// SPDX-License-Identifier: GPL-2.0 /* * Architecture-specific setup. * * Copyright (C) 1998-2001, 2003-2004 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2000, 2004 Intel Corp * Rohit Seth <rohit.seth@intel.com> * Suresh Siddha <suresh.b.siddha@intel.com> * Gordon Jin <gordon.jin@intel.com> * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999 Walt Drummond <drummond@valinux.com> * * 12/26/04 S.Siddha, G.Jin, R.Seth * Add multi-threading and multi-core detection * 11/12/01 D.Mosberger Convert get_cpuinfo() to seq_file based show_cpuinfo(). * 04/04/00 D.Mosberger renamed cpu_initialized to cpu_online_map * 03/31/00 R.Seth cpu_initialized and current->processor fixes * 02/04/00 D.Mosberger some more get_cpuinfo fixes... * 02/01/00 R.Seth fixed get_cpuinfo for SMP * 01/07/99 S.Eranian added the support for command line argument * 06/24/99 W.Drummond added boot_cpu_data. * 05/28/05 Z. Menyhart Dynamic stride size for "flush_icache_range()" */ #include <linux/module.h> #include <linux/init.h> #include <linux/pgtable.h> #include <linux/acpi.h> #include <linux/console.h> #include <linux/delay.h> #include <linux/cpu.h> #include <linux/kdev_t.h> #include <linux/kernel.h> #include <linux/memblock.h> #include <linux/reboot.h> #include <linux/sched/mm.h> #include <linux/sched/clock.h> #include <linux/sched/task_stack.h> #include <linux/seq_file.h> #include <linux/string.h> #include <linux/threads.h> #include <linux/screen_info.h> #include <linux/dmi.h> #include <linux/root_dev.h> #include <linux/serial.h> #include <linux/serial_core.h> #include <linux/efi.h> #include <linux/initrd.h> #include <linux/pm.h> #include <linux/cpufreq.h> #include <linux/kexec.h> #include <linux/crash_dump.h> #include <asm/mca.h> #include <asm/meminit.h> #include <asm/page.h> #include <asm/patch.h> #include <asm/processor.h> #include <asm/sal.h> #include <asm/sections.h> #include <asm/setup.h> #include <asm/smp.h> #include <asm/tlbflush.h> #include <asm/unistd.h> #include <asm/uv/uv.h> #include <asm/xtp.h> #if defined(CONFIG_SMP) && (IA64_CPU_SIZE > PAGE_SIZE) # error "struct cpuinfo_ia64 too big!" #endif char ia64_platform_name[64]; #ifdef CONFIG_SMP unsigned long __per_cpu_offset[NR_CPUS]; EXPORT_SYMBOL(__per_cpu_offset); #endif DEFINE_PER_CPU(struct cpuinfo_ia64, ia64_cpu_info); EXPORT_SYMBOL(ia64_cpu_info); DEFINE_PER_CPU(unsigned long, local_per_cpu_offset); #ifdef CONFIG_SMP EXPORT_SYMBOL(local_per_cpu_offset); #endif unsigned long ia64_cycles_per_usec; struct ia64_boot_param *ia64_boot_param; struct screen_info screen_info; unsigned long vga_console_iobase; unsigned long vga_console_membase; static struct resource data_resource = { .name = "Kernel data", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; static struct resource code_resource = { .name = "Kernel code", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; static struct resource bss_resource = { .name = "Kernel bss", .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM }; unsigned long ia64_max_cacheline_size; unsigned long ia64_iobase; /* virtual address for I/O accesses */ EXPORT_SYMBOL(ia64_iobase); struct io_space io_space[MAX_IO_SPACES]; EXPORT_SYMBOL(io_space); unsigned int num_io_spaces; /* * "flush_icache_range()" needs to know what processor dependent stride size to use * when it makes i-cache(s) coherent with d-caches. */ #define I_CACHE_STRIDE_SHIFT 5 /* Safest way to go: 32 bytes by 32 bytes */ unsigned long ia64_i_cache_stride_shift = ~0; /* * "clflush_cache_range()" needs to know what