// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008 STMicroelectronics * Copyright (C) 2010 Alessandro Rubini * Copyright (C) 2010 Linus Walleij for ST-Ericsson */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/jiffies.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/sched_clock.h> #include <asm/mach/time.h> /* * The MTU device hosts four different counters, with 4 set of * registers. These are register names. */ #define MTU_IMSC 0x00 /* Interrupt mask set/clear */ #define MTU_RIS 0x04 /* Raw interrupt status */ #define MTU_MIS 0x08 /* Masked interrupt status */ #define MTU_ICR 0x0C /* Interrupt clear register */ /* per-timer registers take 0..3 as argument */ #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */ #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */ #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */ #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */ /* bits for the control register */ #define MTU_CRn_ENA 0x80 #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */ #define MTU_CRn_PRESCALE_MASK 0x0c #define MTU_CRn_PRESCALE_1 0x00 #define MTU_CRn_PRESCALE_16 0x04 #define MTU_CRn_PRESCALE_256 0x08 #define MTU_CRn_32BITS 0x02 #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/ /* Other registers are usual amba/primecell registers, currently not used */ #define MTU_ITCR 0xff0 #define MTU_ITOP 0xff4 #define MTU_PERIPH_ID0 0xfe0 #define MTU_PERIPH_ID1 0xfe4 #define MTU_PERIPH_ID2 0xfe8 #define MTU_PERIPH_ID3 0xfeC #define MTU_PCELL0 0xff0 #define MTU_PCELL1 0xff4 #define MTU_PCELL2 0xff8 #define MTU_PCELL3 0xffC static void __iomem *mtu_base; static bool clkevt_periodic; static u32 clk_prescale; static u32 nmdk_cycle; /* write-once */ static struct delay_timer mtu_delay_timer; /* * Override the global weak sched_clock symbol with this * local implementation which uses the clocksource to get some * better resolution when scheduling the kernel. */ static u64 notrace nomadik_read_sched_clock(void) { if (unlikely(!mtu_base)) return 0; return -readl(mtu_base + MTU_VAL(0)); } static unsigned long nmdk_timer_read_current_timer(void) { return ~readl_relaxed(mtu_base + MTU_VAL(0)); } /* Clockevent device: use one-shot mode */ static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev) { writel(1 << 1, mtu_base + MTU_IMSC); writel(evt, mtu_base + MTU_LR(1)); /* Load highest value, enable device, enable interrupts */ writel(MTU_CRn_ONESHOT | clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(1)); return 0; } static void nmdk_clkevt_reset(void) { if (clkevt_periodic) { /* Timer: configure load and background-load, and fire it up */ writel(nmdk_cycle, mtu_base + MTU_LR(1)); writel(nmdk_cycle, mtu_base + MTU_BGLR(1)); writel(MTU_CRn_PERIODIC | clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(1)); writel(1 << 1, mtu_base + MTU_IMSC); } else { /* Generate an interrupt to start the clockevent again */ (void) nmdk_clkevt_next(nmdk_cycle, NULL); } } static int nmdk_clkevt_shutdown(struct clock_event_device *evt) { writel(0, mtu_base + MTU_IMSC); /* disable timer */ writel(0, mtu_base + MTU_CR(1)); /* load some high default value */ writel(0xffffffff, mtu_base + MTU_LR(1)); return 0; } static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt) { clkevt_periodic = false; return 0; } static int nmdk_clkevt_set_periodic(struct clock_event_device *evt) { clkevt_periodic = true; nmdk_clkevt_reset(); return 0; } static void nmdk_clksrc_reset(void) { /* Disable */ writel(0, mtu_base + MTU_CR(0)); /* ClockSource: configure load and background-load, and fire it up */ writel(nmdk_cycle, mtu_base + MTU_LR(0)); writel(nmdk_cycle, mtu_base + MTU_BGLR(0)); writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(0)); } static void nmdk_clkevt_resume(struct clock_event_device *cedev) { nmdk_clkevt_reset(); nmdk_clksrc_reset(); } static struct clock_event_device nmdk_clkevt = { .name = "mtu_1", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_DYNIRQ, .rating = 200, .set_state_shutdown = nmdk_clkevt_shutdown, .set_state_periodic = nmdk_clkevt_set_periodic, .set_state_oneshot = nmdk_clkevt_set_oneshot, .set_next_event = nmdk_clkevt_next, .resume = nmdk_clkevt_resume, }; /* * IRQ Handler for timer 1 of the MTU block. */ static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evdev = dev_id; writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */ evdev->event_handler(evdev); return IRQ_HANDLED; } static int __init nmdk_timer_init(void __iomem *base, int irq, struct clk *pclk, struct clk *clk) { unsigned long rate; int ret; int min_ticks; mtu_base = base; BUG_ON(clk_prepare_enable(pclk)); BUG_ON(clk_prepare_enable(clk)); /* * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz * for ux500, and in one specific Ux500 case 32768 Hz. * * Use a divide-by-16 counter if the tick rate is more than 32MHz. * At 32 MHz, the timer (with 32 bit counter) can be programmed * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer * with 16 gives too low timer resolution. */ rate = clk_get_rate(clk); if (rate > 32000000) { rate /= 16; clk_prescale = MTU_CRn_PRESCALE_16; } else { clk_prescale = MTU_CRn_PRESCALE_1; } /* Cycles for periodic mode */ nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ); /* Timer 0 is the free running clocksource */ nmdk_clksrc_reset(); ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0", rate, 200, 32, clocksource_mmio_readl_down); if (ret) { pr_err("timer: failed to initialize clock source %s\n", "mtu_0"); return ret; } sched_clock_register(nomadik_read_sched_clock, 32, rate); /* Timer 1 is used for events, register irq and clockevents */ if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER, "Nomadik Timer Tick", &nmdk_clkevt)) pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick"); nmdk_clkevt.cpumask = cpumask_of(0); nmdk_clkevt.irq = irq; if (rate < 100000) min_ticks = 5; else min_ticks = 2; clockevents_config_and_register(&nmdk_clkevt, rate, min_ticks, 0xffffffffU); mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer; mtu_delay_timer.freq = rate; register_current_timer_delay(&mtu_delay_timer); return 0; } static int __init nmdk_timer_of_init(struct device_node *node) { struct clk *pclk; struct clk *clk; void __iomem *base; int irq; base = of_iomap(node, 0); if (!base) { pr_err("Can't remap registers\n"); return -ENXIO; } pclk = of_clk_get_by_name(node, "apb_pclk"); if (IS_ERR(pclk)) { pr_err("could not get apb_pclk\n"); return PTR_ERR(pclk); } clk = of_clk_get_by_name(node, "timclk"); if (IS_ERR(clk)) { pr_err("could not get timclk\n"); return PTR_ERR(clk); } irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { pr_err("Can't parse IRQ\n"); return -EINVAL; } return nmdk_timer_init(base, irq, pclk, clk); } TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu", nmdk_timer_of_init);