// SPDX-License-Identifier: GPL-2.0-only /* * Marvell PXA family clocks * * Copyright (C) 2014 Robert Jarzmik * * Common clock code for PXA clocks ("CKEN" type clocks + DT) */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clkdev.h> #include <linux/io.h> #include <linux/of.h> #include <linux/soc/pxa/smemc.h> #include <dt-bindings/clock/pxa-clock.h> #include "clk-pxa.h" #define KHz 1000 #define MHz (1000 * 1000) #define MDREFR_K0DB4 (1 << 29) /* SDCLK0 Divide by 4 Control/Status */ #define MDREFR_K2FREE (1 << 25) /* SDRAM Free-Running Control */ #define MDREFR_K1FREE (1 << 24) /* SDRAM Free-Running Control */ #define MDREFR_K0FREE (1 << 23) /* SDRAM Free-Running Control */ #define MDREFR_SLFRSH (1 << 22) /* SDRAM Self-Refresh Control/Status */ #define MDREFR_APD (1 << 20) /* SDRAM/SSRAM Auto-Power-Down Enable */ #define MDREFR_K2DB2 (1 << 19) /* SDCLK2 Divide by 2 Control/Status */ #define MDREFR_K2RUN (1 << 18) /* SDCLK2 Run Control/Status */ #define MDREFR_K1DB2 (1 << 17) /* SDCLK1 Divide by 2 Control/Status */ #define MDREFR_K1RUN (1 << 16) /* SDCLK1 Run Control/Status */ #define MDREFR_E1PIN (1 << 15) /* SDCKE1 Level Control/Status */ #define MDREFR_K0DB2 (1 << 14) /* SDCLK0 Divide by 2 Control/Status */ #define MDREFR_K0RUN (1 << 13) /* SDCLK0 Run Control/Status */ #define MDREFR_E0PIN (1 << 12) /* SDCKE0 Level Control/Status */ #define MDREFR_DB2_MASK (MDREFR_K2DB2 | MDREFR_K1DB2) #define MDREFR_DRI_MASK 0xFFF static DEFINE_SPINLOCK(pxa_clk_lock); static struct clk *pxa_clocks[CLK_MAX]; static struct clk_onecell_data onecell_data = { .clks = pxa_clocks, .clk_num = CLK_MAX, }; struct pxa_clk { struct clk_hw hw; struct clk_fixed_factor lp; struct clk_fixed_factor hp; struct clk_gate gate; bool (*is_in_low_power)(void); }; #define to_pxa_clk(_hw) container_of(_hw, struct pxa_clk, hw) static unsigned long cken_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct pxa_clk *pclk = to_pxa_clk(hw); struct clk_fixed_factor *fix; if (!pclk->is_in_low_power || pclk->is_in_low_power()) fix = &pclk->lp; else fix = &pclk->hp; __clk_hw_set_clk(&fix->hw, hw); return clk_fixed_factor_ops.recalc_rate(&fix->hw, parent_rate); } static const struct clk_ops cken_rate_ops = { .recalc_rate = cken_recalc_rate, }; static u8 cken_get_parent(struct clk_hw *hw) { struct pxa_clk *pclk = to_pxa_clk(hw); if (!pclk->is_in_low_power) return 0; return pclk->is_in_low_power() ? 0 : 1; } static const struct clk_ops cken_mux_ops = { .determine_rate = clk_hw_determine_rate_no_reparent, .get_parent = cken_get_parent, .set_parent = dummy_clk_set_parent, }; void __init clkdev_pxa_register(int ckid, const char *con_id, const char *dev_id, struct clk *clk) { if (!IS_ERR(clk) && (ckid != CLK_NONE)) pxa_clocks[ckid] = clk; if (!IS_ERR(clk)) clk_register_clkdev(clk, con_id, dev_id); } int __init clk_pxa_cken_init(const struct desc_clk_cken *clks, int nb_clks, void __iomem *clk_regs) { int i; struct pxa_clk *pxa_clk; struct clk *clk; for (i = 0; i < nb_clks; i++) { pxa_clk = kzalloc(sizeof(*pxa_clk), GFP_KERNEL); if (!pxa_clk) return -ENOMEM; pxa_clk->is_in_low_power = clks[i].is_in_low_power; pxa_clk->lp = clks[i].lp; pxa_clk->hp = clks[i].hp; pxa_clk->gate = clks[i].gate; pxa_clk->gate.reg = clk_regs + clks[i].cken_reg; pxa_clk->gate.lock = &pxa_clk_lock; clk = clk_register_composite(NULL, clks[i].name, clks[i].parent_names, 2, &pxa_clk->hw, &cken_mux_ops, &pxa_clk->hw, &cken_rate_ops, &pxa_clk->gate.hw, &clk_gate_ops, clks[i].flags); clkdev_pxa_register(clks[i].ckid, clks[i].con_id, clks[i].dev_id, clk); } return 0; } void __init clk_pxa_dt_common_init(struct device_node *np) { of_clk_add_provider(np, of_clk_src_onecell_get, &onecell_data); } void pxa2xx_core_turbo_switch(bool on) { unsigned long flags; unsigned int unused, clkcfg; local_irq_save(flags); asm("mrc p14, 0, %0, c6, c0, 0" : "=r" (clkcfg)); clkcfg &= ~CLKCFG_TURBO & ~CLKCFG_HALFTURBO; if (on) clkcfg |= CLKCFG_TURBO; clkcfg |= CLKCFG_FCS; asm volatile( " b 2f\n" " .align 5\n" "1: mcr p14, 0, %1, c6, c0, 0\n" " b 3f\n" "2: b 1b\n" "3: nop\n" : "=&r" (unused) : "r" (clkcfg)); local_irq_restore(flags); } void pxa2xx_cpll_change(struct pxa2xx_freq *freq, u32 (*mdrefr_dri)(unsigned int), void __iomem *cccr) { unsigned int clkcfg = freq->clkcfg; unsigned int unused, preset_mdrefr, postset_mdrefr; unsigned long flags; void __iomem *mdrefr = pxa_smemc_get_mdrefr(); local_irq_save(flags); /* Calculate the next MDREFR. If we're slowing down the SDRAM clock * we need to preset the smaller DRI before the change. If we're * speeding up we need to set the larger DRI value after the change. */ preset_mdrefr = postset_mdrefr = readl(mdrefr); if ((preset_mdrefr & MDREFR_DRI_MASK) > mdrefr_dri(freq->membus_khz)) { preset_mdrefr = (preset_mdrefr & ~MDREFR_DRI_MASK); preset_mdrefr |= mdrefr_dri(freq->membus_khz); } postset_mdrefr = (postset_mdrefr & ~MDREFR_DRI_MASK) | mdrefr_dri(freq->membus_khz); /* If we're dividing the memory clock by two for the SDRAM clock, this * must be set prior to the change. Clearing the divide must be done * after the change. */ if (freq->div2) { preset_mdrefr |= MDREFR_DB2_MASK; postset_mdrefr |= MDREFR_DB2_MASK; } else { postset_mdrefr &= ~MDREFR_DB2_MASK; } /* Set new the CCCR and prepare CLKCFG */ writel(freq->cccr, cccr); asm volatile( " ldr r4, [%1]\n" " b 2f\n" " .align 5\n" "1: str %3, [%1] /* preset the MDREFR */\n" " mcr p14, 0, %2, c6, c0, 0 /* set CLKCFG[FCS] */\n" " str %4, [%1] /* postset the MDREFR */\n" " b 3f\n" "2: b 1b\n" "3: nop\n" : "=&r" (unused) : "r" (mdrefr), "r" (clkcfg), "r" (preset_mdrefr), "r" (postset_mdrefr) : "r4", "r5"); local_irq_restore(flags); } int pxa2xx_determine_rate(struct clk_rate_request *req, struct pxa2xx_freq *freqs, int nb_freqs) { int i, closest_below = -1, closest_above = -1; unsigned long rate; for (i = 0; i < nb_freqs; i++) { rate = freqs[i].cpll; if (rate == req->rate) break; if (rate < req->min_rate) continue; if (rate > req->max_rate) continue; if (rate <= req->rate) closest_below = i; if ((rate >= req->rate) && (closest_above == -1)) closest_above = i; } req->best_parent_hw = NULL; if (i < nb_freqs) { rate = req->rate; } else if (closest_below >= 0) { rate = freqs[closest_below].cpll; } else if (closest_above >= 0) { rate = freqs[closest_above].cpll; } else { pr_debug("%s(rate=%lu) no match\n", __func__, req->rate); return -EINVAL; } pr_debug("%s(rate=%lu) rate=%lu\n", __func__, req->rate, rate); req->rate = rate; return 0; }