// SPDX-License-Identifier: GPL-2.0-only /* * palinfo.c * * Prints processor specific information reported by PAL. * This code is based on specification of PAL as of the * Intel IA-64 Architecture Software Developer's Manual v1.0. * * * Copyright (C) 2000-2001, 2003 Hewlett-Packard Co * Stephane Eranian <eranian@hpl.hp.com> * Copyright (C) 2004 Intel Corporation * Ashok Raj <ashok.raj@intel.com> * * 05/26/2000 S.Eranian initial release * 08/21/2000 S.Eranian updated to July 2000 PAL specs * 02/05/2001 S.Eranian fixed module support * 10/23/2001 S.Eranian updated pal_perf_mon_info bug fixes * 03/24/2004 Ashok Raj updated to work with CPU Hotplug * 10/26/2006 Russ Anderson updated processor features to rev 2.2 spec */ #include <linux/types.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/efi.h> #include <linux/notifier.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <asm/pal.h> #include <asm/sal.h> #include <asm/page.h> #include <asm/processor.h> #include <linux/smp.h> MODULE_AUTHOR("Stephane Eranian <eranian@hpl.hp.com>"); MODULE_DESCRIPTION("/proc interface to IA-64 PAL"); MODULE_LICENSE("GPL"); #define PALINFO_VERSION "0.5" typedef int (*palinfo_func_t)(struct seq_file *); typedef struct { const char *name; /* name of the proc entry */ palinfo_func_t proc_read; /* function to call for reading */ struct proc_dir_entry *entry; /* registered entry (removal) */ } palinfo_entry_t; /* * A bunch of string array to get pretty printing */ static const char *cache_types[] = { "", /* not used */ "Instruction", "Data", "Data/Instruction" /* unified */ }; static const char *cache_mattrib[]={ "WriteThrough", "WriteBack", "", /* reserved */ "" /* reserved */ }; static const char *cache_st_hints[]={ "Temporal, level 1", "Reserved", "Reserved", "Non-temporal, all levels", "Reserved", "Reserved", "Reserved", "Reserved" }; static const char *cache_ld_hints[]={ "Temporal, level 1", "Non-temporal, level 1", "Reserved", "Non-temporal, all levels", "Reserved", "Reserved", "Reserved", "Reserved" }; static const char *rse_hints[]={ "enforced lazy", "eager stores", "eager loads", "eager loads and stores" }; #define RSE_HINTS_COUNT ARRAY_SIZE(rse_hints) static const char *mem_attrib[]={ "WB", /* 000 */ "SW", /* 001 */ "010", /* 010 */ "011", /* 011 */ "UC", /* 100 */ "UCE", /* 101 */ "WC", /* 110 */ "NaTPage" /* 111 */ }; /* * Take a 64bit vector and produces a string such that * if bit n is set then 2^n in clear text is generated. The adjustment * to the right unit is also done. * * Input: * - a pointer to a buffer to hold the string * - a 64-bit vector * Output: * - a pointer to the end of the buffer * */ static void bitvector_process(struct seq_file *m, u64 vector) { int i,j; static const char *units[]={ "", "K", "M", "G", "T" }; for (i=0, j=0; i < 64; i++ , j=i/10) { if (vector & 0x1) seq_printf(m, "%d%s ", 1 << (i-j*10), units[j]); vector >>= 1; } } /* * Take a 64bit vector and produces a string such that * if bit n is set then register n is present. The function * takes into account consecutive registers and prints out ranges. * * Input: * - a pointer to a buffer to hold the string * - a 64-bit vector * Ouput: * - a pointer to the end of the buffer * */ static void bitregister_process(struct seq_file *m, u64 *reg_info, int max) { int i, begin, skip = 0; u64 value = reg_info[0]; value >>= i = begin = ffs(value) - 1; for(; i < max; i++ ) { if (i != 0 && (i%64) == 0) value = *++reg_info; if ((value & 0x1) == 0 && skip == 0) { if (begin <= i - 2) seq_printf(m, "%d-%d ", begin, i-1); else seq_printf(m, "%d ", i-1); skip = 1; begin = -1; } else