processor dependent stride size to * use when it flushes cache lines including both d-cache and i-cache. */ /* Safest way to go: 32 bytes by 32 bytes */ #define CACHE_STRIDE_SHIFT 5 unsigned long ia64_cache_stride_shift = ~0; /* * We use a special marker for the end of memory and it uses the extra (+1) slot */ struct rsvd_region rsvd_region[IA64_MAX_RSVD_REGIONS + 1] __initdata; static int num_rsvd_regions __initdata; /* * Filter incoming memory segments based on the primitive map created from the boot * parameters. Segments contained in the map are removed from the memory ranges. A * caller-specified function is called with the memory ranges that remain after filtering. * This routine does not assume the incoming segments are sorted. */ int __init filter_rsvd_memory (u64 start, u64 end, void *arg) { u64 range_start, range_end, prev_start; void (*func)(unsigned long, unsigned long, int); int i; #if IGNORE_PFN0 if (start == PAGE_OFFSET) { printk(KERN_WARNING "warning: skipping physical page 0\n"); start += PAGE_SIZE; if (start >= end) return 0; } #endif /* * lowest possible address(walker uses virtual) */ prev_start = PAGE_OFFSET; func = arg; for (i = 0; i < num_rsvd_regions; ++i) { range_start = max(start, prev_start); range_end = min(end, rsvd_region[i].start); if (range_start < range_end) call_pernode_memory(__pa(range_start), range_end - range_start, func); /* nothing more available in this segment */ if (range_end == end) return 0; prev_start = rsvd_region[i].end; } /* end of memory marker allows full processing inside loop body */ return 0; } /* * Similar to "filter_rsvd_memory()", but the reserved memory ranges * are not filtered out. */ int __init filter_memory(u64 start, u64 end, void *arg) { void (*func)(unsigned long, unsigned long, int); #if IGNORE_PFN0 if (start == PAGE_OFFSET) { printk(KERN_WARNING "warning: skipping physical page 0\n"); start += PAGE_SIZE; if (start >= end) return 0; } #endif func = arg; if (start < end) call_pernode_memory(__pa(start), end - start, func); return 0; } static void __init sort_regions (struct rsvd_region *rsvd_region, int max) { int j; /* simple bubble sorting */ while (max--) { for (j = 0; j < max; ++j) { if (rsvd_region[j].start > rsvd_region[j+1].start) { swap(rsvd_region[j], rsvd_region[j + 1]); } } } } /* merge overlaps */ static int __init merge_regions (struct rsvd_region *rsvd_region, int max) { int i; for (i = 1; i < max; ++i) { if (rsvd_region[i].start >= rsvd_region[i-1].end) continue; if (rsvd_region[i].end > rsvd_region[i-1].end) rsvd_region[i-1].end = rsvd_region[i].end; --max; memmove(&rsvd_region[i], &rsvd_region[i+1], (max - i) * sizeof(struct rsvd_region)); } return max; } /* * Request address space for all standard resources */ static int __init register_memory(void) { code_resource.start = ia64_tpa(_text); code_resource.end = ia64_tpa(_etext) - 1; data_resource.start = ia64_tpa(_etext); data_resource.end = ia64_tpa(_edata) - 1; bss_resource.start = ia64_tpa(__bss_start); bss_resource.end = ia64_tpa(_end) - 1; efi_initialize_iomem_resources(&code_resource, &data_resource, &bss_resource); return 0; } __initcall(register_memory); #ifdef CONFIG_KEXEC /* * This function checks if the reserved crashkernel is allowed on the specific * IA64 machine flavour. Machines without an IO TLB use swiotlb and require * some memory below 4 GB (i.e. in 32 bit area), see the implementation of * kernel/dma/swiotlb.c. The hpzx1 architecture has an IO TLB but cannot use that * in kdump case. See the comment in