// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/mmc/host/au1xmmc.c - AU1XX0 MMC driver * * Copyright (c) 2005, Advanced Micro Devices, Inc. * * Developed with help from the 2.4.30 MMC AU1XXX controller including * the following copyright notices: * Copyright (c) 2003-2004 Embedded Edge, LLC. * Portions Copyright (C) 2002 Embedix, Inc * Copyright 2002 Hewlett-Packard Company * 2.6 version of this driver inspired by: * (drivers/mmc/wbsd.c) Copyright (C) 2004-2005 Pierre Ossman, * All Rights Reserved. * (drivers/mmc/pxa.c) Copyright (C) 2003 Russell King, * All Rights Reserved. * */ /* Why don't we use the SD controllers' carddetect feature? * * From the AU1100 MMC application guide: * If the Au1100-based design is intended to support both MultiMediaCards * and 1- or 4-data bit SecureDigital cards, then the solution is to * connect a weak (560KOhm) pull-up resistor to connector pin 1. * In doing so, a MMC card never enters SPI-mode communications, * but now the SecureDigital card-detect feature of CD/DAT3 is ineffective * (the low to high transition will not occur). */ #include <linux/clk.h> #include <linux/module.h> #include <linux/init.h> #include <linux/platform_device.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/dma-mapping.h> #include <linux/scatterlist.h> #include <linux/highmem.h> #include <linux/leds.h> #include <linux/mmc/host.h> #include <linux/slab.h> #include <asm/io.h> #include <asm/mach-au1x00/au1000.h> #include <asm/mach-au1x00/au1xxx_dbdma.h> #include <asm/mach-au1x00/au1100_mmc.h> #define DRIVER_NAME "au1xxx-mmc" /* Set this to enable special debugging macros */ /* #define DEBUG */ #ifdef DEBUG #define DBG(fmt, idx, args...) \ pr_debug("au1xmmc(%d): DEBUG: " fmt, idx, ##args) #else #define DBG(fmt, idx, args...) do {} while (0) #endif /* Hardware definitions */ #define AU1XMMC_DESCRIPTOR_COUNT 1 /* max DMA seg size: 64KB on Au1100, 4MB on Au1200 */ #define AU1100_MMC_DESCRIPTOR_SIZE 0x0000ffff #define AU1200_MMC_DESCRIPTOR_SIZE 0x003fffff #define AU1XMMC_OCR (MMC_VDD_27_28 | MMC_VDD_28_29 | MMC_VDD_29_30 | \ MMC_VDD_30_31 | MMC_VDD_31_32 | MMC_VDD_32_33 | \ MMC_VDD_33_34 | MMC_VDD_34_35 | MMC_VDD_35_36) /* This gives us a hard value for the stop command that we can write directly * to the command register. */ #define STOP_CMD \ (SD_CMD_RT_1B | SD_CMD_CT_7 | (0xC << SD_CMD_CI_SHIFT) | SD_CMD_GO) /* This is the set of interrupts that we configure by default. */ #define AU1XMMC_INTERRUPTS \ (SD_CONFIG_SC | SD_CONFIG_DT | SD_CONFIG_RAT | \ SD_CONFIG_CR | SD_CONFIG_I) /* The poll event (looking for insert/remove events runs twice a second. */ #define AU1XMMC_DETECT_TIMEOUT (HZ/2) struct au1xmmc_host { struct mmc_host *mmc; struct mmc_request *mrq; u32 flags; void __iomem *iobase; u32 clock; u32 bus_width; u32 power_mode; int status; struct { int len; int dir; } dma; struct { int index; int offset; int len; } pio; u32 tx_chan; u32 rx_chan; int irq; struct tasklet_struct finish_task; struct tasklet_struct data_task; struct au1xmmc_platform_data *platdata; struct platform_device *pdev; struct resource *ioarea; struct clk *clk; }; /* Status flags used by the host structure */ #define HOST_F_XMIT 0x0001 #define HOST_F_RECV 0x0002 #define HOST_F_DMA 0x0010 #define HOST_F_DBDMA 0x0020 #define HOST_F_ACTIVE 0x0100 #define HOST_F_STOP 0x1000 #define HOST_S_IDLE 0x0001 #define HOST_S_CMD 0x0002 #define HOST_S_DATA 0x0003 #define HOST_S_STOP 0x0004 /* Easy access macros */ #define HOST_STATUS(h) ((h)->iobase + SD_STATUS) #define HOST_CONFIG(h) ((h)->iobase + SD_CONFIG) #define HOST_ENABLE(h) ((h)->iobase + SD_ENABLE) #define HOST_TXPORT(h) ((h)->iobase + SD_TXPORT) #define HOST_RXPORT(h) ((h)->iobase + SD_RXPORT) #define HOST_CMDARG(h) ((h)->iobase + SD_CMDARG) #define HOST_BLKSIZE(h) ((h)->iobase + SD_BLKSIZE) #define HOST_CMD(h) ((h)->iobase + SD_CMD) #define HOST_CONFIG2(h) ((h)->iobase + SD_CONFIG2) #define HOST_TIMEOUT(h) ((h)->iobase + SD_TIMEOUT) #define HOST_DEBUG(h) ((h)->iobase + SD_DEBUG) #define DMA_CHANNEL(h) \ (((h)->flags & HOST_F_XMIT) ? (h)->tx_chan : (h)->rx_chan) static inline int has_dbdma(void) { switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1200: case ALCHEMY_CPU_AU1300: return 1; default: return 0; } } static inline void IRQ_ON(struct au1xmmc_host *host, u32 mask) { u32 val = __raw_readl(HOST_CONFIG(host)); val |= mask; __raw_writel(val, HOST_CONFIG(host)); wmb(); /* drain writebuffer */ } static inline void FLUSH_FIFO(struct au1xmmc_host *host) { u32 val = __raw_readl(HOST_CONFIG2(host)); __raw_writel(val | SD_CONFIG2_FF, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ mdelay(1); /* SEND_STOP will turn off clock control - this re-enables it */ val &= ~SD_CONFIG2_DF; __raw_writel(val, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ } static inline void IRQ_OFF(struct au1xmmc_host *host, u32 mask) { u32 val = __raw_readl(HOST_CONFIG(host)); val &= ~mask; __raw_writel(val, HOST_CONFIG(host)); wmb(); /* drain writebuffer */ } static inline void SEND_STOP(struct au1xmmc_host *host) { u32 config2; WARN_ON(host->status != HOST_S_DATA); host->status = HOST_S_STOP; config2 = __raw_readl(HOST_CONFIG2(host)); __raw_writel(config2 | SD_CONFIG2_DF, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ /* Send the stop command */ __raw_writel(STOP_CMD, HOST_CMD(host)); wmb(); /* drain writebuffer */ } static void au1xmmc_set_power(struct au1xmmc_host *host, int state) { if (host->platdata && host->platdata->set_power) host->platdata->set_power(host->mmc, state); } static int au1xmmc_card_inserted(struct mmc_host *mmc) { struct au1xmmc_host *host = mmc_priv(mmc); if (host->platdata && host->platdata->card_inserted) return !!host->platdata->card_inserted(host->mmc); return -ENOSYS; } static int au1xmmc_card_readonly(struct mmc_host *mmc) { struct au1xmmc_host *host = mmc_priv(mmc); if (host->platdata && host->platdata->card_readonly) return !!host->platdata->card_readonly(mmc); return -ENOSYS; } static void au1xmmc_finish_request(struct au1xmmc_host *host) { struct mmc_request *mrq = host->mrq; host->mrq = NULL; host->flags &= HOST_F_ACTIVE | HOST_F_DMA; host->dma.len = 0; host->dma.dir = 0; host->pio.index = 0; host->pio.offset = 0; host->pio.len = 0; host->status = HOST_S_IDLE; mmc_request_done(host->mmc, mrq); } static void au1xmmc_tasklet_finish(struct tasklet_struct *t) { struct au1xmmc_host *host = from_tasklet(host, t, finish_task); au1xmmc_finish_request(host); } static int au1xmmc_send_command(struct au1xmmc_host *host, struct mmc_command *cmd, struct mmc_data *data) { u32 mmccmd = (cmd->opcode << SD_CMD_CI_SHIFT); switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: break; case MMC_RSP_R1: mmccmd |= SD_CMD_RT_1; break; case MMC_RSP_R1B: mmccmd |= SD_CMD_RT_1B; break; case MMC_RSP_R2: mmccmd |= SD_CMD_RT_2; break; case MMC_RSP_R3: mmccmd |= SD_CMD_RT_3; break; default: pr_info("au1xmmc: unhandled response type %02x\n", mmc_resp_type(cmd)); return -EINVAL; } if (data) { if (data->flags & MMC_DATA_READ) { if (data->blocks > 1) mmccmd |= SD_CMD_CT_4; else mmccmd |= SD_CMD_CT_2; } else if (data->flags & MMC_DATA_WRITE) { if (data->blocks > 1) mmccmd |= SD_CMD_CT_3; else mmccmd |= SD_CMD_CT_1; } } __raw_writel(cmd->arg, HOST_CMDARG(host)); wmb(); /* drain writebuffer */ __raw_writel((mmccmd | SD_CMD_GO), HOST_CMD(host)); wmb(); /* drain writebuffer */ /* Wait for the command to go on the line */ while (__raw_readl(HOST_CMD(host)) & SD_CMD_GO) /* nop */; return 0; } static void au1xmmc_data_complete(struct au1xmmc_host *host, u32 status) { struct mmc_request *mrq = host->mrq; struct mmc_data *data; u32 crc; WARN_ON((host->status != HOST_S_DATA) && (host->status != HOST_S_STOP)); if (host->mrq == NULL) return; data = mrq->cmd->data; if (status == 0) status = __raw_readl(HOST_STATUS(host)); /* The transaction is really over when the SD_STATUS_DB bit is clear */ while ((host->flags & HOST_F_XMIT) && (status & SD_STATUS_DB)) status = __raw_readl(HOST_STATUS(host)); data->error = 0; dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); /* Process any errors */ crc = (status & (SD_STATUS_WC | SD_STATUS_RC)); if (host->flags & HOST_F_XMIT) crc |= ((status & 0x07) == 0x02) ? 0 : 1; if (crc) data->error = -EILSEQ; /* Clear the CRC bits */ __raw_writel(SD_STATUS_WC | SD_STATUS_RC, HOST_STATUS(host)); data->bytes_xfered = 0; if (!data->error) { if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) { u32 chan = DMA_CHANNEL(host); chan_tab_t *c = *((chan_tab_t **)chan); au1x_dma_chan_t *cp = c->chan_ptr; data->bytes_xfered = cp->ddma_bytecnt; } else data->bytes_xfered = (data->blocks * data->blksz) - host->pio.len; } au1xmmc_finish_request(host); } static void au1xmmc_tasklet_data(struct tasklet_struct *t) { struct au1xmmc_host *host = from_tasklet(host, t, data_task); u32 status = __raw_readl(HOST_STATUS(host)); au1xmmc_data_complete(host, status); } #define AU1XMMC_MAX_TRANSFER 8 static void au1xmmc_send_pio(struct au1xmmc_host *host) { struct mmc_data *data; int sg_len, max, count; unsigned char *sg_ptr, val; u32 status; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_XMIT)) return; /* This is the pointer to the data buffer */ sg = &data->sg[host->pio.index]; sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = data->sg[host->pio.index].length - host->pio.offset; /* Check if we need less than the size of the sg_buffer */ max = (sg_len > host->pio.len) ? host->pio.len : sg_len; if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for (count = 0; count < max; count++) { status = __raw_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_TH)) break; val = sg_ptr[count]; __raw_writel((unsigned long)val, HOST_TXPORT(host)); wmb(); /* drain writebuffer */ } kunmap_local(sg_ptr); host->pio.len -= count; host->pio.offset += count; if (count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { IRQ_OFF(host, SD_CONFIG_TH); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } } static void au1xmmc_receive_pio(struct au1xmmc_host *host) { struct mmc_data *data; int max, count, sg_len = 0; unsigned char *sg_ptr = NULL; u32 status, val; struct scatterlist *sg; data = host->mrq->data; if (!(host->flags & HOST_F_RECV)) return; max = host->pio.len; if (host->pio.index < host->dma.len) { sg = &data->sg[host->pio.index]; sg_ptr = kmap_local_page(sg_page(sg)) + sg->offset + host->pio.offset; /* This is the space left inside the buffer */ sg_len = sg_dma_len(&data->sg[host->pio.index]) - host->pio.offset; /* Check if we need less than the size of the sg_buffer */ if (sg_len < max) max = sg_len; } if (max > AU1XMMC_MAX_TRANSFER) max = AU1XMMC_MAX_TRANSFER; for (count = 0; count < max; count++) { status = __raw_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_NE)) break; if (status & SD_STATUS_RC) { DBG("RX CRC Error [%d + %d].\n", host->pdev->id, host->pio.len, count); break; } if (status & SD_STATUS_RO) { DBG("RX Overrun [%d + %d]\n", host->pdev->id, host->pio.len, count); break; } else if (status & SD_STATUS_RU) { DBG("RX Underrun [%d + %d]\n", host->pdev->id, host->pio.len, count); break; } val = __raw_readl(HOST_RXPORT(host)); if (sg_ptr) sg_ptr[count] = (unsigned char)(val & 0xFF); } if (sg_ptr) kunmap_local(sg_ptr); host->pio.len -= count; host->pio.offset += count; if (sg_len && count == sg_len) { host->pio.index++; host->pio.offset = 0; } if (host->pio.len == 0) { /* IRQ_OFF(host, SD_CONFIG_RA | SD_CONFIG_RF); */ IRQ_OFF(host, SD_CONFIG_NE); if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } } /* This is called when a command has been completed - grab the response * and check for errors. Then start the data transfer if it is indicated. */ static void au1xmmc_cmd_complete(struct au1xmmc_host *host, u32 status) { struct mmc_request *mrq = host->mrq; struct mmc_command *cmd; u32 r[4]; int i, trans; if (!host->mrq) return; cmd = mrq->cmd; cmd->error = 0; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { r[0] = __raw_readl(host->iobase + SD_RESP3); r[1] = __raw_readl(host->iobase + SD_RESP2); r[2] = __raw_readl(host->iobase + SD_RESP1); r[3] = __raw_readl(host->iobase + SD_RESP0); /* The CRC is omitted from the response, so really * we only got 120 bytes, but the engine expects * 128 bits, so we have to shift things up. */ for (i = 0; i < 4; i++) { cmd->resp[i] = (r[i] & 0x00FFFFFF) << 8; if (i != 3) cmd->resp[i] |= (r[i + 1] & 0xFF000000) >> 24; } } else { /* Techincally, we should be getting all 48 bits of * the response (SD_RESP1 + SD_RESP2), but because * our response omits the CRC, our data ends up * being shifted 8 bits to the right. In this case, * that means that the OSR data starts at bit 31, * so we can just read RESP0 and return that. */ cmd->resp[0] = __raw_readl(host->iobase + SD_RESP0); } } /* Figure out errors */ if (status & (SD_STATUS_SC | SD_STATUS_WC | SD_STATUS_RC)) cmd->error = -EILSEQ; trans = host->flags & (HOST_F_XMIT | HOST_F_RECV); if (!trans || cmd->error) { IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); tasklet_schedule(&host->finish_task); return; } host->status = HOST_S_DATA; if ((host->flags & (HOST_F_DMA | HOST_F_DBDMA))) { u32 channel = DMA_CHANNEL(host); /* Start the DBDMA as soon as the buffer gets something in it */ if (host->flags & HOST_F_RECV) { u32 mask = SD_STATUS_DB | SD_STATUS_NE; while((status & mask) != mask) status = __raw_readl(HOST_STATUS(host)); } au1xxx_dbdma_start(channel); } } static void au1xmmc_set_clock(struct au1xmmc_host *host, int rate) { unsigned int pbus = clk_get_rate(host->clk); unsigned int divisor = ((pbus / rate) / 2) - 1; u32 config; config = __raw_readl(HOST_CONFIG(host)); config &= ~(SD_CONFIG_DIV); config |= (divisor & SD_CONFIG_DIV) | SD_CONFIG_DE; __raw_writel(config, HOST_CONFIG(host)); wmb(); /* drain writebuffer */ } static int au1xmmc_prepare_data(struct au1xmmc_host *host, struct mmc_data *data) { int datalen = data->blocks * data->blksz; if (data->flags & MMC_DATA_READ) host->flags |= HOST_F_RECV; else host->flags |= HOST_F_XMIT; if (host->mrq->stop) host->flags |= HOST_F_STOP; host->dma.dir = DMA_BIDIRECTIONAL; host->dma.len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); if (host->dma.len == 0) return -ETIMEDOUT; __raw_writel(data->blksz - 1, HOST_BLKSIZE(host)); if (host->flags & (HOST_F_DMA | HOST_F_DBDMA)) { int i; u32 channel = DMA_CHANNEL(host); au1xxx_dbdma_stop(channel); for (i = 0; i < host->dma.len; i++) { u32 ret = 0, flags = DDMA_FLAGS_NOIE; struct scatterlist *sg = &data->sg[i]; int sg_len = sg->length; int len = (datalen > sg_len) ? sg_len : datalen; if (i == host->dma.len - 1) flags = DDMA_FLAGS_IE; if (host->flags & HOST_F_XMIT) { ret = au1xxx_dbdma_put_source(channel, sg_phys(sg), len, flags); } else { ret = au1xxx_dbdma_put_dest(channel, sg_phys(sg), len, flags); } if (!ret) goto dataerr; datalen -= len; } } else { host->pio.index = 0; host->pio.offset = 0; host->pio.len = datalen; if (host->flags & HOST_F_XMIT) IRQ_ON(host, SD_CONFIG_TH); else IRQ_ON(host, SD_CONFIG_NE); /* IRQ_ON(host, SD_CONFIG_RA | SD_CONFIG_RF); */ } return 0; dataerr: dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, host->dma.dir); return -ETIMEDOUT; } /* This actually starts a command or data transaction */ static void au1xmmc_request(struct mmc_host* mmc, struct mmc_request* mrq) { struct au1xmmc_host *host = mmc_priv(mmc); int ret = 0; WARN_ON(irqs_disabled()); WARN_ON(host->status != HOST_S_IDLE); host->mrq = mrq; host->status = HOST_S_CMD; /* fail request immediately if no card is present */ if (0 == au1xmmc_card_inserted(mmc)) { mrq->cmd->error = -ENOMEDIUM; au1xmmc_finish_request(host); return; } if (mrq->data) { FLUSH_FIFO(host); ret = au1xmmc_prepare_data(host, mrq->data); } if (!ret) ret = au1xmmc_send_command(host, mrq->cmd, mrq->data); if (ret) { mrq->cmd->error = ret; au1xmmc_finish_request(host); } } static void au1xmmc_reset_controller(struct au1xmmc_host *host) { /* Apply the clock */ __raw_writel(SD_ENABLE_CE, HOST_ENABLE(host)); wmb(); /* drain writebuffer */ mdelay(1); __raw_writel(SD_ENABLE_R | SD_ENABLE_CE, HOST_ENABLE(host)); wmb(); /* drain writebuffer */ mdelay(5); __raw_writel(~0, HOST_STATUS(host)); wmb(); /* drain writebuffer */ __raw_writel(0, HOST_BLKSIZE(host)); __raw_writel(0x001fffff, HOST_TIMEOUT(host)); wmb(); /* drain writebuffer */ __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ __raw_writel(SD_CONFIG2_EN | SD_CONFIG2_FF, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ mdelay(1); __raw_writel(SD_CONFIG2_EN, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ /* Configure interrupts */ __raw_writel(AU1XMMC_INTERRUPTS, HOST_CONFIG(host)); wmb(); /* drain writebuffer */ } static void au1xmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct au1xmmc_host *host = mmc_priv(mmc); u32 config2; if (ios->power_mode == MMC_POWER_OFF) au1xmmc_set_power(host, 0); else if (ios->power_mode == MMC_POWER_ON) { au1xmmc_set_power(host, 1); } if (ios->clock && ios->clock != host->clock) { au1xmmc_set_clock(host, ios->clock); host->clock = ios->clock; } config2 = __raw_readl(HOST_CONFIG2(host)); switch (ios->bus_width) { case MMC_BUS_WIDTH_8: config2 |= SD_CONFIG2_BB; break; case MMC_BUS_WIDTH_4: config2 &= ~SD_CONFIG2_BB; config2 |= SD_CONFIG2_WB; break; case MMC_BUS_WIDTH_1: config2 &= ~(SD_CONFIG2_WB | SD_CONFIG2_BB); break; } __raw_writel(config2, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ } #define STATUS_TIMEOUT (SD_STATUS_RAT | SD_STATUS_DT) #define STATUS_DATA_IN (SD_STATUS_NE) #define STATUS_DATA_OUT (SD_STATUS_TH) static irqreturn_t au1xmmc_irq(int irq, void *dev_id) { struct au1xmmc_host *host = dev_id; u32 status; status = __raw_readl(HOST_STATUS(host)); if (!(status & SD_STATUS_I)) return IRQ_NONE; /* not ours */ if (status & SD_STATUS_SI) /* SDIO */ mmc_signal_sdio_irq(host->mmc); if (host->mrq && (status & STATUS_TIMEOUT)) { if (status & SD_STATUS_RAT) host->mrq->cmd->error = -ETIMEDOUT; else if (status & SD_STATUS_DT) host->mrq->data->error = -ETIMEDOUT; /* In PIO mode, interrupts might still be enabled */ IRQ_OFF(host, SD_CONFIG_NE | SD_CONFIG_TH); /* IRQ_OFF(host, SD_CONFIG_TH | SD_CONFIG_RA | SD_CONFIG_RF); */ tasklet_schedule(&host->finish_task); } #if 0 else if (status & SD_STATUS_DD) { /* Sometimes we get a DD before a NE in PIO mode */ if (!(host->flags & HOST_F_DMA) && (status & SD_STATUS_NE)) au1xmmc_receive_pio(host); else { au1xmmc_data_complete(host, status); /* tasklet_schedule(&host->data_task); */ } } #endif else if (status & SD_STATUS_CR) { if (host->status == HOST_S_CMD) au1xmmc_cmd_complete(host, status); } else if (!(host->flags & HOST_F_DMA)) { if ((host->flags & HOST_F_XMIT) && (status & STATUS_DATA_OUT)) au1xmmc_send_pio(host); else if ((host->flags & HOST_F_RECV) && (status & STATUS_DATA_IN)) au1xmmc_receive_pio(host); } else if (status & 0x203F3C70) { DBG("Unhandled status %8.8x\n", host->pdev->id, status); } __raw_writel(status, HOST_STATUS(host)); wmb(); /* drain writebuffer */ return IRQ_HANDLED; } /* 8bit memory DMA device */ static dbdev_tab_t au1xmmc_mem_dbdev = { .dev_id = DSCR_CMD0_ALWAYS, .dev_flags = DEV_FLAGS_ANYUSE, .dev_tsize = 0, .dev_devwidth = 8, .dev_physaddr = 0x00000000, .dev_intlevel = 0, .dev_intpolarity = 0, }; static int memid; static void au1xmmc_dbdma_callback(int irq, void *dev_id) { struct au1xmmc_host *host = (struct au1xmmc_host *)dev_id; /* Avoid spurious interrupts */ if (!host->mrq) return; if (host->flags & HOST_F_STOP) SEND_STOP(host); tasklet_schedule(&host->data_task); } static int au1xmmc_dbdma_init(struct au1xmmc_host *host) { struct resource *res; int txid, rxid; res = platform_get_resource(host->pdev, IORESOURCE_DMA, 0); if (!res) return -ENODEV; txid = res->start; res = platform_get_resource(host->pdev, IORESOURCE_DMA, 1); if (!res) return -ENODEV; rxid = res->start; if (!memid) return -ENODEV; host->tx_chan = au1xxx_dbdma_chan_alloc(memid, txid, au1xmmc_dbdma_callback, (void *)host); if (!host->tx_chan) { dev_err(&host->pdev->dev, "cannot allocate TX DMA\n"); return -ENODEV; } host->rx_chan = au1xxx_dbdma_chan_alloc(rxid, memid, au1xmmc_dbdma_callback, (void *)host); if (!host->rx_chan) { dev_err(&host->pdev->dev, "cannot allocate RX DMA\n"); au1xxx_dbdma_chan_free(host->tx_chan); return -ENODEV; } au1xxx_dbdma_set_devwidth(host->tx_chan, 8); au1xxx_dbdma_set_devwidth(host->rx_chan, 8); au1xxx_dbdma_ring_alloc(host->tx_chan, AU1XMMC_DESCRIPTOR_COUNT); au1xxx_dbdma_ring_alloc(host->rx_chan, AU1XMMC_DESCRIPTOR_COUNT); /* DBDMA is good to go */ host->flags |= HOST_F_DMA | HOST_F_DBDMA; return 0; } static void au1xmmc_dbdma_shutdown(struct au1xmmc_host *host) { if (host->flags & HOST_F_DMA) { host->flags &= ~HOST_F_DMA; au1xxx_dbdma_chan_free(host->tx_chan); au1xxx_dbdma_chan_free(host->rx_chan); } } static void au1xmmc_enable_sdio_irq(struct mmc_host *mmc, int en) { struct au1xmmc_host *host = mmc_priv(mmc); if (en) IRQ_ON(host, SD_CONFIG_SI); else IRQ_OFF(host, SD_CONFIG_SI); } static const struct mmc_host_ops au1xmmc_ops = { .request = au1xmmc_request, .set_ios = au1xmmc_set_ios, .get_ro = au1xmmc_card_readonly, .get_cd = au1xmmc_card_inserted, .enable_sdio_irq = au1xmmc_enable_sdio_irq, }; static int au1xmmc_probe(struct platform_device *pdev) { struct mmc_host *mmc; struct au1xmmc_host *host; struct resource *r; int ret, iflag; mmc = mmc_alloc_host(sizeof(struct au1xmmc_host), &pdev->dev); if (!mmc) { dev_err(&pdev->dev, "no memory for mmc_host\n"); ret = -ENOMEM; goto out0; } host = mmc_priv(mmc); host->mmc = mmc; host->platdata = pdev->dev.platform_data; host->pdev = pdev; ret = -ENODEV; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!r) { dev_err(&pdev->dev, "no mmio defined\n"); goto out1; } host->ioarea = request_mem_region(r->start, resource_size(r), pdev->name); if (!host->ioarea) { dev_err(&pdev->dev, "mmio already in use\n"); goto out1; } host->iobase = ioremap(r->start, 0x3c); if (!host->iobase) { dev_err(&pdev->dev, "cannot remap mmio\n"); goto out2; } host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) { ret = host->irq; goto out3; } mmc->ops = &au1xmmc_ops; mmc->f_min = 450000; mmc->f_max = 24000000; mmc->max_blk_size = 2048; mmc->max_blk_count = 512; mmc->ocr_avail = AU1XMMC_OCR; mmc->caps = MMC_CAP_4_BIT_DATA | MMC_CAP_SDIO_IRQ; mmc->max_segs = AU1XMMC_DESCRIPTOR_COUNT; iflag = IRQF_SHARED; /* Au1100/Au1200: one int for both ctrls */ switch (alchemy_get_cputype()) { case ALCHEMY_CPU_AU1100: mmc->max_seg_size = AU1100_MMC_DESCRIPTOR_SIZE; break; case ALCHEMY_CPU_AU1200: mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE; break; case ALCHEMY_CPU_AU1300: iflag = 0; /* nothing is shared */ mmc->max_seg_size = AU1200_MMC_DESCRIPTOR_SIZE; mmc->f_max = 52000000; if (host->ioarea->start == AU1100_SD0_PHYS_ADDR) mmc->caps |= MMC_CAP_8_BIT_DATA; break; } ret = request_irq(host->irq, au1xmmc_irq, iflag, DRIVER_NAME, host); if (ret) { dev_err(&pdev->dev, "cannot grab IRQ\n"); goto out3; } host->clk = clk_get(&pdev->dev, ALCHEMY_PERIPH_CLK); if (IS_ERR(host->clk)) { dev_err(&pdev->dev, "cannot find clock\n"); ret = PTR_ERR(host->clk); goto out_irq; } ret = clk_prepare_enable(host->clk); if (ret) { dev_err(&pdev->dev, "cannot enable clock\n"); goto out_clk; } host->status = HOST_S_IDLE; /* board-specific carddetect setup, if any */ if (host->platdata && host->platdata->cd_setup) { ret = host->platdata->cd_setup(mmc, 1); if (ret) { dev_warn(&pdev->dev, "board CD setup failed\n"); mmc->caps |= MMC_CAP_NEEDS_POLL; } } else mmc->caps |= MMC_CAP_NEEDS_POLL; /* platform may not be able to use all advertised caps */ if (host->platdata) mmc->caps &= ~(host->platdata->mask_host_caps); tasklet_setup(&host->data_task, au1xmmc_tasklet_data); tasklet_setup(&host->finish_task, au1xmmc_tasklet_finish); if (has_dbdma()) { ret = au1xmmc_dbdma_init(host); if (ret) pr_info(DRIVER_NAME ": DBDMA init failed; using PIO\n"); } #ifdef CONFIG_LEDS_CLASS if (host->platdata && host->platdata->led) { struct led_classdev *led = host->platdata->led; led->name = mmc_hostname(mmc); led->brightness = LED_OFF; led->default_trigger = mmc_hostname(mmc); ret = led_classdev_register(mmc_dev(mmc), led); if (ret) goto out5; } #endif au1xmmc_reset_controller(host); ret = mmc_add_host(mmc); if (ret) { dev_err(&pdev->dev, "cannot