if ((value & 0x1) && skip == 1) { skip = 0; begin = i; } value >>=1; } if (begin > -1) { if (begin < 127) seq_printf(m, "%d-127", begin); else seq_puts(m, "127"); } } static int power_info(struct seq_file *m) { s64 status; u64 halt_info_buffer[8]; pal_power_mgmt_info_u_t *halt_info =(pal_power_mgmt_info_u_t *)halt_info_buffer; int i; status = ia64_pal_halt_info(halt_info); if (status != 0) return 0; for (i=0; i < 8 ; i++ ) { if (halt_info[i].pal_power_mgmt_info_s.im == 1) { seq_printf(m, "Power level %d:\n" "\tentry_latency : %d cycles\n" "\texit_latency : %d cycles\n" "\tpower consumption : %d mW\n" "\tCache+TLB coherency : %s\n", i, halt_info[i].pal_power_mgmt_info_s.entry_latency, halt_info[i].pal_power_mgmt_info_s.exit_latency, halt_info[i].pal_power_mgmt_info_s.power_consumption, halt_info[i].pal_power_mgmt_info_s.co ? "Yes" : "No"); } else { seq_printf(m,"Power level %d: not implemented\n", i); } } return 0; } static int cache_info(struct seq_file *m) { unsigned long i, levels, unique_caches; pal_cache_config_info_t cci; int j, k; long status; if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) { printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status); return 0; } seq_printf(m, "Cache levels : %ld\nUnique caches : %ld\n\n", levels, unique_caches); for (i=0; i < levels; i++) { for (j=2; j >0 ; j--) { /* even without unification some level may not be present */ if ((status=ia64_pal_cache_config_info(i,j, &cci)) != 0) continue; seq_printf(m, "%s Cache level %lu:\n" "\tSize : %u bytes\n" "\tAttributes : ", cache_types[j+cci.pcci_unified], i+1, cci.pcci_cache_size); if (cci.pcci_unified) seq_puts(m, "Unified "); seq_printf(m, "%s\n", cache_mattrib[cci.pcci_cache_attr]); seq_printf(m, "\tAssociativity : %d\n" "\tLine size : %d bytes\n" "\tStride : %d bytes\n", cci.pcci_assoc, 1<<cci.pcci_line_size, 1<<cci.pcci_stride); if (j == 1) seq_puts(m, "\tStore latency : N/A\n"); else seq_printf(m, "\tStore latency : %d cycle(s)\n", cci.pcci_st_latency); seq_printf(m, "\tLoad latency : %d cycle(s)\n" "\tStore hints : ", cci.pcci_ld_latency); for(k=0; k < 8; k++ ) { if ( cci.pcci_st_hints & 0x1) seq_printf(m, "[%s]", cache_st_hints[k]); cci.pcci_st_hints >>=1; } seq_puts(m, "\n\tLoad hints : "); for(k=0; k < 8; k++ ) { if (cci.pcci_ld_hints & 0x1) seq_printf(m, "[%s]", cache_ld_hints[k]); cci.pcci_ld_hints >>=1; } seq_printf(m, "\n\tAlias boundary : %d byte(s)\n" "\tTag LSB : %d\n" "\tTag MSB : %d\n", 1<<cci.pcci_alias_boundary, cci.pcci_tag_lsb, cci.pcci_tag_msb); /* when unified, data(j=2) is enough */ if (cci.pcci_unified) break; } } return 0; } static int vm_info(struct seq_file *m) { u64 tr_pages =0, vw_pages=0, tc_pages; u64 attrib; pal_vm_info_1_u_t vm_info_1; pal_vm_info_2_u_t vm_info_2; pal_tc_info_u_t tc_info; ia64_ptce_info_t ptce; const char *sep; int i, j; long status; if ((status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2)) !=0) { printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); } else { seq_printf(m, "Physical Address Space : %d bits\n" "Virtual Address Space : %d bits\n" "Protection Key Registers(PKR) : %d\n" "Implemented bits in PKR.key : %d\n" "Hash Tag ID : 0x%x\n" "Size of RR.rid : %d\n" "Max Purges : ", vm_info_1.pal_vm_info_1_s.phys_add_size, vm_info_2.pal_vm_info_2_s.impl_va_msb+1, vm_info_1.pal_vm_info_1_s.max_pkr+1, vm_info_1.pal_vm_info_1_s.key_size, vm_info_1.pal_vm_info_1_s.hash_tag_id, vm_info_2.pal_vm_info_2_s.rid_size); if (vm_info_2.pal_vm_info_2_s.max_purges == PAL_MAX_PURGES) seq_puts(m, "unlimited\n"); else seq_printf(m, "%d\n", vm_info_2.pal_vm_info_2_s.max_purges ? vm_info_2.pal_vm_info_2_s.max_purges : 1); } if (ia64_pal_mem_attrib(&attrib) == 0) { seq_puts(m, "Supported memory attributes : "); sep = ""; for (i = 0; i < 8; i++) { if (attrib & (1 << i)) { seq_printf(m, "%s%s", sep, mem_attrib[i]); sep = ", "; } } seq_putc(m, '\n'); } if ((status = ia64_pal_vm_page_size(&tr_pages, &vw_pages)) !