM controller) or Display controller for example. * * The voltage of a CORE SoC power domain shall not be dropped below * a minimum level, which is determined by device's clock rate. * This means that we can't fully allow CORE voltage scaling until * the state of all DVFS-critical CORE devices is synced. */ if (tegra_pmc_core_domain_state_synced() && !tegra->sys_reboot_mode) { pr_info_once("voltage state synced\n"); return 0; } if (tegra->core_min_uV > 0) return tegra->core_min_uV; core_cur_uV = regulator_get_voltage_rdev(core_rdev); if (core_cur_uV < 0) return core_cur_uV; core_max_uV = max(core_cur_uV, 1200000); err = regulator_check_voltage(core_rdev, &core_min_uV, &core_max_uV); if (err) return err; /* * Limit minimum CORE voltage to a value left from bootloader or, * if it's unreasonably low value, to the most common 1.2v or to * whatever maximum value defined via board's device-tree. */ tegra->core_min_uV = core_max_uV; pr_info("core voltage initialized to %duV\n", tegra->core_min_uV); return tegra->core_min_uV; } static int tegra30_core_cpu_limit(int cpu_uV) { if (cpu_uV < 800000) return 950000; if (cpu_uV < 900000) return 1000000; if (cpu_uV < 1000000) return 1100000; if (cpu_uV < 1100000) return 1200000; if (cpu_uV < 1250000) { switch (tegra_sku_info.cpu_speedo_id) { case 0 ... 1: case 4: case 7 ... 8: return 1200000; default: return 1300000; } } return -EINVAL; } static int tegra30_cpu_nominal_uV(void) { switch (tegra_sku_info.cpu_speedo_id) { case 10 ... 11: return 850000; case 9: return 912000; case 1 ... 3: case 7 ... 8: return 1050000; default: return 1125000; case 4 ... 6: case 12 ... 13: return 1237000; } } static int tegra30_core_nominal_uV(void) { switch (tegra_sku_info.soc_speedo_id) { case 0: return 1200000; case 1: if (tegra_sku_info.cpu_speedo_id != 7 && tegra_sku_info.cpu_speedo_id != 8) return 1200000; fallthrough; case 2: if (tegra_sku_info.cpu_speedo_id != 13) return 1300000; return 1350000; default: return 1250000; } } static int tegra30_voltage_update(struct tegra_regulator_coupler *tegra, struct regulator_dev *cpu_rdev, struct regulator_dev *core_rdev) { int core_min_uV, core_max_uV = INT_MAX; int cpu_min_uV, cpu_max_uV = INT_MAX; int cpu_min_uV_consumers = 0; int core_min_limited_uV; int core_target_uV; int cpu_target_uV; int core_max_step; int cpu_max_step; int max_spread; int core_uV; int cpu_uV; int err; /* * CPU voltage should not got lower than 300mV from the CORE. * CPU voltage should stay below the CORE by 100mV+, depending * by the CORE voltage. This applies to all Tegra30 SoC's. */ max_spread = cpu_rdev->constraints->max_spread[0]; cpu_max_step = cpu_rdev->constraints->max_uV_step; core_max_step = core_rdev->constraints->max_uV_step; if (!max_spread) { pr_err_once("cpu-core max-spread is undefined in device-tree\n"); max_spread = 300000; } if (!cpu_max_step) { pr_err_once("cpu max-step is undefined in device-tree\n"); cpu_max_step = 150000; } if (!core_max_step) { pr_err_once("core max-step is undefined in device-tree\n"); core_max_step = 150000; } /* * The CORE voltage scaling is currently not hooked up in drivers, * hence we will limit the minimum CORE voltage to a reasonable value. * This should be good enough for the time being. */ core_min_uV = tegra30_core_limit(tegra, core_rdev); if (core_min_uV < 0) return core_min_uV; err = regulator_check_consumers(core_rdev, &core_min_uV, &core_max_uV, PM_SUSPEND_ON); if (err) return err; /* prepare voltage level for suspend */ if (tegra->sys_suspend_mode) core_min_uV = clamp(tegra30_core_nominal_uV(), core_min_uV, core_max_uV); core_uV = regulator_get_voltage_rdev(core_rdev); if (core_uV < 0) return core_uV; cpu_min_uV = core_min_uV - max_spread; err = regulator_check_consumers(cpu_rdev, &cpu_min_uV, &cpu_max_uV, PM_SUSPEND_ON); if (err) return err; err = regulator_check_consumers(cpu_rdev, &cpu_min_uV_consumers, &cpu_max_uV, PM_SUSPEND_ON); if (err) return err; err = regulator_check_voltage(cpu_rdev, &cpu_min_uV, &cpu_max_uV); if (err) return err; cpu_uV = regulator_get_voltage_rdev(cpu_rdev); if (cpu_uV < 0) return cpu_uV; /* store boot voltage level */ if (!tegra->cpu_min_uV) tegra->cpu_min_uV = cpu_uV; /* * CPU's regulator may not have any consumers, hence the voltage * must not be changed in that case because CPU simply won't * survive the voltage drop if it's running on a higher frequency. */ if (!cpu_min_uV_consumers) cpu_min_uV = max(cpu_uV, cpu_min_uV); /* * Bootloader shall set up voltages correctly, but if it * happens that there is a violation, then try to fix it * at first. */ core_min_limited_uV = tegra30_core_cpu_limit(cpu_uV); if (core_min_limited_uV < 0) return core_min_limited_uV; core_min_uV = max(core_min_uV, tegra30_core_cpu_limit(cpu_min_uV)); err = regulator_check_voltage(core_rdev, &core_min_uV, &core_max_uV); if (err) return err; /* restore boot voltage level */ if (tegra->sys_reboot_mode) cpu_min_uV = max(cpu_min_uV, tegra->cpu_min_uV); /* prepare voltage level for suspend */ if (tegra->sys_suspend_mode) cpu_min_uV = clamp(tegra30_cpu_nominal_uV(), cpu_min_uV, cpu_max_uV); if (core_min_limited_uV > core_uV) { pr_err("core voltage constraint violated: %d %d %d\n", core_uV, core_min_limited_uV, cpu_uV); goto update_core; } while (cpu_uV != cpu_min_uV || core_uV != core_min_uV) { if (cpu_uV < cpu_min_uV) { cpu_target_uV = min(cpu_uV + cpu_max_step, cpu_min_uV); } else { cpu_target_uV = max(cpu_uV - cpu_max_step, cpu_min_uV); cpu_target_uV = max(core_uV - max_spread, cpu_target_uV); } if (cpu_uV == cpu_target_uV) goto update_core; err = regulator_set_voltage_rdev(cpu_rdev, cpu_target_uV, cpu_max_uV, PM_SUSPEND_ON); if (err) return err; cpu_uV = cpu_target_uV; update_core: core_min_limited_uV = tegra30_core_cpu_limit(cpu_uV); if (core_min_limited_uV < 0) return core_min_limited_uV; core_target_uV = max(core_min_limited_uV, core_min_uV); if (core_uV < core_target_uV) { core_target_uV = min(core_target_uV, core_uV + core_max_step); core_target_uV = min(core_target_uV, cpu_uV + max_spread); } else { core_target_uV = max(core_target_uV, core_uV - core_max_step); } if (core_uV == core_target_uV) continue; err = regulator_set_voltage_rdev(core_rdev, core_target_uV, core_max_uV, PM_SUSPEND_ON); if (err) return err; core_uV = core_target_uV; } return 0; } static int tegra30_regulator_balance_voltage(struct regulator_coupler *coupler, struct regulator_dev *rdev, suspend_state_t state) { struct tegra_regulator_coupler *tegra = to_tegra_coupler(coupler); struct regulator_dev *core_rdev = tegra->core_rdev; struct regulator_dev *cpu_rdev = tegra->cpu_rdev; if ((core_rdev != rdev && cpu_rdev != rdev) || state != PM_SUSPEND_ON) { pr_err("regulators are not coupled properly\n"); return -EINVAL; } tegra->sys_reboot_mode = READ_ONCE(tegra->sys_reboot_mode_req); tegra->sys_suspend_mode = READ_ONCE(tegra->sys_suspend_mode_req); return tegra30_voltage_update(tegra, cpu_rdev, core_rdev); } static int tegra30_regulator_prepare_suspend(struct tegra_regulator_coupler *tegra, bool sys_suspend_mode) { int err; if (!tegra->core_rdev || !tegra->cpu_rdev) return 0; /* * All power domains are enabled early during resume from suspend * by GENPD core. Domains like VENC may require a higher voltage * when enabled during