// SPDX-License-Identifier: GPL-2.0 /* * KMSAN runtime library. * * Copyright (C) 2017-2022 Google LLC * Author: Alexander Potapenko <glider@google.com> * */ #include <asm/page.h> #include <linux/compiler.h> #include <linux/export.h> #include <linux/highmem.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/kmsan_types.h> #include <linux/memory.h> #include <linux/mm.h> #include <linux/mm_types.h> #include <linux/mmzone.h> #include <linux/percpu-defs.h> #include <linux/preempt.h> #include <linux/slab.h> #include <linux/stackdepot.h> #include <linux/stacktrace.h> #include <linux/types.h> #include <linux/vmalloc.h> #include "../slab.h" #include "kmsan.h" bool kmsan_enabled __read_mostly; /* * Per-CPU KMSAN context to be used in interrupts, where current->kmsan is * unavaliable. */ DEFINE_PER_CPU(struct kmsan_ctx, kmsan_percpu_ctx); void kmsan_internal_task_create(struct task_struct *task) { struct kmsan_ctx *ctx = &task->kmsan_ctx; struct thread_info *info = current_thread_info(); __memset(ctx, 0, sizeof(*ctx)); ctx->allow_reporting = true; kmsan_internal_unpoison_memory(info, sizeof(*info), false); } void kmsan_internal_poison_memory(void *address, size_t size, gfp_t flags, unsigned int poison_flags) { u32 extra_bits = kmsan_extra_bits(/*depth*/ 0, poison_flags & KMSAN_POISON_FREE); bool checked = poison_flags & KMSAN_POISON_CHECK; depot_stack_handle_t handle; handle = kmsan_save_stack_with_flags(flags, extra_bits); kmsan_internal_set_shadow_origin(address, size, -1, handle, checked); } void kmsan_internal_unpoison_memory(void *address, size_t size, bool checked) { kmsan_internal_set_shadow_origin(address, size, 0, 0, checked); } depot_stack_handle_t kmsan_save_stack_with_flags(gfp_t flags, unsigned int extra) { unsigned long entries[KMSAN_STACK_DEPTH]; unsigned int nr_entries; depot_stack_handle_t handle; nr_entries = stack_trace_save(entries, KMSAN_STACK_DEPTH, 0); /* Don't sleep. */ flags &= ~(__GFP_DIRECT_RECLAIM | __GFP_KSWAPD_RECLAIM); handle = __stack_depot_save(entries, nr_entries, flags, true); return stack_depot_set_extra_bits(handle, extra); } /* Copy the metadata following the memmove() behavior. */ void kmsan_internal_memmove_metadata(void *dst, void *src, size_t n) { depot_stack_handle_t old_origin = 0, new_origin = 0; int src_slots, dst_slots, i, iter, step, skip_bits; depot_stack_handle_t *origin_src, *origin_dst; void *shadow_src, *shadow_dst; u32 *align_shadow_src, shadow; bool backwards; shadow_dst = kmsan_get_metadata(dst, KMSAN_META_SHADOW); if (!shadow_dst) return; KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(dst, n)); shadow_src = kmsan_get_metadata(src, KMSAN_META_SHADOW); if (!shadow_src) { /* * @src is untracked: zero out destination shadow, ignore the * origins, we're done. */ __memset(shadow_dst, 0, n); return; } KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(src, n)); __memmove(shadow_dst, shadow_src, n); origin_dst = kmsan_get_metadata(dst, KMSAN_META_ORIGIN); origin_src = kmsan_get_metadata(src, KMSAN_META_ORIGIN); KMSAN_WARN_ON(!origin_dst || !origin_src); src_slots = (ALIGN((u64)src + n, KMSAN_ORIGIN_SIZE) - ALIGN_DOWN((u64)src, KMSAN_ORIGIN_SIZE)) / KMSAN_ORIGIN_SIZE; dst_slots = (ALIGN((u64)dst + n, KMSAN_ORIGIN_SIZE) - ALIGN_DOWN((u64)dst, KMSAN_ORIGIN_SIZE)) / KMSAN_ORIGIN_SIZE; KMSAN_WARN_ON((src_slots < 1) || (dst_slots < 1)); KMSAN_WARN_ON((src_slots - dst_slots > 1) || (dst_slots - src_slots < -1)); backwards = dst > src; i = backwards ? min(src_slots, dst_slots) - 1 : 0; iter = backwards ? -1 : 1; align_shadow_src = (u32 *)ALIGN_DOWN((u64)shadow_src, KMSAN_ORIGIN_SIZE); for (step = 0; step < min(src_slots, dst_slots); step++, i += iter) { KMSAN_WARN_ON(i < 0); shadow = align_shadow_src[i]; if (i == 0) { /* * If @src isn't aligned on KMSAN_ORIGIN_SIZE, don't * look at the first @src % KMSAN_ORIGIN_SIZE bytes * of the first shadow slot. */ skip_bits = ((u64)src % KMSAN_ORIGIN_SIZE) * 8; shadow = (shadow >> skip_bits) << skip_bits; } if (i == src_slots - 1) { /* * If @src + n isn't aligned on * KMSAN_ORIGIN_SIZE, don't look at the last * (@src + n) % KMSAN_ORIGIN_SIZE bytes of the * last shadow slot. */ skip_bits = (((u64)src + n) % KMSAN_ORIGIN_SIZE) * 8; shadow = (shadow << skip_bits) >> skip_bits; } /* * Overwrite the origin only if the corresponding * shadow is nonempty. */ if (origin_src[i] && (origin_src[i] != old_origin) && shadow) { old_origin = origin_src[i]; new_origin = kmsan_internal_chain_origin(old_origin); /* * kmsan_internal_chain_origin() may return * NULL, but we don't want to lose the previous * origin value. */ if (!new_origin) new_origin = old_origin; } if (shadow) origin_dst[i] = new_origin; else origin_dst[i] = 0; } /* * If dst_slots is greater than src_slots (i.e. * dst_slots == src_slots + 1), there is an extra origin slot at the * beginning or end of the destination buffer, for which we take the * origin from the previous slot. * This is only done if the part of the source shadow corresponding to * slot is non-zero. * * E.g. if we copy 8 aligned bytes that are marked as uninitialized * and have origins o111 and o222, to an unaligned buffer with offset 1, * these two origins are copied to three origin slots, so one of then * needs to be duplicated, depending on the copy direction (@backwards) * * src shadow: |uuuu|uuuu|....| * src origin: |o111|o222|....| * * backwards = 0: * dst shadow: |.uuu|uuuu|u...| * dst origin: |....|o111|o222| - fill the empty slot with o111 * backwards = 1: * dst shadow: |.uuu|uuuu|u...| * dst origin: |o111|o222|....| - fill the empty slot with o222 */ if (src_slots < dst_slots) { if (backwards) { shadow = align_shadow_src[src_slots - 1]; skip_bits = (((u64)dst + n) % KMSAN_ORIGIN_SIZE) * 8; shadow = (shadow << skip_bits) >> skip_bits; if (shadow) /* src_slots > 0, therefore dst_slots is at least 2 */ origin_dst[dst_slots - 1] = origin_dst[dst_slots - 2]; } else { shadow = align_shadow_src[0]; skip_bits = ((u64)dst % KMSAN_ORIGIN_SIZE) * 8; shadow = (shadow >> skip_bits) << skip_bits; if (shadow) origin_dst[0] = origin_dst[1]; } } } depot_stack_handle_t kmsan_internal_chain_origin(depot_stack_handle_t id) { unsigned long entries[3]; u32 extra_bits; int depth; bool uaf; depot_stack_handle_t handle; if (!id) return id; /* * Make sure we have enough spare bits in @id to hold the UAF bit and * the chain depth. */ BUILD_BUG_ON( (1 << STACK_DEPOT_EXTRA_BITS) <= (KMSAN_MAX_ORIGIN_DEPTH << 1)); extra_bits = stack_depot_get_extra_bits(id); depth = kmsan_depth_from_eb(extra_bits); uaf = kmsan_uaf_from_eb(extra_bits); /* * Stop chaining origins once the depth reached KMSAN_MAX_ORIGIN_DEPTH. * This mostly happens in the case structures with uninitialized padding * are copied around many times. Origin chains for such structures are * usually periodic, and it does not make sense to fully store them. */ if (depth == KMSAN_MAX_ORIGIN_DEPTH) return id; depth++; extra_bits = kmsan_extra_bits(depth, uaf); entries[0] = KMSAN_CHAIN_MAGIC_ORIGIN; entries[1] = kmsan_save_stack_with_flags(__GFP_HIGH, 0); entries[2] = id; /* * @entries is a local var in non-instrumented code, so KMSAN does not * know it is initialized. Explicitly unpoison it to avoid false * positives when __stack_depot_save() passes it to instrumented code. */ kmsan_internal_unpoison_memory(entries, sizeof(entries), false); handle = __stack_depot_save(entries, ARRAY_SIZE(entries), __GFP_HIGH, true); return stack_depot_set_extra_bits(handle, extra_bits); } void kmsan_internal_set_shadow_origin(void *addr, size_t size, int b, u32 origin, bool checked) { u64 address = (u64)addr; void *shadow_start; u32 *origin_start; size_t pad = 0; KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size)); shadow_start = kmsan_get_metadata(addr, KMSAN_META_SHADOW); if (!shadow_start) { /* * kmsan_metadata_is_contiguous() is true, so either all shadow * and origin pages are NULL, or all are non-NULL. */ if (checked) { pr_err("%s: not memsetting %ld bytes starting at %px, because the shadow is NULL\n", __func__, size, addr); KMSAN_WARN_ON(true); } return; } __memset(shadow_start, b, size); if (!IS_ALIGNED(address, KMSAN_ORIGIN_SIZE)) { pad = address % KMSAN_ORIGIN_SIZE; address -= pad; size += pad; } size = ALIGN(size, KMSAN_ORIGIN_SIZE); origin_start = (u32 *)kmsan_get_metadata((void *)address, KMSAN_META_ORIGIN); for (int i = 0; i < size / KMSAN_ORIGIN_SIZE; i++) origin_start[i] = origin; } struct page *kmsan_vmalloc_to_page_or_null(void *vaddr) { struct page *page; if (!kmsan_internal_is_vmalloc_addr(vaddr) && !kmsan_internal_is_module_addr(vaddr)) return NULL; page = vmalloc_to_page(vaddr); if (pfn_valid(page_to_pfn(page))) return page; else return NULL; } void kmsan_internal_check_memory(void *addr, size_t size, const void *user_addr, int reason) { depot_stack_handle_t cur_origin = 0, new_origin = 0; unsigned long addr64 = (unsigned long)addr; depot_stack_handle_t *origin = NULL; unsigned char *shadow = NULL; int cur_off_start = -1; int chunk_size; size_t pos = 0; if (!size) return; KMSAN_WARN_ON(!kmsan_metadata_is_contiguous(addr, size)); while (pos < size) { chunk_size = min(size - pos, PAGE_SIZE - ((addr64 + pos) % PAGE_SIZE)); shadow = kmsan_get_metadata((void *)(addr64 + pos), KMSAN_META_SHADOW); if (!shadow) { /* * This page is untracked. If there were uninitialized * bytes before, report them. */ if (cur_origin) { kmsan_enter_runtime(); kmsan_report(cur_origin, addr, size, cur_off_start, pos - 1, user_addr, reason); kmsan_leave_runtime(); } cur_origin = 0; cur_off_start = -1; pos += chunk_size; continue; } for (int i = 0; i < chunk_size; i++) { if (!shadow[i]) { /* * This byte is unpoisoned. If there were * poisoned bytes before, report them. */ if (cur_origin) { kmsan_enter_runtime(); kmsan_report(cur_origin, addr, size, cur_off_start, pos + i - 1, user_addr, reason); kmsan_leave_runtime(); } cur_origin = 0; cur_off_start = -1; continue; } origin = kmsan_get_metadata((void *)(addr64 + pos + i), KMSAN_META_ORIGIN); KMSAN_WARN_ON(!origin); new_origin = *origin; /* * Encountered new origin - report the previous * uninitialized range. */ if (cur_origin != new_origin) { if (cur_origin) { kmsan_enter_runtime(); kmsan_report(cur_origin, addr, size, cur_off_start, pos + i - 1, user_addr, reason); kmsan_leave_runtime(); } cur_origin = new_origin; cur_off_start = pos + i; } } pos += chunk_size; } KMSAN_WARN_ON(pos != size); if (cur_origin) { kmsan_enter_runtime(); kmsan_report(cur_origin, addr, size, cur_off_start, pos - 1, user_addr, reason); kmsan_leave_runtime(); } } bool kmsan_metadata_is_contiguous(void *addr, size_t size) { char *cur_shadow = NULL, *next_shadow = NULL, *cur_origin = NULL, *next_origin = NULL; u64 cur_addr = (u64)addr, next_addr = cur_addr + PAGE_SIZE; depot_stack_handle_t *origin_p; bool all_untracked = false; if (!size) return true; /* The whole range belongs to the same page. */ if (ALIGN_DOWN(cur_addr + size - 1, PAGE_SIZE) == ALIGN_DOWN(cur_addr, PAGE_SIZE)) return true; cur_shadow = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ false); if (!cur_shadow) all_untracked = true; cur_origin = kmsan_get_metadata((void *)cur_addr, /*is_origin*/ true); if (all_untracked && cur_origin) goto report; for (; next_addr < (u64)addr + size; cur_addr = next_addr, cur_shadow = next_shadow, cur_origin = next_origin, next_addr += PAGE_SIZE) { next_shadow = kmsan_get_metadata((void *)next_addr, false); next_origin = kmsan_get_metadata((void *)next_addr, true); if (all_untracked) { if (next_shadow || next_origin) goto report; if (!next_shadow && !next_origin) continue; } if (((u64)cur_shadow == ((u64)next_shadow - PAGE_SIZE)) && ((u64)cur_origin == ((u64)next_origin - PAGE_SIZE))) continue; goto report; } return true; report: pr_err("%s: attempting to access two shadow page ranges.\n", __func__); pr_err("Access of size %ld at %px.\n", size, addr); pr_err("Addresses belonging to different ranges: %px and %px\n", (void *)cur_addr, (void *)next_addr); pr_err("page[0].shadow: %px, page[1].shadow: %px\n", cur_shadow, next_shadow); pr_err("page[0].origin: %px, page[1].origin: %px\n", cur_origin, next_origin); origin_p = kmsan_get_metadata(addr, KMSAN_META_ORIGIN); if (origin_p) { pr_err("Origin: %08x\n", *origin_p); kmsan_print_origin(*origin_p); } else { pr_err("Origin: unavailable\n"); } return false; }