=0) { printk(KERN_ERR "ia64_pal_vm_page_size=%ld\n", status); } else { seq_printf(m, "\nTLB walker : %simplemented\n" "Number of DTR : %d\n" "Number of ITR : %d\n" "TLB insertable page sizes : ", vm_info_1.pal_vm_info_1_s.vw ? "" : "not ", vm_info_1.pal_vm_info_1_s.max_dtr_entry+1, vm_info_1.pal_vm_info_1_s.max_itr_entry+1); bitvector_process(m, tr_pages); seq_puts(m, "\nTLB purgeable page sizes : "); bitvector_process(m, vw_pages); } if ((status = ia64_get_ptce(&ptce)) != 0) { printk(KERN_ERR "ia64_get_ptce=%ld\n", status); } else { seq_printf(m, "\nPurge base address : 0x%016lx\n" "Purge outer loop count : %d\n" "Purge inner loop count : %d\n" "Purge outer loop stride : %d\n" "Purge inner loop stride : %d\n", ptce.base, ptce.count[0], ptce.count[1], ptce.stride[0], ptce.stride[1]); seq_printf(m, "TC Levels : %d\n" "Unique TC(s) : %d\n", vm_info_1.pal_vm_info_1_s.num_tc_levels, vm_info_1.pal_vm_info_1_s.max_unique_tcs); for(i=0; i < vm_info_1.pal_vm_info_1_s.num_tc_levels; i++) { for (j=2; j>0 ; j--) { tc_pages = 0; /* just in case */ /* even without unification, some levels may not be present */ if ((status=ia64_pal_vm_info(i,j, &tc_info, &tc_pages)) != 0) continue; seq_printf(m, "\n%s Translation Cache Level %d:\n" "\tHash sets : %d\n" "\tAssociativity : %d\n" "\tNumber of entries : %d\n" "\tFlags : ", cache_types[j+tc_info.tc_unified], i+1, tc_info.tc_num_sets, tc_info.tc_associativity, tc_info.tc_num_entries); if (tc_info.tc_pf) seq_puts(m, "PreferredPageSizeOptimized "); if (tc_info.tc_unified) seq_puts(m, "Unified "); if (tc_info.tc_reduce_tr) seq_puts(m, "TCReduction"); seq_puts(m, "\n\tSupported page sizes: "); bitvector_process(m, tc_pages); /* when unified date (j=2) is enough */ if (tc_info.tc_unified) break; } } } seq_putc(m, '\n'); return 0; } static int register_info(struct seq_file *m) { u64 reg_info[2]; u64 info; unsigned long phys_stacked; pal_hints_u_t hints; unsigned long iregs, dregs; static const char * const info_type[] = { "Implemented AR(s)", "AR(s) with read side-effects", "Implemented CR(s)", "CR(s) with read side-effects", }; for(info=0; info < 4; info++) { if (ia64_pal_register_info(info, ®_info[0], ®_info[1]) != 0) return 0; seq_printf(m, "%-32s : ", info_type[info]); bitregister_process(m, reg_info, 128); seq_putc(m, '\n'); } if (ia64_pal_rse_info(&phys_stacked, &hints) == 0) seq_printf(m, "RSE stacked physical registers : %ld\n" "RSE load/store hints : %ld (%s)\n", phys_stacked, hints.ph_data, hints.ph_data < RSE_HINTS_COUNT ? rse_hints[hints.ph_data]: "(??)"); if (ia64_pal_debug_info(&iregs, &dregs)) return 0; seq_printf(m, "Instruction debug register pairs : %ld\n" "Data debug register pairs : %ld\n", iregs, dregs); return 0; } static const char *const proc_features_0[]={ /* Feature set 0 */ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL, NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL, "Unimplemented instruction address fault", "INIT, PMI, and LINT pins", "Simple unimplemented instr addresses", "Variable P-state performance", "Virtual machine features implemented", "XIP,XPSR,XFS implemented", "XR1-XR3 implemented", "Disable dynamic predicate prediction", "Disable processor physical number", "Disable dynamic data cache prefetch", "Disable dynamic