sba_init() in sba_iommu.c. * * So, the only machvec that really supports loading the kdump kernel * over 4 GB is "uv". */ static int __init check_crashkernel_memory(unsigned long pbase, size_t size) { if (is_uv_system()) return 1; else return pbase < (1UL << 32); } static void __init setup_crashkernel(unsigned long total, int *n) { unsigned long long base = 0, size = 0; int ret; ret = parse_crashkernel(boot_command_line, total, &size, &base); if (ret == 0 && size > 0) { if (!base) { sort_regions(rsvd_region, *n); *n = merge_regions(rsvd_region, *n); base = kdump_find_rsvd_region(size, rsvd_region, *n); } if (!check_crashkernel_memory(base, size)) { pr_warn("crashkernel: There would be kdump memory " "at %ld GB but this is unusable because it " "must\nbe below 4 GB. Change the memory " "configuration of the machine.\n", (unsigned long)(base >> 30)); return; } if (base != ~0UL) { printk(KERN_INFO "Reserving %ldMB of memory at %ldMB " "for crashkernel (System RAM: %ldMB)\n", (unsigned long)(size >> 20), (unsigned long)(base >> 20), (unsigned long)(total >> 20)); rsvd_region[*n].start = (unsigned long)__va(base); rsvd_region[*n].end = (unsigned long)__va(base + size); (*n)++; crashk_res.start = base; crashk_res.end = base + size - 1; } } efi_memmap_res.start = ia64_boot_param->efi_memmap; efi_memmap_res.end = efi_memmap_res.start + ia64_boot_param->efi_memmap_size; boot_param_res.start = __pa(ia64_boot_param); boot_param_res.end = boot_param_res.start + sizeof(*ia64_boot_param); } #else static inline void __init setup_crashkernel(unsigned long total, int *n) {} #endif #ifdef CONFIG_CRASH_DUMP static int __init reserve_elfcorehdr(u64 *start, u64 *end) { u64 length; /* We get the address using the kernel command line, * but the size is extracted from the EFI tables. * Both address and size are required for reservation * to work properly. */ if (!is_vmcore_usable()) return -EINVAL; if ((length = vmcore_find_descriptor_size(elfcorehdr_addr)) == 0) { vmcore_unusable(); return -EINVAL; } *start = (unsigned long)__va(elfcorehdr_addr); *end = *start + length; return 0; } #endif /* CONFIG_CRASH_DUMP */ /** * reserve_memory - setup reserved memory areas * * Setup the reserved memory areas set aside for the boot parameters, * initrd, etc. There are currently %IA64_MAX_RSVD_REGIONS defined, * see arch/ia64/include/asm/meminit.h if you need to define more. */ void __init reserve_memory (void) { int n = 0; unsigned long total_memory; /* * none of the entries in this table overlap */ rsvd_region[n].start = (unsigned long) ia64_boot_param; rsvd_region[n].end = rsvd_region[n].start + sizeof(*ia64_boot_param); n++; rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->efi_memmap); rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->efi_memmap_size; n++; rsvd_region[n].start = (unsigned long) __va(ia64_boot_param->command_line); rsvd_region[n].end = (rsvd_region[n].start + strlen(__va(ia64_boot_param->command_line)) + 1); n++; rsvd_region[n].start = (unsigned long) ia64_imva((void *)KERNEL_START); rsvd_region[n].end = (unsigned long) ia64_imva(_end); n++; #ifdef CONFIG_BLK_DEV_INITRD if (ia64_boot_param->initrd_start) { rsvd_region[n].start = (unsigned long)__va(ia64_boot_param->initrd_start); rsvd_region[n].end = rsvd_region[n].start + ia64_boot_param->initrd_size; n++; } #endif #ifdef CONFIG_CRASH_DUMP if (reserve_elfcorehdr(&rsvd_region[n].start, &rsvd_region[n].end) == 0) n++; #endif total_memory = efi_memmap_init(&rsvd_region[n].start, &rsvd_region[n].end); n++; setup_crashkernel(total_memory, &n); /* end