/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H #define _ASM_POWERPC_BOOK3S_64_HASH_64K_H #define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB #define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB #define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB #define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB /* * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS * if we increase SECTIONS_WIDTH we will not store node details in page->flags and * page_to_nid does a page->section->node lookup * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce * memory requirements with large number of sections. * 51 bits is the max physical real address on POWER9 */ #if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME) #define H_MAX_PHYSMEM_BITS 51 #else #define H_MAX_PHYSMEM_BITS 46 #endif /* * Each context is 512TB size. SLB miss for first context/default context * is handled in the hotpath. */ #define MAX_EA_BITS_PER_CONTEXT 49 #define REGION_SHIFT MAX_EA_BITS_PER_CONTEXT /* * We use one context for each MAP area. */ #define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT) /* * Define the address range of the kernel non-linear virtual area * 2PB */ #define H_KERN_VIRT_START ASM_CONST(0xc008000000000000) /* * 64k aligned address free up few of the lower bits of RPN for us * We steal that here. For more deatils look at pte_pfn/pfn_pte() */ #define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */ #define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */ #define H_PAGE_BUSY _RPAGE_RSV1 /* software: PTE & hash are busy */ #define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */ /* memory key bits. */ #define H_PTE_PKEY_BIT4 _RPAGE_PKEY_BIT4 #define H_PTE_PKEY_BIT3 _RPAGE_PKEY_BIT3 #define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT2 #define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT1 #define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT0 /* * We need to differentiate between explicit huge page and THP huge * page, since THP huge page also need to track real subpage details */ #define H_PAGE_THP_HUGE H_PAGE_4K_PFN /* PTE flags to conserve for HPTE identification */ #define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO) /* * We use a 2K PTE page fragment and another 2K for storing * real_pte_t hash index * 8 bytes per each pte entry and another 8 bytes for storing * slot details. */ #define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1) #define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT) #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1) #else #define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3) #endif #define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT) #ifndef __ASSEMBLY__ #include <asm/errno.h> /* * With 64K pages on hash table, we have a special PTE format that * uses a second "half" of the page table to encode sub-page information * in order to deal with 64K made of 4K HW pages. Thus we override the * generic accessors and iterators here */ #define __real_pte __real_pte static inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset) { real_pte_t rpte; unsigned long *hidxp; rpte.pte = pte; /* * Ensure that we do not read the hidx before we read the PTE. Because * the writer side is expected to finish writing the hidx first followed * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that. */ smp_rmb(); hidxp = (unsigned long *)(ptep + offset); rpte.hidx = *hidxp; return rpte; } /* * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when * allocated. We dont have to zero them gain; thus save on the initialization. */ #define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */ #define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */ #define HIDX_BITS(x, index) (x << (index << 2)) #define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL) #define INVALID_RPTE_HIDX 0x0UL static inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) { return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index)); } /* * Commit the hidx and return PTE bits that needs to be modified. The caller is * expected to modify the PTE bits accordingly and commit the PTE to memory. */ static inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte, unsigned int subpg_index, unsigned long hidx, int offset) { unsigned long *hidxp = (unsigned long *)(ptep + offset); rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index); *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index); /* * Anyone reading PTE must ensure hidx bits are read after reading the * PTE by using the read-side barrier smp_rmb(). __real_pte() can be * used for that. */ smp_wmb(); /* No PTE bits to be modified, return 0x0UL */ return 0x0UL; } #define __rpte_to_pte(r) ((r).pte) extern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index); /* * Trick: we set __end to va + 64k, which happens works for * a 16M page as well as we want only one iteration */ #define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \ do { \ unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \ unsigned __split = (psize == MMU_PAGE_4K || \ psize == MMU_PAGE_64K_AP); \ shift = mmu_psize_defs[psize].shift; \ for (index = 0; vpn < __end; index++, \ vpn += (1L << (shift - VPN_SHIFT))) { \ if (!__split || __rpte_sub_valid(rpte, index)) #define pte_iterate_hashed_end() } } while(0) #define pte_pagesize_index(mm, addr, pte) \ (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) extern int remap_pfn_range(struct vm_area_struct *, unsigned long addr, unsigned long pfn, unsigned long size, pgprot_t); static inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr, unsigned long pfn, pgprot_t prot) { if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) { WARN(1, "remap_4k_pfn called with wrong pfn value\n"); return -EINVAL; } return remap_pfn_range(vma, addr, pfn, PAGE_SIZE, __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN)); } #define H_PTE_TABLE_SIZE PTE_FRAG_SIZE #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE) #define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \ (sizeof(unsigned long) << PMD_INDEX_SIZE)) #else #define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) #endif #ifdef CONFIG_HUGETLB_PAGE #define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \ (sizeof(unsigned long) << PUD_INDEX_SIZE)) #else #define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE) #endif #define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) #ifdef CONFIG_TRANSPARENT_HUGEPAGE static inline char *get_hpte_slot_array(pmd_t *pmdp) { /* * The hpte hindex is stored in the pgtable whose address is in the * second half of the PMD * * Order this load with the test for pmd_trans_huge in the caller */ smp_rmb(); return *(char **)(pmdp + PTRS_PER_PMD); } /* * The linux hugepage PMD now include the pmd entries followed by the address * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. * * The top three bits are intentionally left as zero. This memory location * are also used as normal page PTE pointers. So if we have any pointers * left around while we collapse a hugepage, we need to make sure * _PAGE_PRESENT bit of that is zero when we look at them */ static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) { return hpte_slot_array[index] & 0x1; } static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, int index) { return hpte_slot_array[index] >> 1; } static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, unsigned int index, unsigned int hidx) { hpte_slot_array[index] = (hidx << 1) | 0x1; } /* * * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs * page. The hugetlbfs page table walking and mangling paths are totally * separated form the core VM paths and they're differentiated by * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. * * pmd_trans_huge() is defined as false at build time if * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build * time in such case. * * For ppc64 we need to differntiate from explicit hugepages from THP, because * for THP we also track the subpage details at the pmd level. We don't do * that for explicit huge pages. * */ static inline int hash__pmd_trans_huge(pmd_t pmd) { return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) == (_PAGE_PTE | H_PAGE_THP_HUGE)); } static inline pmd_t hash__pmd_mkhuge(pmd_t pmd) { return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE)); } extern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set); extern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); extern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable); extern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); extern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp); extern int hash__has_transparent_hugepage(void); #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline pmd_t hash__pmd_mkdevmap(pmd_t pmd) { return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)); } #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */