// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2011 John Crispin <john@phrozen.org> */ #include <linux/init.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <linux/spinlock.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/of.h> #include <lantiq_soc.h> #include <xway_dma.h> #define LTQ_DMA_ID 0x08 #define LTQ_DMA_CTRL 0x10 #define LTQ_DMA_CPOLL 0x14 #define LTQ_DMA_CS 0x18 #define LTQ_DMA_CCTRL 0x1C #define LTQ_DMA_CDBA 0x20 #define LTQ_DMA_CDLEN 0x24 #define LTQ_DMA_CIS 0x28 #define LTQ_DMA_CIE 0x2C #define LTQ_DMA_PS 0x40 #define LTQ_DMA_PCTRL 0x44 #define LTQ_DMA_IRNEN 0xf4 #define DMA_ID_CHNR GENMASK(26, 20) /* channel number */ #define DMA_DESCPT BIT(3) /* descriptor complete irq */ #define DMA_TX BIT(8) /* TX channel direction */ #define DMA_CHAN_ON BIT(0) /* channel on / off bit */ #define DMA_PDEN BIT(6) /* enable packet drop */ #define DMA_CHAN_RST BIT(1) /* channel on / off bit */ #define DMA_RESET BIT(0) /* channel on / off bit */ #define DMA_IRQ_ACK 0x7e /* IRQ status register */ #define DMA_POLL BIT(31) /* turn on channel polling */ #define DMA_CLK_DIV4 BIT(6) /* polling clock divider */ #define DMA_PCTRL_2W_BURST 0x1 /* 2 word burst length */ #define DMA_PCTRL_4W_BURST 0x2 /* 4 word burst length */ #define DMA_PCTRL_8W_BURST 0x3 /* 8 word burst length */ #define DMA_TX_BURST_SHIFT 4 /* tx burst shift */ #define DMA_RX_BURST_SHIFT 2 /* rx burst shift */ #define DMA_ETOP_ENDIANNESS (0xf << 8) /* endianness swap etop channels */ #define DMA_WEIGHT (BIT(17) | BIT(16)) /* default channel wheight */ #define ltq_dma_r32(x) ltq_r32(ltq_dma_membase + (x)) #define ltq_dma_w32(x, y) ltq_w32(x, ltq_dma_membase + (y)) #define ltq_dma_w32_mask(x, y, z) ltq_w32_mask(x, y, \ ltq_dma_membase + (z)) static void __iomem *ltq_dma_membase; static DEFINE_SPINLOCK(ltq_dma_lock); void ltq_dma_enable_irq(struct ltq_dma_channel *ch) { unsigned long flags; spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32_mask(0, 1 << ch->nr, LTQ_DMA_IRNEN); spin_unlock_irqrestore(<q_dma_lock, flags); } EXPORT_SYMBOL_GPL(ltq_dma_enable_irq); void ltq_dma_disable_irq(struct ltq_dma_channel *ch) { unsigned long flags; spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32_mask(1 << ch->nr, 0, LTQ_DMA_IRNEN); spin_unlock_irqrestore(<q_dma_lock, flags); } EXPORT_SYMBOL_GPL(ltq_dma_disable_irq); void ltq_dma_ack_irq(struct ltq_dma_channel *ch) { unsigned long flags; spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32(DMA_IRQ_ACK, LTQ_DMA_CIS); spin_unlock_irqrestore(<q_dma_lock, flags); } EXPORT_SYMBOL_GPL(ltq_dma_ack_irq); void ltq_dma_open(struct ltq_dma_channel *ch) { unsigned long flag; spin_lock_irqsave(<q_dma_lock, flag); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32_mask(0, DMA_CHAN_ON, LTQ_DMA_CCTRL); spin_unlock_irqrestore(<q_dma_lock, flag); } EXPORT_SYMBOL_GPL(ltq_dma_open); void ltq_dma_close(struct ltq_dma_channel *ch) { unsigned long flag; spin_lock_irqsave(<q_dma_lock, flag); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32_mask(DMA_CHAN_ON, 0, LTQ_DMA_CCTRL); ltq_dma_w32_mask(1 << ch->nr, 0, LTQ_DMA_IRNEN); spin_unlock_irqrestore(<q_dma_lock, flag); } EXPORT_SYMBOL_GPL(ltq_dma_close); static void ltq_dma_alloc(struct ltq_dma_channel *ch) { unsigned long flags; ch->desc = 0; ch->desc_base = dma_alloc_coherent(ch->dev, LTQ_DESC_NUM * LTQ_DESC_SIZE, &ch->phys, GFP_ATOMIC); spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(ch->nr, LTQ_DMA_CS); ltq_dma_w32(ch->phys, LTQ_DMA_CDBA); ltq_dma_w32(LTQ_DESC_NUM, LTQ_DMA_CDLEN); ltq_dma_w32_mask(DMA_CHAN_ON, 0, LTQ_DMA_CCTRL); wmb(); ltq_dma_w32_mask(0, DMA_CHAN_RST, LTQ_DMA_CCTRL); while (ltq_dma_r32(LTQ_DMA_CCTRL) & DMA_CHAN_RST) ; spin_unlock_irqrestore(<q_dma_lock, flags); } void ltq_dma_alloc_tx(struct ltq_dma_channel *ch) { unsigned long flags; ltq_dma_alloc(ch); spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(DMA_DESCPT, LTQ_DMA_CIE); ltq_dma_w32_mask(0, 1 << ch->nr, LTQ_DMA_IRNEN); ltq_dma_w32(DMA_WEIGHT | DMA_TX, LTQ_DMA_CCTRL); spin_unlock_irqrestore(<q_dma_lock, flags); } EXPORT_SYMBOL_GPL(ltq_dma_alloc_tx); void ltq_dma_alloc_rx(struct ltq_dma_channel *ch) { unsigned long flags; ltq_dma_alloc(ch); spin_lock_irqsave(<q_dma_lock, flags); ltq_dma_w32(DMA_DESCPT, LTQ_DMA_CIE); ltq_dma_w32_mask(0, 1 << ch->nr, LTQ_DMA_IRNEN); ltq_dma_w32(DMA_WEIGHT, LTQ_DMA_CCTRL); spin_unlock_irqrestore(<q_dma_lock, flags); } EXPORT_SYMBOL_GPL(ltq_dma_alloc_rx); void ltq_dma_free(struct ltq_dma_channel *ch) { if (!ch->desc_base) return; ltq_dma_close(ch); dma_free_coherent(ch->dev, LTQ_DESC_NUM * LTQ_DESC_SIZE, ch->desc_base, ch->phys); } EXPORT_SYMBOL_GPL(ltq_dma_free); void ltq_dma_init_port(int p, int tx_burst, int rx_burst) { ltq_dma_w32(p, LTQ_DMA_PS); switch (p) { case DMA_PORT_ETOP: /* * Tell the DMA engine to swap the endianness of data frames and * drop packets if the channel arbitration fails. */ ltq_dma_w32_mask(0, (DMA_ETOP_ENDIANNESS | DMA_PDEN), LTQ_DMA_PCTRL); break; default: break; } switch (rx_burst) { case 8: ltq_dma_w32_mask(0x0c, (DMA_PCTRL_8W_BURST << DMA_RX_BURST_SHIFT), LTQ_DMA_PCTRL); break; case 4: ltq_dma_w32_mask(0x0c, (DMA_PCTRL_4W_BURST << DMA_RX_BURST_SHIFT), LTQ_DMA_PCTRL); break; case 2: ltq_dma_w32_mask(0x0c, (DMA_PCTRL_2W_BURST << DMA_RX_BURST_SHIFT), LTQ_DMA_PCTRL); break; default: break; } switch (tx_burst) { case 8: ltq_dma_w32_mask(0x30, (DMA_PCTRL_8W_BURST << DMA_TX_BURST_SHIFT), LTQ_DMA_PCTRL); break; case 4: ltq_dma_w32_mask(0x30, (DMA_PCTRL_4W_BURST << DMA_TX_BURST_SHIFT), LTQ_DMA_PCTRL); break; case 2: ltq_dma_w32_mask(0x30, (DMA_PCTRL_2W_BURST << DMA_TX_BURST_SHIFT), LTQ_DMA_PCTRL); break; default: break; } } EXPORT_SYMBOL_GPL(ltq_dma_init_port); static int ltq_dma_init(struct platform_device *pdev) { struct clk *clk; unsigned int id, nchannels; int i; ltq_dma_membase = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(ltq_dma_membase)) panic("Failed to remap dma resource"); /* power up and reset the dma engine */ clk = clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) panic("Failed to get dma clock"); clk_enable(clk); ltq_dma_w32_mask(0, DMA_RESET, LTQ_DMA_CTRL); usleep_range(1, 10); /* disable all interrupts */ ltq_dma_w32(0, LTQ_DMA_IRNEN); /* reset/configure each channel */ id = ltq_dma_r32(LTQ_DMA_ID); nchannels = ((id & DMA_ID_CHNR) >> 20); for (i = 0; i < nchannels; i++) { ltq_dma_w32(i, LTQ_DMA_CS); ltq_dma_w32(DMA_CHAN_RST, LTQ_DMA_CCTRL); ltq_dma_w32(DMA_POLL | DMA_CLK_DIV4, LTQ_DMA_CPOLL); ltq_dma_w32_mask(DMA_CHAN_ON, 0, LTQ_DMA_CCTRL); } dev_info(&pdev->dev, "Init done - hw rev: %X, ports: %d, channels: %d\n", id & 0x1f, (id >> 16) & 0xf, nchannels); return 0; } static const struct of_device_id dma_match[] = { { .compatible = "lantiq,dma-xway" }, {}, }; static struct platform_driver dma_driver = { .probe = ltq_dma_init, .driver = { .name = "dma-xway", .of_match_table = dma_match, }, }; int __init dma_init(void) { return platform_driver_register(&dma_driver); } postcore_initcall(dma_init);