inst cache prefetch", "Disable dynamic branch prediction", NULL, NULL, NULL, NULL, "Disable P-states", "Enable MCA on Data Poisoning", "Enable vmsw instruction", "Enable extern environmental notification", "Disable BINIT on processor time-out", "Disable dynamic power management (DPM)", "Disable coherency", "Disable cache", "Enable CMCI promotion", "Enable MCA to BINIT promotion", "Enable MCA promotion", "Enable BERR promotion" }; static const char *const proc_features_16[]={ /* Feature set 16 */ "Disable ETM", "Enable ETM", "Enable MCA on half-way timer", "Enable snoop WC", NULL, "Enable Fast Deferral", "Disable MCA on memory aliasing", "Enable RSB", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "DP system processor", "Low Voltage", "HT supported", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL }; static const char *const *const proc_features[]={ proc_features_0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, proc_features_16, NULL, NULL, NULL, NULL, }; static void feature_set_info(struct seq_file *m, u64 avail, u64 status, u64 control, unsigned long set) { const char *const *vf, *const *v; int i; vf = v = proc_features[set]; for(i=0; i < 64; i++, avail >>=1, status >>=1, control >>=1) { if (!(control)) /* No remaining bits set */ break; if (!(avail & 0x1)) /* Print only bits that are available */ continue; if (vf) v = vf + i; if ( v && *v ) { seq_printf(m, "%-40s : %s %s\n", *v, avail & 0x1 ? (status & 0x1 ? "On " : "Off"): "", avail & 0x1 ? (control & 0x1 ? "Ctrl" : "NoCtrl"): ""); } else { seq_printf(m, "Feature set %2ld bit %2d\t\t\t" " : %s %s\n", set, i, avail & 0x1 ? (status & 0x1 ? "On " : "Off"): "", avail & 0x1 ? (control & 0x1 ? "Ctrl" : "NoCtrl"): ""); } } } static int processor_info(struct seq_file *m) { u64 avail=1, status=1, control=1, feature_set=0; s64 ret; do { ret = ia64_pal_proc_get_features(&avail, &status, &control, feature_set); if (ret < 0) return 0; if (ret == 1) { feature_set++; continue; } feature_set_info(m, avail, status, control, feature_set); feature_set++; } while(1); return 0; } static const char *const bus_features[]={ NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL, NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL, NULL,NULL, "Request Bus Parking", "Bus Lock Mask", "Enable Half Transfer", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "Enable Cache Line Repl. Shared", "Enable Cache Line Repl. Exclusive", "Disable Transaction Queuing", "Disable Response Error Checking", "Disable Bus Error Checking", "Disable Bus Requester Internal Error Signalling", "Disable Bus Requester Error Signalling", "Disable Bus Initialization Event Checking", "Disable Bus Initialization Event Signalling", "Disable Bus Address Error Checking", "Disable Bus Address Error Signalling", "Disable Bus Data Error Checking" }; static int bus_info(struct seq_file *m) { const char *const *v = bus_features; pal_bus_features_u_t av, st, ct; u64 avail, status, control; int i; s64 ret; if ((ret=ia64_pal_bus_get_features(&av, &st, &ct)) != 0) return 0; avail = av.pal_bus_features_val; status = st.pal_bus_features_val; control = ct.pal_bus_features_val; for(i=0; i < 64; i++, v++, avail >>=1, status >>=1, control >>=1) { if ( ! *v ) continue; seq_printf(m, "%-48s : %s%s %s\n", *v, avail & 0x1 ? "" : "NotImpl", avail & 0x1 ? (status & 0x1 ? "On" : "Off"): "", avail & 0x1 ? (control & 0x1 ? "Ctrl" : "NoCtrl"): ""); } return 0; } static int version_info(struct seq_file *m) { pal_version_u_t min_ver, cur_ver; if (ia64_pal_version(&min_ver, &cur_ver) != 0) return 0; seq_printf(m, "PAL_vendor : 0x%02x (min=0x%02x)\n" "PAL_A : %02x.