of memory marker */ rsvd_region[n].start = ~0UL; rsvd_region[n].end = ~0UL; n++; num_rsvd_regions = n; BUG_ON(IA64_MAX_RSVD_REGIONS + 1 < n); sort_regions(rsvd_region, num_rsvd_regions); num_rsvd_regions = merge_regions(rsvd_region, num_rsvd_regions); /* reserve all regions except the end of memory marker with memblock */ for (n = 0; n < num_rsvd_regions - 1; n++) { struct rsvd_region *region = &rsvd_region[n]; phys_addr_t addr = __pa(region->start); phys_addr_t size = region->end - region->start; memblock_reserve(addr, size); } } /** * find_initrd - get initrd parameters from the boot parameter structure * * Grab the initrd start and end from the boot parameter struct given us by * the boot loader. */ void __init find_initrd (void) { #ifdef CONFIG_BLK_DEV_INITRD if (ia64_boot_param->initrd_start) { initrd_start = (unsigned long)__va(ia64_boot_param->initrd_start); initrd_end = initrd_start+ia64_boot_param->initrd_size; printk(KERN_INFO "Initial ramdisk at: 0x%lx (%llu bytes)\n", initrd_start, ia64_boot_param->initrd_size); } #endif } static void __init io_port_init (void) { unsigned long phys_iobase; /* * Set `iobase' based on the EFI memory map or, failing that, the * value firmware left in ar.k0. * * Note that in ia32 mode, IN/OUT instructions use ar.k0 to compute * the port's virtual address, so ia32_load_state() loads it with a * user virtual address. But in ia64 mode, glibc uses the * *physical* address in ar.k0 to mmap the appropriate area from * /dev/mem, and the inX()/outX() interfaces use MMIO. In both * cases, user-mode can only use the legacy 0-64K I/O port space. * * ar.k0 is not involved in kernel I/O port accesses, which can use * any of the I/O port spaces and are done via MMIO using the * virtual mmio_base from the appropriate io_space[]. */ phys_iobase = efi_get_iobase(); if (!phys_iobase) { phys_iobase = ia64_get_kr(IA64_KR_IO_BASE); printk(KERN_INFO "No I/O port range found in EFI memory map, " "falling back to AR.KR0 (0x%lx)\n", phys_iobase); } ia64_iobase = (unsigned long) ioremap(phys_iobase, 0); ia64_set_kr(IA64_KR_IO_BASE, __pa(ia64_iobase)); /* setup legacy IO port space */ io_space[0].mmio_base = ia64_iobase; io_space[0].sparse = 1; num_io_spaces = 1; } /** * early_console_setup - setup debugging console * * Consoles started here require little enough setup that we can start using * them very early in the boot process, either right after the machine * vector initialization, or even before if the drivers can detect their hw. * * Returns non-zero if a console couldn't be setup. */ static inline int __init early_console_setup (char *cmdline) { #ifdef CONFIG_EFI_PCDP if (!efi_setup_pcdp_console(cmdline)) return 0; #endif return -1; } static void __init screen_info_setup(void) { unsigned int orig_x, orig_y, num_cols, num_rows, font_height; memset(&screen_info, 0, sizeof(screen_info)); if (!ia64_boot_param->console_info.num_rows || !ia64_boot_param->console_info.num_cols) { printk(KERN_WARNING "invalid screen-info, guessing 80x25\n"); orig_x = 0; orig_y = 0; num_cols = 80; num_rows = 25; font_height = 16; } else { orig_x = ia64_boot_param->console_info.orig_x; orig_y = ia64_boot_param->console_info.orig_y; num_cols = ia64_boot_param->console_info.num_cols; num_rows = ia64_boot_param->console_info.num_rows; font_height = 400 / num_rows; } screen_info.orig_x = orig_x; screen_info.orig_y = orig_y; screen_info.orig_video_cols = num_cols; screen_info.orig_video_lines = num_rows; screen_info.orig_video_points = font_height; screen_info.orig_video_mode = 3; /* XXX fake */ screen_info.orig_video_isVGA = 1; /* XXX fake */ screen_info.orig_video_ega_bx = 3; /* XXX fake */ } static inline void mark_bsp_online (void) { #ifdef CONFIG_SMP /* If we register an early console, allow CPU 0 to printk */ set_cpu_online(smp_processor_id(), true); #endif } static __initdata int nomca; static __init int setup_nomca(char *s) { nomca = 1; return 0; } early_param("nomca", setup_nomca); void __init setup_arch (char **cmdline_p) { unw_init(); ia64_patch_vtop((u64) __start___vtop_patchlist, (u64) __end___vtop_patchlist); *cmdline_p = __va(ia64_boot_param->command_line); strscpy(boot_command_line, *cmdline_p, COMMAND_LINE_SIZE); efi_init(); io_port_init(); uv_probe_system_type(); parse_early_param(); if (early_console_setup(*cmdline_p) == 0) mark_bsp_online(); /* Initialize the ACPI boot-time table parser */ acpi_table_init(); early_acpi_boot_init(); #ifdef CONFIG_ACPI_NUMA acpi_numa_init(); acpi_numa_fixup(); #ifdef CONFIG_ACPI_HOTPLUG_CPU prefill_possible_map(); #endif per_cpu_scan_finalize((cpumask_empty(&early_cpu_possible_map) ? 32 : cpumask_weight(&early_cpu_possible_map)), additional_cpus > 0 ? additional_cpus : 0); #endif /* CONFIG_ACPI_NUMA */ #ifdef CONFIG_SMP smp_build_cpu_map(); #endif find_memory(); /* process SAL system table: */ ia64_sal_init(__va(sal_systab_phys)); #ifdef CONFIG_ITANIUM ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); #else { unsigned long num_phys_stacked; if (ia64_pal_rse_info(&num_phys_stacked, 0) == 0 && num_phys_stacked > 96) ia64_patch_rse((u64) __start___rse_patchlist, (u64) __end___rse_patchlist); } #endif #ifdef CONFIG_SMP cpu_physical_id(0) = hard_smp_processor_id(); #endif cpu_init(); /* initialize the bootstrap CPU */ mmu_context_init(); /* initialize context_id bitmap */ #ifdef CONFIG_VT if (!conswitchp) { # if defined(CONFIG_VGA_CONSOLE) /* * Non-legacy systems may route legacy VGA MMIO range to system * memory. vga_con probes the MMIO hole, so memory looks like * a VGA device to it. The EFI memory map can tell us if it's * memory so we can avoid this problem. */ if (efi_mem_type(0xA0000) != EFI_CONVENTIONAL_MEMORY) conswitchp = &vga_con; # endif } #endif /* enable IA-64 Machine Check Abort Handling unless disabled */ if (!nomca) ia64_mca_init(); /* * Default to /dev/sda2. This assumes that the EFI partition * is physical disk 1 partition 1 and the Linux root disk is * physical disk 1 partition 2. */ ROOT_DEV = MKDEV(SCSI_DISK0_MAJOR, 2); if (is_uv_system()) uv_setup(cmdline_p); #ifdef CONFIG_SMP else init_smp_config(); #endif screen_info_setup(); paging_init(); clear_sched_clock_stable(); } /* * Display cpu info for all CPUs. */ static int show_cpuinfo (struct seq_file *m, void *v) { #ifdef CONFIG_SMP # define lpj c->loops_per_jiffy # define cpunum c->cpu #else # define lpj loops_per_jiffy # define cpunum 0 #endif static struct { unsigned long mask; const char *feature_name; } feature_bits[] = { { 1UL << 0, "branchlong" }, { 1UL << 1, "spontaneous deferral"}, { 1UL << 2, "16-byte atomic ops" } }; char features[128], *cp, *sep; struct cpuinfo_ia64 *c = v; unsigned long mask; unsigned long proc_freq; int i, size; mask = c->features; /* build the feature string: */ memcpy(features, "standard", 9); cp = features; size = sizeof(features); sep = ""; for (i = 0; i < ARRAY_SIZE(feature_bits) && size > 1; ++i) { if (mask & feature_bits[i].mask) { cp += snprintf(cp, size, "%s%s", sep, feature_bits[i].feature_name), sep = ", "; mask &= ~feature_bits[i].mask; size = sizeof(features) - (cp - features); } } if (mask && size > 1) { /* print unknown features as a hex value */ snprintf(cp, size, "%s0x%lx", sep, mask); } proc_freq = cpufreq_quick_get(cpunum); if (!proc_freq) proc_freq = c->proc_freq / 1000; seq_printf(m, "processor : %d\n" "vendor : %s\n" "arch : IA-64\n" "family : %u\n" "model : %u\n" "model name : %s\n" "revision : %u\n" "archrev : %u\n" "features : %s\n" "cpu number : %lu\n" "cpu regs : %u\n" "cpu MHz : %lu.