add mmc host\n"); goto out6; } platform_set_drvdata(pdev, host); pr_info(DRIVER_NAME ": MMC Controller %d set up at %p" " (mode=%s)\n", pdev->id, host->iobase, host->flags & HOST_F_DMA ? "dma" : "pio"); return 0; /* all ok */ out6: #ifdef CONFIG_LEDS_CLASS if (host->platdata && host->platdata->led) led_classdev_unregister(host->platdata->led); out5: #endif __raw_writel(0, HOST_ENABLE(host)); __raw_writel(0, HOST_CONFIG(host)); __raw_writel(0, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ if (host->flags & HOST_F_DBDMA) au1xmmc_dbdma_shutdown(host); tasklet_kill(&host->data_task); tasklet_kill(&host->finish_task); if (host->platdata && host->platdata->cd_setup && !(mmc->caps & MMC_CAP_NEEDS_POLL)) host->platdata->cd_setup(mmc, 0); clk_disable_unprepare(host->clk); out_clk: clk_put(host->clk); out_irq: free_irq(host->irq, host); out3: iounmap((void *)host->iobase); out2: release_resource(host->ioarea); kfree(host->ioarea); out1: mmc_free_host(mmc); out0: return ret; } static void au1xmmc_remove(struct platform_device *pdev) { struct au1xmmc_host *host = platform_get_drvdata(pdev); if (host) { mmc_remove_host(host->mmc); #ifdef CONFIG_LEDS_CLASS if (host->platdata && host->platdata->led) led_classdev_unregister(host->platdata->led); #endif if (host->platdata && host->platdata->cd_setup && !(host->mmc->caps & MMC_CAP_NEEDS_POLL)) host->platdata->cd_setup(host->mmc, 0); __raw_writel(0, HOST_ENABLE(host)); __raw_writel(0, HOST_CONFIG(host)); __raw_writel(0, HOST_CONFIG2(host)); wmb(); /* drain writebuffer */ tasklet_kill(&host->data_task); tasklet_kill(&host->finish_task); if (host->flags & HOST_F_DBDMA) au1xmmc_dbdma_shutdown(host); au1xmmc_set_power(host, 0); clk_disable_unprepare(host->clk); clk_put(host->clk); free_irq(host->irq, host); iounmap((void *)host->iobase); release_resource(host->ioarea); kfree(host->ioarea); mmc_free_host(host->mmc); } } #ifdef CONFIG_PM static int au1xmmc_suspend(struct platform_device *pdev, pm_message_t state) { struct au1xmmc_host *host = platform_get_drvdata(pdev); __raw_writel(0, HOST_CONFIG2(host)); __raw_writel(0, HOST_CONFIG(host)); __raw_writel(0xffffffff, HOST_STATUS(host)); __raw_writel(0, HOST_ENABLE(host)); wmb(); /* drain writebuffer */ return 0; } static int au1xmmc_resume(struct platform_device *pdev) { struct au1xmmc_host *host = platform_get_drvdata(pdev); au1xmmc_reset_controller(host); return 0; } #else #define au1xmmc_suspend NULL #define au1xmmc_resume NULL #endif static struct platform_driver au1xmmc_driver = { .probe = au1xmmc_probe, .remove_new = au1xmmc_remove, .suspend = au1xmmc_suspend, .resume = au1xmmc_resume, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, }; static int __init au1xmmc_init(void) { if (has_dbdma()) { /* DSCR_CMD0_ALWAYS has a stride of 32 bits, we need a stride * of 8 bits. And since devices are shared, we need to create * our own to avoid freaking out other devices. */ memid = au1xxx_ddma_add_device(&au1xmmc_mem_dbdev); if (!memid) pr_err("au1xmmc: cannot add memory dbdma\n"); } return platform_driver_register(&au1xmmc_driver); } static void __exit au1xmmc_exit(void) { if (has_dbdma() && memid) au1xxx_ddma_del_device(memid); platform_driver_unregister(&au1xmmc_driver); } module_init(au1xmmc_init); module_exit(au1xmmc_exit); MODULE_AUTHOR("Advanced Micro Devices, Inc"); MODULE_DESCRIPTION("MMC/SD driver for the Alchemy Au1XXX"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:au1xxx-mmc");