%02x (min=%02x.%02x)\n" "PAL_B : %02x.%02x (min=%02x.%02x)\n", cur_ver.pal_version_s.pv_pal_vendor, min_ver.pal_version_s.pv_pal_vendor, cur_ver.pal_version_s.pv_pal_a_model, cur_ver.pal_version_s.pv_pal_a_rev, min_ver.pal_version_s.pv_pal_a_model, min_ver.pal_version_s.pv_pal_a_rev, cur_ver.pal_version_s.pv_pal_b_model, cur_ver.pal_version_s.pv_pal_b_rev, min_ver.pal_version_s.pv_pal_b_model, min_ver.pal_version_s.pv_pal_b_rev); return 0; } static int frequency_info(struct seq_file *m) { struct pal_freq_ratio proc, itc, bus; unsigned long base; if (ia64_pal_freq_base(&base) == -1) seq_puts(m, "Output clock : not implemented\n"); else seq_printf(m, "Output clock : %ld ticks/s\n", base); if (ia64_pal_freq_ratios(&proc, &bus, &itc) != 0) return 0; seq_printf(m, "Processor/Clock ratio : %d/%d\n" "Bus/Clock ratio : %d/%d\n" "ITC/Clock ratio : %d/%d\n", proc.num, proc.den, bus.num, bus.den, itc.num, itc.den); return 0; } static int tr_info(struct seq_file *m) { long status; pal_tr_valid_u_t tr_valid; u64 tr_buffer[4]; pal_vm_info_1_u_t vm_info_1; pal_vm_info_2_u_t vm_info_2; unsigned long i, j; unsigned long max[3], pgm; struct ifa_reg { unsigned long valid:1; unsigned long ig:11; unsigned long vpn:52; } *ifa_reg; struct itir_reg { unsigned long rv1:2; unsigned long ps:6; unsigned long key:24; unsigned long rv2:32; } *itir_reg; struct gr_reg { unsigned long p:1; unsigned long rv1:1; unsigned long ma:3; unsigned long a:1; unsigned long d:1; unsigned long pl:2; unsigned long ar:3; unsigned long ppn:38; unsigned long rv2:2; unsigned long ed:1; unsigned long ig:11; } *gr_reg; struct rid_reg { unsigned long ig1:1; unsigned long rv1:1; unsigned long ig2:6; unsigned long rid:24; unsigned long rv2:32; } *rid_reg; if ((status = ia64_pal_vm_summary(&vm_info_1, &vm_info_2)) !=0) { printk(KERN_ERR "ia64_pal_vm_summary=%ld\n", status); return 0; } max[0] = vm_info_1.pal_vm_info_1_s.max_itr_entry+1; max[1] = vm_info_1.pal_vm_info_1_s.max_dtr_entry+1; for (i=0; i < 2; i++ ) { for (j=0; j < max[i]; j++) { status = ia64_pal_tr_read(j, i, tr_buffer, &tr_valid); if (status != 0) { printk(KERN_ERR "palinfo: pal call failed on tr[%lu:%lu]=%ld\n", i, j, status); continue; } ifa_reg = (struct ifa_reg *)&tr_buffer[2]; if (ifa_reg->valid == 0) continue; gr_reg = (struct gr_reg *)tr_buffer; itir_reg = (struct itir_reg *)&tr_buffer[1]; rid_reg = (struct rid_reg *)&tr_buffer[3]; pgm = -1 << (itir_reg->ps - 12); seq_printf(m, "%cTR%lu: av=%d pv=%d dv=%d mv=%d\n" "\tppn : 0x%lx\n" "\tvpn : 0x%lx\n" "\tps : ", "ID"[i], j, tr_valid.pal_tr_valid_s.access_rights_valid, tr_valid.pal_tr_valid_s.priv_level_valid, tr_valid.pal_tr_valid_s.dirty_bit_valid, tr_valid.pal_tr_valid_s.mem_attr_valid, (gr_reg->ppn & pgm)<< 12, (ifa_reg->vpn & pgm)<< 12); bitvector_process(m, 1<< itir_reg->ps); seq_printf(m, "\n\tpl : %d\n" "\tar : %d\n" "\trid : %x\n" "\tp : %d\n" "\tma : %d\n" "\td : %d\n", gr_reg->pl, gr_reg->ar, rid_reg->rid, gr_reg->p, gr_reg->ma, gr_reg->d); } } return 0; } /* * List {name,function} pairs for every entry in /proc/palinfo/cpu* */ static const palinfo_entry_t palinfo_entries[]={ { "version_info", version_info, }, { "vm_info", vm_info, }, { "cache_info", cache_info, }, { "power_info", power_info, }, { "register_info", register_info, }, { "processor_info", processor_info, }, { "frequency_info", frequency_info, }, { "bus_info", bus_info }, { "tr_info", tr_info, } }; #define NR_PALINFO_ENTRIES (int) ARRAY_SIZE(palinfo_entries) static struct proc_dir_entry *palinfo_dir; /* * This data structure is used to pass which cpu,function