resume from suspend. This also prepares * hardware for resuming from LP0. */ WRITE_ONCE(tegra->sys_suspend_mode_req, sys_suspend_mode); err = regulator_sync_voltage_rdev(tegra->cpu_rdev); if (err) return err; err = regulator_sync_voltage_rdev(tegra->core_rdev); if (err) return err; return 0; } static int tegra30_regulator_suspend(struct notifier_block *notifier, unsigned long mode, void *arg) { struct tegra_regulator_coupler *tegra; int ret = 0; tegra = container_of(notifier, struct tegra_regulator_coupler, suspend_notifier); switch (mode) { case PM_HIBERNATION_PREPARE: case PM_RESTORE_PREPARE: case PM_SUSPEND_PREPARE: ret = tegra30_regulator_prepare_suspend(tegra, true); break; case PM_POST_HIBERNATION: case PM_POST_RESTORE: case PM_POST_SUSPEND: ret = tegra30_regulator_prepare_suspend(tegra, false); break; } if (ret) pr_err("failed to prepare regulators: %d\n", ret); return notifier_from_errno(ret); } static int tegra30_regulator_prepare_reboot(struct tegra_regulator_coupler *tegra, bool sys_reboot_mode) { int err; if (!tegra->core_rdev || !tegra->cpu_rdev) return 0; WRITE_ONCE(tegra->sys_reboot_mode_req, true); /* * Some devices use CPU soft-reboot method and in this case we * should ensure that voltages are sane for the reboot by restoring * the minimum boot levels. */ err = regulator_sync_voltage_rdev(tegra->cpu_rdev); if (err) return err; err = regulator_sync_voltage_rdev(tegra->core_rdev); if (err) return err; WRITE_ONCE(tegra->sys_reboot_mode_req, sys_reboot_mode); return 0; } static int tegra30_regulator_reboot(struct notifier_block *notifier, unsigned long event, void *cmd) { struct tegra_regulator_coupler *tegra; int ret; if (event != SYS_RESTART) return NOTIFY_DONE; tegra = container_of(notifier, struct tegra_regulator_coupler, reboot_notifier); ret = tegra30_regulator_prepare_reboot(tegra, true); return notifier_from_errno(ret); } static int tegra30_regulator_attach(struct regulator_coupler *coupler, struct regulator_dev *rdev) { struct tegra_regulator_coupler *tegra = to_tegra_coupler(coupler); struct device_node *np = rdev->dev.of_node; if (of_property_read_bool(np, "nvidia,tegra-core-regulator") && !tegra->core_rdev) { tegra->core_rdev = rdev; return 0; } if (of_property_read_bool(np, "nvidia,tegra-cpu-regulator") && !tegra->cpu_rdev) { tegra->cpu_rdev = rdev; return 0; } return -EINVAL; } static int tegra30_regulator_detach(struct regulator_coupler *coupler, struct regulator_dev *rdev) { struct tegra_regulator_coupler *tegra = to_tegra_coupler(coupler); /* * We don't expect regulators to be decoupled during reboot, * this may race with the reboot handler and shouldn't ever * happen in practice. */ if (WARN_ON_ONCE(system_state > SYSTEM_RUNNING)) return -EPERM; if (tegra->core_rdev == rdev) { tegra->core_rdev = NULL; return 0; } if (tegra->cpu_rdev == rdev) { tegra->cpu_rdev = NULL; return 0; } return -EINVAL; } static struct tegra_regulator_coupler tegra30_coupler = { .coupler = { .attach_regulator = tegra30_regulator_attach, .detach_regulator = tegra30_regulator_detach, .balance_voltage = tegra30_regulator_balance_voltage, }, .reboot_notifier.notifier_call = tegra30_regulator_reboot, .suspend_notifier.notifier_call = tegra30_regulator_suspend, }; static int __init tegra_regulator_coupler_init(void) { int err; if (!of_machine_is_compatible("nvidia,tegra30")) return 0; err = register_reboot_notifier(&tegra30_coupler.reboot_notifier); WARN_ON(err); err = register_pm_notifier(&tegra30_coupler.suspend_notifier); WARN_ON(err); return regulator_coupler_register(&tegra30_coupler.coupler); } arch_initcall(tegra_regulator_coupler_init);