// SPDX-License-Identifier: Apache-2.0 OR MIT use crate::alloc::{Allocator, Global}; use core::fmt; use core::iter::{FusedIterator, TrustedLen}; use core::mem::{self, ManuallyDrop, SizedTypeProperties}; use core::ptr::{self, NonNull}; use core::slice::{self}; use super::Vec; /// A draining iterator for `Vec<T>`. /// /// This `struct` is created by [`Vec::drain`]. /// See its documentation for more. /// /// # Example /// /// ``` /// let mut v = vec![0, 1, 2]; /// let iter: std::vec::Drain<'_, _> = v.drain(..); /// ``` #[stable(feature = "drain", since = "1.6.0")] pub struct Drain< 'a, T: 'a, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator + 'a = Global, > { /// Index of tail to preserve pub(super) tail_start: usize, /// Length of tail pub(super) tail_len: usize, /// Current remaining range to remove pub(super) iter: slice::Iter<'a, T>, pub(super) vec: NonNull<Vec<T, A>>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl<T: fmt::Debug, A: Allocator> fmt::Debug for Drain<'_, T, A> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("Drain").field(&self.iter.as_slice()).finish() } } impl<'a, T, A: Allocator> Drain<'a, T, A> { /// Returns the remaining items of this iterator as a slice. /// /// # Examples /// /// ``` /// let mut vec = vec!['a', 'b', 'c']; /// let mut drain = vec.drain(..); /// assert_eq!(drain.as_slice(), &['a', 'b', 'c']); /// let _ = drain.next().unwrap(); /// assert_eq!(drain.as_slice(), &['b', 'c']); /// ``` #[must_use] #[stable(feature = "vec_drain_as_slice", since = "1.46.0")] pub fn as_slice(&self) -> &[T] { self.iter.as_slice() } /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] #[must_use] #[inline] pub fn allocator(&self) -> &A { unsafe { self.vec.as_ref().allocator() } } /// Keep unyielded elements in the source `Vec`. /// /// # Examples /// /// ``` /// #![feature(drain_keep_rest)] /// /// let mut vec = vec!['a', 'b', 'c']; /// let mut drain = vec.drain(..); /// /// assert_eq!(drain.next().unwrap(), 'a'); /// /// // This call keeps 'b' and 'c' in the vec. /// drain.keep_rest(); /// /// // If we wouldn't call `keep_rest()`, /// // `vec` would be empty. /// assert_eq!(vec, ['b', 'c']); /// ``` #[unstable(feature = "drain_keep_rest", issue = "101122")] pub fn keep_rest(self) { // At this moment layout looks like this: // // [head] [yielded by next] [unyielded] [yielded by next_back] [tail] // ^-- start \_________/-- unyielded_len \____/-- self.tail_len // ^-- unyielded_ptr ^-- tail // // Normally `Drop` impl would drop [unyielded] and then move [tail] to the `start`. // Here we want to // 1. Move [unyielded] to `start` // 2. Move [tail] to a new start at `start + len(unyielded)` // 3. Update length of the original vec to `len(head) + len(unyielded) + len(tail)` // a. In case of ZST, this is the only thing we want to do // 4. Do *not* drop self, as everything is put in a consistent state already, there is nothing to do let mut this = ManuallyDrop::new(self); unsafe { let source_vec = this.vec.as_mut(); let start = source_vec.len(); let tail = this.tail_start; let unyielded_len = this.iter.len(); let unyielded_ptr = this.iter.as_slice().as_ptr(); // ZSTs have no identity, so we don't need to move them around. if !T::IS_ZST { let start_ptr = source_vec.as_mut_ptr().add(start); // memmove back unyielded elements if unyielded_ptr != start_ptr { let src = unyielded_ptr; let dst = start_ptr; ptr::copy(src, dst, unyielded_len); } // memmove back untouched tail if tail != (start + unyielded_len) { let src = source_vec.as_ptr().add(tail); let