is being requested * It must fit in a 64bit quantity to be passed to the proc callback routine * * In SMP mode, when we get a request for another CPU, we must call that * other CPU using IPI and wait for the result before returning. */ typedef union { u64 value; struct { unsigned req_cpu: 32; /* for which CPU this info is */ unsigned func_id: 32; /* which function is requested */ } pal_func_cpu; } pal_func_cpu_u_t; #define req_cpu pal_func_cpu.req_cpu #define func_id pal_func_cpu.func_id #ifdef CONFIG_SMP /* * used to hold information about final function to call */ typedef struct { palinfo_func_t func; /* pointer to function to call */ struct seq_file *m; /* buffer to store results */ int ret; /* return value from call */ } palinfo_smp_data_t; /* * this function does the actual final call and he called * from the smp code, i.e., this is the palinfo callback routine */ static void palinfo_smp_call(void *info) { palinfo_smp_data_t *data = (palinfo_smp_data_t *)info; data->ret = (*data->func)(data->m); } /* * function called to trigger the IPI, we need to access a remote CPU * Return: * 0 : error or nothing to output * otherwise how many bytes in the "page" buffer were written */ static int palinfo_handle_smp(struct seq_file *m, pal_func_cpu_u_t *f) { palinfo_smp_data_t ptr; int ret; ptr.func = palinfo_entries[f->func_id].proc_read; ptr.m = m; ptr.ret = 0; /* just in case */ /* will send IPI to other CPU and wait for completion of remote call */ if ((ret=smp_call_function_single(f->req_cpu, palinfo_smp_call, &ptr, 1))) { printk(KERN_ERR "palinfo: remote CPU call from %d to %d on function %d: " "error %d\n", smp_processor_id(), f->req_cpu, f->func_id, ret); return 0; } return ptr.ret; } #else /* ! CONFIG_SMP */ static int palinfo_handle_smp(struct seq_file *m, pal_func_cpu_u_t *f) { printk(KERN_ERR "palinfo: should not be called with non SMP kernel\n"); return 0; } #endif /* CONFIG_SMP */ /* * Entry point routine: all calls go through this function */ static int proc_palinfo_show(struct seq_file *m, void *v) { pal_func_cpu_u_t *f = (pal_func_cpu_u_t *)&m->private; /* * in SMP mode, we may need to call another CPU to get correct * information. PAL, by definition, is processor specific */ if (f->req_cpu == get_cpu()) (*palinfo_entries[f->func_id].proc_read)(m); else palinfo_handle_smp(m, f); put_cpu(); return 0; } static int palinfo_add_proc(unsigned int cpu) { pal_func_cpu_u_t f; struct proc_dir_entry *cpu_dir; int j; char cpustr[3+4+1]; /* cpu numbers are up to 4095 on itanic */ sprintf(cpustr, "cpu%d", cpu); cpu_dir = proc_mkdir(cpustr, palinfo_dir); if (!cpu_dir) return -EINVAL; f.req_cpu = cpu; for (j=0; j < NR_PALINFO_ENTRIES; j++) { f.func_id = j; proc_create_single_data(palinfo_entries[j].name, 0, cpu_dir, proc_palinfo_show, (void *)f.value); } return 0; } static int palinfo_del_proc(unsigned int hcpu) { char cpustr[3+4+1]; /* cpu numbers are up to 4095 on itanic */ sprintf(cpustr, "cpu%d", hcpu); remove_proc_subtree(cpustr, palinfo_dir); return 0; } static enum cpuhp_state hp_online; static int __init palinfo_init(void) { int i = 0; printk(KERN_INFO "PAL Information Facility v%s\n", PALINFO_VERSION); palinfo_dir = proc_mkdir("pal", NULL); if (!palinfo_dir) return -ENOMEM; i = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/palinfo:online", palinfo_add_proc, palinfo_del_proc); if (i < 0) { remove_proc_subtree("pal", NULL); return i; } hp_online = i; return 0; } static void __exit palinfo_exit(void) { cpuhp_remove_state(hp_online); remove_proc_subtree("pal", NULL); } module_init(palinfo_init); module_exit(palinfo_exit);