/* * Transmeta's Efficeon AGPGART driver. * * Based upon a diff by Linus around November '02. * * Ported to the 2.6 kernel by Carlos Puchol <cpglinux@puchol.com> * and H. Peter Anvin <hpa@transmeta.com>. */ /* * NOTE-cpg-040217: * * - when compiled as a module, after loading the module, * it will refuse to unload, indicating it is in use, * when it is not. * - no s3 (suspend to ram) testing. * - tested on the efficeon integrated nothbridge for tens * of iterations of starting x and glxgears. * - tested with radeon 9000 and radeon mobility m9 cards * - tested with c3/c4 enabled (with the mobility m9 card) */ #include <linux/module.h> #include <linux/pci.h> #include <linux/init.h> #include <linux/agp_backend.h> #include <linux/gfp.h> #include <linux/page-flags.h> #include <linux/mm.h> #include "agp.h" #include "intel-agp.h" /* * The real differences to the generic AGP code is * in the GART mappings - a two-level setup with the * first level being an on-chip 64-entry table. * * The page array is filled through the ATTPAGE register * (Aperture Translation Table Page Register) at 0xB8. Bits: * 31:20: physical page address * 11:9: Page Attribute Table Index (PATI) * must match the PAT index for the * mapped pages (the 2nd level page table pages * themselves should be just regular WB-cacheable, * so this is normally zero.) * 8: Present * 7:6: reserved, write as zero * 5:0: GATT directory index: which 1st-level entry * * The Efficeon AGP spec requires pages to be WB-cacheable * but to be explicitly CLFLUSH'd after any changes. */ #define EFFICEON_ATTPAGE 0xb8 #define EFFICEON_L1_SIZE 64 /* Number of PDE pages */ #define EFFICEON_PATI (0 << 9) #define EFFICEON_PRESENT (1 << 8) static struct _efficeon_private { unsigned long l1_table[EFFICEON_L1_SIZE]; } efficeon_private; static const struct gatt_mask efficeon_generic_masks[] = { {.mask = 0x00000001, .type = 0} }; /* This function does the same thing as mask_memory() for this chipset... */ static inline unsigned long efficeon_mask_memory(struct page *page) { unsigned long addr = page_to_phys(page); return addr | 0x00000001; } static const struct aper_size_info_lvl2 efficeon_generic_sizes[4] = { {256, 65536, 0}, {128, 32768, 32}, {64, 16384, 48}, {32, 8192, 56} }; /* * Control interfaces are largely identical to * the legacy Intel 440BX.. */ static int efficeon_fetch_size(void) { int i; u16 temp; struct aper_size_info_lvl2 *values; pci_read_config_word(agp_bridge->dev, INTEL_APSIZE, &temp); values = A_SIZE_LVL2(agp_bridge->driver->aperture_sizes); for (i = 0; i < agp_bridge->driver->num_aperture_sizes; i++) { if (temp == values[i].size_value) { agp_bridge->previous_size = agp_bridge->current_size = (void *) (values + i); agp_bridge->aperture_size_idx = i; return values[i].size; } } return 0; } static void efficeon_tlbflush(struct agp_memory * mem) { printk(KERN_DEBUG PFX "efficeon_tlbflush()\n"); pci_write_config_dword(agp_bridge->dev, INTEL_AGPCTRL, 0x2200); pci_write_config_dword(agp_bridge->dev, INTEL_AGPCTRL, 0x2280); } static void efficeon_cleanup(void) { u16 temp; struct aper_size_info_lvl2 *previous_size; printk(KERN_DEBUG PFX "efficeon_cleanup()\n"); previous_size = A_SIZE_LVL2(agp_bridge->previous_size); pci_read_config_word(agp_bridge->dev, INTEL_NBXCFG, &temp); pci_write_config_word(agp_bridge->dev, INTEL_NBXCFG, temp & ~(1 << 9)); pci_write_config_word(agp_bridge->dev, INTEL_APSIZE, previous_size->size_value); } static int efficeon_configure(void) { u16 temp2; struct aper_size_info_lvl2 *current_size; printk(KERN_DEBUG PFX "efficeon_configure()\n"); current_size = A_SIZE_LVL2(agp_bridge->current_size); /* aperture size */ pci_write_config_word(agp_bridge->dev, INTEL_APSIZE, current_size->size_value); /* address to map to */ agp_bridge->gart_bus_addr = pci_bus_address(agp_bridge->dev, AGP_APERTURE_BAR); /* agpctrl */ pci_write_config_dword(agp_bridge->dev, INTEL_AGPCTRL, 0x2280); /* paccfg/nbxcfg */ pci_read_config_word(agp_bridge->dev, INTEL_NBXCFG, &temp2); pci_write_config_word(agp_bridge->dev, INTEL_NBXCFG, (temp2 & ~(1 << 10)) | (1 << 9) | (1 << 11)); /* clear any possible error conditions */ pci_write_config_byte(agp_bridge->dev, INTEL_ERRSTS + 1, 7); return 0; } static int efficeon_free_gatt_table(struct agp_bridge_data *bridge) { int index, freed = 0; for (index = 0; index < EFFICEON_L1_SIZE; index++) { unsigned long page = efficeon_private.l1_table[index]; if (page) { efficeon_private.l1_table[index] = 0; free_page(page); freed++; } printk(KERN_DEBUG PFX "efficeon_free_gatt_table(%p, %02x, %08x)\n", agp_bridge->dev, EFFICEON_ATTPAGE, index); pci_write_config_dword(agp_bridge->dev, EFFICEON_ATTPAGE, index); } printk(KERN_DEBUG PFX "efficeon_free_gatt_table() freed %d pages\n", freed); return 0; } /* * Since we don't need contiguous memory we just try * to get the gatt table once */ #define GET_PAGE_DIR_OFF(addr) (addr >> 22) #define GET_PAGE_DIR_IDX(addr) (GET_PAGE_DIR_OFF(addr) - \ GET_PAGE_DIR_OFF(agp_bridge->gart_bus_addr)) #define GET_GATT_OFF(addr) ((addr & 0x003ff000) >> 12) #undef GET_GATT #define GET_GATT(addr) (efficeon_private.gatt_pages[\ GET_PAGE_DIR_IDX(addr)]->remapped) static int efficeon_create_gatt_table(struct agp_bridge_data *bridge) { int index; const int pati = EFFICEON_PATI; const int present = EFFICEON_PRESENT; const int clflush_chunk = ((cpuid_ebx(1) >> 8) & 0xff) << 3; int num_entries, l1_pages; num_entries = A_SIZE_LVL2(agp_bridge->current_size)->num_entries; printk(KERN_DEBUG PFX "efficeon_create_gatt_table(%d)\n", num_entries); /* There are 2^10 PTE pages per PDE page */ BUG_ON(num_entries & 0x3ff); l1_pages = num_entries >> 10; for (index = 0 ; index < l1_pages ; index++) { int offset; unsigned long page; unsigned long value; page = efficeon_private.l1_table[index]; BUG_ON(page); page = get_zeroed_page(GFP_KERNEL); if (!page) { efficeon_free_gatt_table(agp_bridge); return -ENOMEM; } for (offset = 0; offset < PAGE_SIZE; offset += clflush_chunk) clflush((char *)page+offset); efficeon_private.l1_table[index] = page; value = virt_to_phys((unsigned long *)page) | pati | present | index; pci_write_config_dword(agp_bridge->dev, EFFICEON_ATTPAGE, value); } return 0; } static int efficeon_insert_memory(struct agp_memory * mem, off_t pg_start, int type) { int i, count = mem->page_count, num_entries; unsigned int *page, *last_page; const int clflush_chunk = ((cpuid_ebx(1) >> 8) & 0xff) << 3; const unsigned long clflush_mask = ~(clflush_chunk-1); printk(KERN_DEBUG PFX "efficeon_insert_memory(%lx, %d)\n", pg_start, count); num_entries = A_SIZE_LVL2(agp_bridge->current_size)->num_entries; if ((pg_start + mem->page_count) > num_entries) return -EINVAL; if (type != 0 || mem->type != 0) return -EINVAL; if (!mem->is_flushed) { global_cache_flush(); mem->is_flushed = true; } last_page = NULL; for (i = 0; i < count; i++) { int index = pg_start + i; unsigned long insert = efficeon_mask_memory(mem->pages[i]); page = (unsigned int *) efficeon_private.l1_table[index >> 10]; if (!page) continue; page += (index & 0x3ff); *page = insert; /* clflush is slow, so don't clflush until we have to */ if (last_page && (((unsigned long)page^(unsigned long)last_page) & clflush_mask)) clflush(last_page); last_page = page; } if ( last_page ) clflush(last_page); agp_bridge->driver->tlb_flush(mem); return 0; } static int efficeon_remove_memory(struct agp_memory * mem, off_t pg_start, int type) { int i, count = mem->page_count, num_entries; printk(KERN_DEBUG PFX "efficeon_remove_memory(%lx, %d)\n", pg_start, count); num_entries = A_SIZE_LVL2(agp_bridge->current_size)->num_entries; if ((pg_start + mem->page_count) > num_entries) return -EINVAL; if (type != 0 || mem->type != 0) return -EINVAL; for (i = 0; i < count; i++) { int index = pg_start + i; unsigned int *page = (unsigned int *) efficeon_private.l1_table[index >> 10]; if (!page) continue; page += (index & 0x3ff); *page = 0; } agp_bridge->driver->tlb_flush(mem); return 0; } static const struct agp_bridge_driver efficeon_driver = { .owner = THIS_MODULE, .aperture_sizes = efficeon_generic_sizes, .size_type = LVL2_APER_SIZE, .num_aperture_sizes = 4, .configure = efficeon_configure, .fetch_size = efficeon_fetch_size, .cleanup = efficeon_cleanup, .tlb_flush = efficeon_tlbflush, .mask_memory = agp_generic_mask_memory, .masks = efficeon_generic_masks, .agp_enable = agp_generic_enable, .cache_flush = global_cache_flush, // Efficeon-specific GATT table setup / populate / teardown .create_gatt_table = efficeon_create_gatt_table, .free_gatt_table = efficeon_free_gatt_table, .insert_memory = efficeon_insert_memory, .remove_memory = efficeon_remove_memory, .cant_use_aperture = false, // true might be faster? // Generic .alloc_by_type = agp_generic_alloc_by_type, .free_by_type = agp_generic_free_by_type, .agp_alloc_page = agp_generic_alloc_page, .agp_alloc_pages = agp_generic_alloc_pages, .agp_destroy_page = agp_generic_destroy_page, .agp_destroy_pages = agp_generic_destroy_pages, .agp_type_to_mask_type = agp_generic_type_to_mask_type, }; static int agp_efficeon_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct agp_bridge_data *bridge; u8 cap_ptr; struct resource *r; cap_ptr = pci_find_capability(pdev, PCI_CAP_ID_AGP); if (!cap_ptr) return -ENODEV; /* Probe for Efficeon controller */ if (pdev->device != PCI_DEVICE_ID_EFFICEON) { printk(KERN_ERR PFX "Unsupported Efficeon chipset (device id: %04x)\n", pdev->device); return -ENODEV; } printk(KERN_INFO PFX "Detected Transmeta Efficeon TM8000 series chipset\n"); bridge = agp_alloc_bridge(); if (!bridge) return -ENOMEM; bridge->driver = &efficeon_driver; bridge->dev = pdev; bridge->capndx = cap_ptr; /* * If the device has not been properly setup, the following will catch * the problem and should stop the system from crashing. * 20030610 - hamish@zot.org */ if (pci_enable_device(pdev)) { printk(KERN_ERR PFX "Unable to Enable PCI device\n"); agp_put_bridge(bridge); return -ENODEV; } /* * The following fixes the case where the BIOS has "forgotten" to * provide an address range for the GART. * 20030610 - hamish@zot.org */ r = &pdev->resource[0]; if (!r->start && r->end) { if (pci_assign_resource(pdev, 0)) { printk(KERN_ERR PFX "could not assign resource 0\n"); agp_put_bridge(bridge); return -ENODEV; } } /* Fill in the mode register */ if (cap_ptr) { pci_read_config_dword(pdev, bridge->capndx+PCI_AGP_STATUS, &bridge->mode); } pci_set_drvdata(pdev, bridge); return agp_add_bridge(bridge); } static void agp_efficeon_remove(struct pci_dev *pdev) { struct agp_bridge_data *bridge = pci_get_drvdata(pdev); agp_remove_bridge(bridge); agp_put_bridge(bridge); } static int agp_efficeon_resume(struct device *dev) { printk(KERN_DEBUG PFX "agp_efficeon_resume()\n"); return efficeon_configure(); } static const struct pci_device_id agp_efficeon_pci_table[] = { { .class = (PCI_CLASS_BRIDGE_HOST << 8), .class_mask = ~0, .vendor = PCI_VENDOR_ID_TRANSMETA, .device = PCI_ANY_ID, .subvendor = PCI_ANY_ID, .subdevice = PCI_ANY_ID, }, { } }; static DEFINE_SIMPLE_DEV_PM_OPS(agp_efficeon_pm_ops, NULL, agp_efficeon_resume); MODULE_DEVICE_TABLE(pci, agp_efficeon_pci_table); static struct pci_driver agp_efficeon_pci_driver = { .name = "agpgart-efficeon", .id_table = agp_efficeon_pci_table, .probe = agp_efficeon_probe, .remove = agp_efficeon_remove, .driver.pm = &agp_efficeon_pm_ops, }; static int __init agp_efficeon_init(void) { static int agp_initialised=0; if (agp_off) return -EINVAL; if (agp_initialised == 1) return 0; agp_initialised=1; return pci_register_driver(&agp_efficeon_pci_driver); } static void __exit agp_efficeon_cleanup(void) { pci_unregister_driver(&agp_efficeon_pci_driver); } module_init(agp_efficeon_init); module_exit(agp_efficeon_cleanup); MODULE_AUTHOR("Carlos Puchol <cpglinux@puchol.com>"); MODULE_LICENSE("GPL and additional rights");