dst = start_ptr.add(unyielded_len); ptr::copy(src, dst, this.tail_len); } } source_vec.set_len(start + unyielded_len + this.tail_len); } } } #[stable(feature = "vec_drain_as_slice", since = "1.46.0")] impl<'a, T, A: Allocator> AsRef<[T]> for Drain<'a, T, A> { fn as_ref(&self) -> &[T] { self.as_slice() } } #[stable(feature = "drain", since = "1.6.0")] unsafe impl<T: Sync, A: Sync + Allocator> Sync for Drain<'_, T, A> {} #[stable(feature = "drain", since = "1.6.0")] unsafe impl<T: Send, A: Send + Allocator> Send for Drain<'_, T, A> {} #[stable(feature = "drain", since = "1.6.0")] impl<T, A: Allocator> Iterator for Drain<'_, T, A> { type Item = T; #[inline] fn next(&mut self) -> Option<T> { self.iter.next().map(|elt| unsafe { ptr::read(elt as *const _) }) } fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl<T, A: Allocator> DoubleEndedIterator for Drain<'_, T, A> { #[inline] fn next_back(&mut self) -> Option<T> { self.iter.next_back().map(|elt| unsafe { ptr::read(elt as *const _) }) } } #[stable(feature = "drain", since = "1.6.0")] impl<T, A: Allocator> Drop for Drain<'_, T, A> { fn drop(&mut self) { /// Moves back the un-`Drain`ed elements to restore the original `Vec`. struct DropGuard<'r, 'a, T, A: Allocator>(&'r mut Drain<'a, T, A>); impl<'r, 'a, T, A: Allocator> Drop for DropGuard<'r, 'a, T, A> { fn drop(&mut self) { if self.0.tail_len > 0 { unsafe { let source_vec = self.0.vec.as_mut(); // memmove back untouched tail, update to new length let start = source_vec.len(); let tail = self.0.tail_start; if tail != start { let src = source_vec.as_ptr().add(tail); let dst = source_vec.as_mut_ptr().add(start); ptr::copy(src, dst, self.0.tail_len); } source_vec.set_len(start + self.0.tail_len); } } } } let iter = mem::take(&mut self.iter); let drop_len = iter.len(); let mut vec = self.vec; if T::IS_ZST { // ZSTs have no identity, so we don't need to move them around, we only need to drop the correct amount. // this can be achieved by manipulating the Vec length instead of moving values out from `iter`. unsafe { let vec = vec.as_mut(); let old_len = vec.len(); vec.set_len(old_len + drop_len + self.tail_len); vec.truncate(old_len + self.tail_len); } return; } // ensure elements are moved back into their appropriate places, even when drop_in_place panics let _guard = DropGuard(self); if drop_len == 0 { return; } // as_slice() must only be called when iter.len() is > 0 because // it also gets touched by vec::Splice which may turn it into a dangling pointer // which would make it and the vec pointer point to different allocations which would // lead to invalid pointer arithmetic below. let drop_ptr = iter.as_slice().as_ptr(); unsafe { // drop_ptr comes from a slice::Iter which only gives us a &[T] but for drop_in_place // a pointer with mutable provenance is necessary. Therefore we must reconstruct // it from the original vec but also avoid creating a &mut to the front since that could // invalidate raw pointers to it which some unsafe code might rely on. let vec_ptr = vec.as_mut().as_mut_ptr(); let drop_offset = drop_ptr.sub_ptr(vec_ptr); let to_drop = ptr::slice_from_raw_parts_mut(vec_ptr.add(drop_offset), drop_len); ptr::drop_in_place(to_drop); } } } #[stable(feature = "drain", since = "1.6.0")] impl<T, A: Allocator> ExactSizeIterator for Drain<'_, T, A> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl<T, A: Allocator> TrustedLen for Drain<'_, T, A> {} #[stable(feature = "fused", since = "1.26.0")] impl<T, A: Allocator> FusedIterator for Drain<'_, T, A> {}