%03lu\n" "itc MHz : %lu.%06lu\n" "BogoMIPS : %lu.%02lu\n", cpunum, c->vendor, c->family, c->model, c->model_name, c->revision, c->archrev, features, c->ppn, c->number, proc_freq / 1000, proc_freq % 1000, c->itc_freq / 1000000, c->itc_freq % 1000000, lpj*HZ/500000, (lpj*HZ/5000) % 100); #ifdef CONFIG_SMP seq_printf(m, "siblings : %u\n", cpumask_weight(&cpu_core_map[cpunum])); if (c->socket_id != -1) seq_printf(m, "physical id: %u\n", c->socket_id); if (c->threads_per_core > 1 || c->cores_per_socket > 1) seq_printf(m, "core id : %u\n" "thread id : %u\n", c->core_id, c->thread_id); #endif seq_printf(m,"\n"); return 0; } static void * c_start (struct seq_file *m, loff_t *pos) { #ifdef CONFIG_SMP while (*pos < nr_cpu_ids && !cpu_online(*pos)) ++*pos; #endif return *pos < nr_cpu_ids ? cpu_data(*pos) : NULL; } static void * c_next (struct seq_file *m, void *v, loff_t *pos) { ++*pos; return c_start(m, pos); } static void c_stop (struct seq_file *m, void *v) { } const struct seq_operations cpuinfo_op = { .start = c_start, .next = c_next, .stop = c_stop, .show = show_cpuinfo }; #define MAX_BRANDS 8 static char brandname[MAX_BRANDS][128]; static char * get_model_name(__u8 family, __u8 model) { static int overflow; char brand[128]; int i; memcpy(brand, "Unknown", 8); if (ia64_pal_get_brand_info(brand)) { if (family == 0x7) memcpy(brand, "Merced", 7); else if (family == 0x1f) switch (model) { case 0: memcpy(brand, "McKinley", 9); break; case 1: memcpy(brand, "Madison", 8); break; case 2: memcpy(brand, "Madison up to 9M cache", 23); break; } } for (i = 0; i < MAX_BRANDS; i++) if (strcmp(brandname[i], brand) == 0) return brandname[i]; for (i = 0; i < MAX_BRANDS; i++) if (brandname[i][0] == '\0') return strcpy(brandname[i], brand); if (overflow++ == 0) printk(KERN_ERR "%s: Table overflow. Some processor model information will be missing\n", __func__); return "Unknown"; } static void identify_cpu (struct cpuinfo_ia64 *c) { union { unsigned long bits[5]; struct { /* id 0 & 1: */ char vendor[16]; /* id 2 */ u64 ppn; /* processor serial number */ /* id 3: */ unsigned number : 8; unsigned revision : 8; unsigned model : 8; unsigned family : 8; unsigned archrev : 8; unsigned reserved : 24; /* id 4: */ u64 features; } field; } cpuid; pal_vm_info_1_u_t vm1; pal_vm_info_2_u_t vm2; pal_status_t status; unsigned long impl_va_msb = 50, phys_addr_size = 44; /* Itanium defaults */ int i; for (i = 0; i < 5; ++i) cpuid.bits[i] = ia64_get_cpuid(i); memcpy(c->vendor, cpuid.field.vendor, 16); #ifdef CONFIG_SMP c->cpu = smp_processor_id(); /* below default values will be overwritten by identify_siblings() * for Multi-Threading/Multi-Core capable CPUs */ c->threads_per_core = c->cores_per_socket = c->num_log = 1; c->socket_id = -1; identify_siblings(c); if (c->threads_per_core > smp_num_siblings) smp_num_siblings = c->threads_per_core; #endif c->ppn = cpuid.field.ppn; c->number = cpuid.field.number; c->revision = cpuid.field.revision; c->model = cpuid.field.model; c->family = cpuid.field.family; c->archrev = cpuid.field.archrev; c->features = cpuid.field.features; c->model_name = get_model_name(c->family, c->model); status = ia64_pal_vm_summary(&vm1, &vm2); if (status == PAL_STATUS_SUCCESS) { impl_va_msb = vm2.pal_vm_info_2_s.impl_va_msb; phys_addr_size = vm1.pal_vm_info_1_s.phys_add_size; } c->unimpl_va_mask = ~((7L<<61) | ((1L << (impl_va_msb + 1)) - 1)); c->unimpl_pa_mask = ~((1L<<63) | ((1L << phys_addr_size) - 1)); } /* * Do the following calculations: * * 1. the max. cache line size. * 2. the minimum of the i-cache stride sizes for "flush_icache_range()". * 3. the minimum of the cache stride sizes for "clflush_cache_range()". */ static void get_cache_info(void) { unsigned long line_size, max = 1; unsigned long l, levels, unique_caches; pal_cache_config_info_t cci; long status; status = ia64_pal_cache_summary(&levels, &unique_caches); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n", __func__, status); max = SMP_CACHE_BYTES; /* Safest setup for "flush_icache_range()" */ ia64_i_cache_stride_shift = I_CACHE_STRIDE_SHIFT; /* Safest setup for "clflush_cache_range()" */ ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; goto out; } for (l = 0; l < levels; ++l) { /* cache_type (data_or_unified)=2 */ status = ia64_pal_cache_config_info(l, 2, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info" "(l=%lu, 2) failed (status=%ld)\n", __func__, l, status); max = SMP_CACHE_BYTES; /* The safest setup for "flush_icache_range()" */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; /* The safest setup for "clflush_cache_range()" */ ia64_cache_stride_shift = CACHE_STRIDE_SHIFT; cci.pcci_unified = 1; } else { if (cci.pcci_stride < ia64_cache_stride_shift) ia64_cache_stride_shift = cci.pcci_stride; line_size = 1 << cci.pcci_line_size; if (line_size > max) max = line_size; } if (!cci.pcci_unified) { /* cache_type (instruction)=1*/ status = ia64_pal_cache_config_info(l, 1, &cci); if (status != 0) { printk(KERN_ERR "%s: ia64_pal_cache_config_info" "(l=%lu, 1) failed (status=%ld)\n", __func__, l, status); /* The safest setup for flush_icache_range() */ cci.pcci_stride = I_CACHE_STRIDE_SHIFT; } } if (cci.pcci_stride < ia64_i_cache_stride_shift) ia64_i_cache_stride_shift = cci.pcci_stride; } out: if (max > ia64_max_cacheline_size) ia64_max_cacheline_size = max; } /* * cpu_init() initializes state that is per-CPU. This function acts * as a 'CPU state barrier', nothing should get across. */ void cpu_init (void) { extern void ia64_mmu_init(void *); static unsigned long max_num_phys_stacked = IA64_NUM_PHYS_STACK_REG; unsigned long num_phys_stacked; pal_vm_info_2_u_t vmi; unsigned int max_ctx; struct cpuinfo_ia64 *cpu_info; void *cpu_data; cpu_data = per_cpu_init(); #ifdef CONFIG_SMP /* * insert boot cpu into sibling and core mapes * (must be done after per_cpu area is setup) */ if (smp_processor_id() == 0) { cpumask_set_cpu(0, &per_cpu(cpu_sibling_map, 0)); cpumask_set_cpu(0, &cpu_core_map[0]); } else { /* * Set ar.k3 so that assembly code in MCA handler can compute * physical addresses of per cpu variables with a simple: * phys = ar.k3 + &per_cpu_var * and the alt-dtlb-miss handler can set per-cpu mapping into * the TLB when needed. head.S already did this for cpu0. */ ia64_set_kr(IA64_KR_PER_CPU_DATA, ia64_tpa(cpu_data) - (long) __per_cpu_start); } #endif get_cache_info(); /* * We can't pass "local_cpu_data" to identify_cpu() because we haven't called * ia64_mmu_init() yet. And we can't call ia64_mmu_init() first because it * depends on the data returned by identify_cpu(). We break the dependency by * accessing cpu_data() through the canonical per-CPU address. */ cpu_info = cpu_data + ((char *) &__ia64_per_cpu_var(ia64_cpu_info) - __per_cpu_start); identify_cpu(cpu_info); #ifdef CONFIG_MCKINLEY { # define FEATURE_SET 16 struct ia64_pal_retval iprv; if (cpu_info->family == 0x1f) { PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, FEATURE_SET, 0); if ((iprv.status == 0) && (iprv.v0 & 0x80) && (iprv.v2 & 0x80)) PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, (iprv.v1 | 0x80), FEATURE_SET, 0); } } #endif /* Clear the stack memory reserved for pt_regs: */ memset(task_pt_regs(current), 0, sizeof(struct pt_regs)); ia64_set_kr(IA64_KR_FPU_OWNER, 0); /* * Initialize the page-table base register to a global * directory with all zeroes. This ensure that we can handle * TLB-misses to user address-space even before we created the * first user address-space. This may happen, e.g., due to * aggressive use of lfetch.fault. */ ia64_set_kr(IA64_KR_PT_BASE, __pa(ia64_imva(empty_zero_page))); /* * Initialize default control register to defer speculative faults except * for those arising from TLB misses, which are not deferred. The * kernel MUST NOT depend on a particular setting of these bits (in other words, * the kernel must have recovery code for all speculative accesses). Turn on * dcr.lc as per recommendation by the architecture team. Most IA-32 apps * shouldn't be affected by this (moral: keep your ia32 locks aligned and you'll * be fine). */ ia64_setreg(_IA64_REG_CR_DCR, ( IA64_DCR_DP | IA64_DCR_DK | IA64_DCR_DX | IA64_DCR_DR | IA64_DCR_DA | IA64_DCR_DD | IA64_DCR_LC)); mmgrab(&init_mm); current->active_mm = &init_mm; BUG_ON(current->mm); ia64_mmu_init(ia64_imva(cpu_data)); ia64_mca_cpu_init(ia64_imva(cpu_data)); /* Clear ITC to eliminate sched_clock() overflows in human time. */ ia64_set_itc(0); /* disable all local interrupt sources: */ ia64_set_itv(1 << 16); ia64_set_lrr0(1 << 16); ia64_set_lrr1(1 << 16); ia64_setreg(_IA64_REG_CR_PMV, 1 << 16); ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16); /* clear TPR & XTP to enable all interrupt classes: */ ia64_setreg(_IA64_REG_CR_TPR, 0); /* Clear any pending interrupts left by SAL/EFI */ while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR) ia64_eoi(); #ifdef CONFIG_SMP normal_xtp(); #endif /* set ia64_ctx.max_rid to the maximum RID that is supported by all CPUs: */ if (ia64_pal_vm_summary(NULL, &vmi) == 0) { max_ctx = (1U << (vmi.pal_vm_info_2_s.rid_size - 3)) - 1; setup_ptcg_sem(vmi.pal_vm_info_2_s.max_purges, NPTCG_FROM_PAL); } else { printk(KERN_WARNING "cpu_init: PAL VM summary failed, assuming 18 RID bits\n"); max_ctx = (1U << 15) - 1; /* use architected minimum */ } while (max_ctx < ia64_ctx.max_ctx) { unsigned int old = ia64_ctx.max_ctx; if (cmpxchg(&ia64_ctx.max_ctx, old, max_ctx) == old) break; } if (ia64_pal_rse_info(&num_phys_stacked, NULL) != 0) { printk(KERN_WARNING "cpu_init: PAL RSE info failed; assuming 96 physical " "stacked regs\n"); num_phys_stacked = 96; } /* size of physical stacked register partition plus 8 bytes: */ if (num_phys_stacked > max_num_phys_stacked) { ia64_patch_phys_stack_reg(num_phys_stacked*8 + 8); max_num_phys_stacked = num_phys_stacked; } } void __init arch_cpu_finalize_init(void) { ia64_patch_mckinley_e9((unsigned long) __start___mckinley_e9_bundles, (unsigned long) __end___mckinley_e9_bundles); } static int __init run_dmi_scan(void) { dmi_setup(); return 0; } core_initcall(run_dmi_scan);