/* SPDX-License-Identifier: GPL-2.0-only */ /* * arch/arm/include/asm/io.h * * Copyright (C) 1996-2000 Russell King * * Modifications: * 16-Sep-1996 RMK Inlined the inx/outx functions & optimised for both * constant addresses and variable addresses. * 04-Dec-1997 RMK Moved a lot of this stuff to the new architecture * specific IO header files. * 27-Mar-1999 PJB Second parameter of memcpy_toio is const.. * 04-Apr-1999 PJB Added check_signature. * 12-Dec-1999 RMK More cleanups * 18-Jun-2000 RMK Removed virt_to_* and friends definitions * 05-Oct-2004 BJD Moved memory string functions to use void __iomem */ #ifndef __ASM_ARM_IO_H #define __ASM_ARM_IO_H #ifdef __KERNEL__ #include <linux/string.h> #include <linux/types.h> #include <asm/byteorder.h> #include <asm/page.h> #include <asm-generic/pci_iomap.h> /* * ISA I/O bus memory addresses are 1:1 with the physical address. */ #define isa_virt_to_bus virt_to_phys #define isa_bus_to_virt phys_to_virt /* * Atomic MMIO-wide IO modify */ extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set); extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set); /* * Generic IO read/write. These perform native-endian accesses. Note * that some architectures will want to re-define __raw_{read,write}w. */ void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen); void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen); void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen); void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen); void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen); void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen); #if __LINUX_ARM_ARCH__ < 6 /* * Half-word accesses are problematic with RiscPC due to limitations of * the bus. Rather than special-case the machine, just let the compiler * generate the access for CPUs prior to ARMv6. */ #define __raw_readw(a) (__chk_io_ptr(a), *(volatile unsigned short __force *)(a)) #define __raw_writew(v,a) ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v))) #else /* * When running under a hypervisor, we want to avoid I/O accesses with * writeback addressing modes as these incur a significant performance * overhead (the address generation must be emulated in software). */ #define __raw_writew __raw_writew static inline void __raw_writew(u16 val, volatile void __iomem *addr) { asm volatile("strh %1, %0" : : "Q" (*(volatile u16 __force *)addr), "r" (val)); } #define __raw_readw __raw_readw static inline u16 __raw_readw(const volatile void __iomem *addr) { u16 val; asm volatile("ldrh %0, %1" : "=r" (val) : "Q" (*(volatile u16 __force *)addr)); return val; } #endif #define __raw_writeb __raw_writeb static inline void __raw_writeb(u8 val, volatile void __iomem *addr) { asm volatile("strb %1, %0" : : "Qo" (*(volatile u8 __force *)addr), "r" (val)); } #define __raw_writel __raw_writel static inline void __raw_writel(u32 val, volatile void __iomem *addr) { asm volatile("str %1, %0" : : "Qo" (*(volatile u32 __force *)addr), "r" (val)); } #define __raw_readb __raw_readb static inline u8 __raw_readb(const volatile void __iomem *addr) { u8 val; asm volatile("ldrb %0, %1" : "=r" (val) : "Qo" (*(volatile u8 __force *)addr)); return val; } #define __raw_readl __raw_readl static inline u32 __raw_readl(const volatile void __iomem *addr) { u32 val; asm volatile("ldr %0, %1" : "=r" (val) : "Qo" (*(volatile u32 __force *)addr)); return val; } /* * Architecture ioremap implementation. */ #define MT_DEVICE 0 #define MT_DEVICE_NONSHARED 1 #define MT_DEVICE_CACHED 2 #define MT_DEVICE_WC 3 /* * types 4 onwards can be found in asm/mach/map.h and are undefined * for ioremap */ /* * __arm_ioremap takes CPU physical address. * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page * The _caller variety takes a __builtin_return_address(0) value for * /proc/vmalloc to use - and should only be used in non-inline functions. */ extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int, void *); extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int); extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached); void __arm_iomem_set_ro(void __iomem *ptr, size_t size); extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); /* * Bad read/write accesses... */ extern void __readwrite_bug(const char *fn); /* * A typesafe __io() helper */ static inline void __iomem *__typesafe_io(unsigned long addr) { return (void __iomem *)addr; } #define IOMEM(x) ((void __force __iomem *)(x)) /* IO barriers */ #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE #include <asm/barrier.h> #define __iormb() rmb() #define __iowmb() wmb() #else #define __iormb() do { } while (0) #define __iowmb() do { } while (0) #endif /* PCI fixed i/o mapping */ #define PCI_IO_VIRT_BASE 0xfee00000 #define PCI_IOBASE ((void __iomem *)PCI_IO_VIRT_BASE) #if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA) void pci_ioremap_set_mem_type(int mem_type); #else static inline void pci_ioremap_set_mem_type(int mem_type) {} #endif struct resource; #define pci_remap_iospace pci_remap_iospace int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr); /* * PCI configuration space mapping function. * * The PCI specification does not allow configuration write * transactions to be posted. Add an arch specific * pci_remap_cfgspace() definition that is implemented * through strongly ordered memory mappings. */ #define pci_remap_cfgspace pci_remap_cfgspace void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size); /* * Now, pick up the machine-defined IO definitions */ #ifdef CONFIG_NEED_MACH_IO_H #include <mach/io.h> #else #if IS_ENABLED(CONFIG_PCMCIA) || defined(CONFIG_PCI) #define IO_SPACE_LIMIT ((resource_size_t)0xfffff) #else #define IO_SPACE_LIMIT ((resource_size_t)0) #endif #define __io(a) __typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT)) #endif /* * IO port access primitives * ------------------------- * * The ARM doesn't have special IO access instructions; all IO is memory * mapped. Note that these are defined to perform little endian accesses * only. Their primary purpose is to access PCI and ISA peripherals. * * Note that for a big endian machine, this implies that the following * big endian mode connectivity is in place, as described by numerous * ARM documents: * * PCI: D0-D7 D8-D15 D16-D23 D24-D31 * ARM: D24-D31 D16-D23 D8-D15 D0-D7 * * The machine specific io.h include defines __io to translate an "IO" * address to a memory address. * * Note that we prevent GCC re-ordering or caching values in expressions * by introducing sequence points into the in*() definitions. Note that * __raw_* do not guarantee this behaviour. * * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. */ #ifdef __io #define outb(v,p) ({ __iowmb(); __raw_writeb(v,__io(p)); }) #define outw(v,p) ({ __iowmb(); __raw_writew((__force __u16) \ cpu_to_le16(v),__io(p)); }) #define outl(v,p) ({ __iowmb(); __raw_writel((__force __u32) \ cpu_to_le32(v),__io(p)); }) #define inb(p) ({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; }) #define inw(p) ({ __u16 __v = le16_to_cpu((__force __le16) \ __raw_readw(__io(p))); __iormb(); __v; }) #define inl(p) ({ __u32 __v = le32_to_cpu((__force __le32) \ __raw_readl(__io(p))); __iormb(); __v; }) #define outsb(p,d,l) __raw_writesb(__io(p),d,l) #define outsw(p,d,l) __raw_writesw(__io(p),d,l) #define outsl(p,d,l) __raw_writesl(__io(p),d,l) #define insb(p,d,l) __raw_readsb(__io(p),d,l) #define insw(p,d,l) __raw_readsw(__io(p),d,l) #define insl(p,d,l) __raw_readsl(__io(p),d,l) #endif /* * String version of IO memory access ops: */ extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t); extern void _memcpy_toio(volatile void __iomem *, const void *, size_t); extern void _memset_io(volatile void __iomem *, int, size_t); /* * Memory access primitives * ------------------------ * * These perform PCI memory accesses via an ioremap region. They don't * take an address as such, but a cookie. * * Again, these are defined to perform little endian accesses. See the * IO port primitives for more information. */ #ifndef readl #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ __raw_readw(c)); __r; }) #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ __raw_readl(c)); __r; }) #define writeb_relaxed(v,c) __raw_writeb(v,c) #define writew_relaxed(v,c) __raw_writew((__force u16) cpu_to_le16(v),c) #define writel_relaxed(v,c) __raw_writel((__force u32) cpu_to_le32(v),c) #define readb(c) ({ u8 __v = readb_relaxed(c); __iormb(); __v; }) #define readw(c) ({ u16 __v = readw_relaxed(c); __iormb(); __v; }) #define readl(c) ({ u32 __v = readl_relaxed(c); __iormb(); __v; }) #define writeb(v,c) ({ __iowmb(); writeb_relaxed(v,c); }) #define writew(v,c) ({ __iowmb(); writew_relaxed(v,c); }) #define writel(v,c) ({ __iowmb(); writel_relaxed(v,c); }) #define readsb(p,d,l) __raw_readsb(p,d,l) #define readsw(p,d,l) __raw_readsw(p,d,l) #define readsl(p,d,l) __raw_readsl(p,d,l) #define writesb(p,d,l) __raw_writesb(p,d,l) #define writesw(p,d,l) __raw_writesw(p,d,l) #define writesl(p,d,l) __raw_writesl(p,d,l) #ifndef __ARMBE__ static inline void memset_io(volatile void __iomem *dst, unsigned c, size_t count) { extern void mmioset(void *, unsigned int, size_t); mmioset((void __force *)dst, c, count); } #define memset_io(dst,c,count) memset_io(dst,c,count) static inline void memcpy_fromio(void *to, const volatile void __iomem *from, size_t count) { extern void mmiocpy(void *, const void *, size_t); mmiocpy(to, (const void __force *)from, count); } #define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count) static inline void memcpy_toio(volatile void __iomem *to, const void *from, size_t count) { extern void mmiocpy(void *, const void *, size_t); mmiocpy((void __force *)to, from, count); } #define memcpy_toio(to,from,count) memcpy_toio(to,from,count) #else #define memset_io(c,v,l) _memset_io(c,(v),(l)) #define memcpy_fromio(a,c,l) _memcpy_fromio((a),c,(l)) #define memcpy_toio(c,a,l) _memcpy_toio(c,(a),(l)) #endif #endif /* readl */ /* * ioremap() and friends. * * ioremap() takes a resource address, and size. Due to the ARM memory * types, it is important to use the correct ioremap() function as each * mapping has specific properties. * * Function Memory type Cacheability Cache hint * ioremap() Device n/a n/a * ioremap_cache() Normal Writeback Read allocate * ioremap_wc() Normal Non-cacheable n/a * ioremap_wt() Normal Non-cacheable n/a * * All device mappings have the following properties: * - no access speculation * - no repetition (eg, on return from an exception) * - number, order and size of accesses are maintained * - unaligned accesses are "unpredictable" * - writes may be delayed before they hit the endpoint device * * All normal memory mappings have the following properties: * - reads can be repeated with no side effects * - repeated reads return the last value written * - reads can fetch additional locations without side effects * - writes can be repeated (in certain cases) with no side effects * - writes can be merged before accessing the target * - unaligned accesses can be supported * - ordering is not guaranteed without explicit dependencies or barrier * instructions * - writes may be delayed before they hit the endpoint memory * * The cache hint is only a performance hint: CPUs may alias these hints. * Eg, a CPU not implementing read allocate but implementing write allocate * will provide a write allocate mapping instead. */ void __iomem *ioremap(resource_size_t res_cookie, size_t size); #define ioremap ioremap /* * Do not use ioremap_cache for mapping memory. Use memremap instead. */ void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size); #define ioremap_cache ioremap_cache void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size); #define ioremap_wc ioremap_wc #define ioremap_wt ioremap_wc void iounmap(volatile void __iomem *io_addr); #define iounmap iounmap void *arch_memremap_wb(phys_addr_t phys_addr, size_t size); #define arch_memremap_wb arch_memremap_wb /* * io{read,write}{16,32}be() macros */ #define ioread16be(p) ({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; }) #define ioread32be(p) ({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; }) #define iowrite16be(v,p) ({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); }) #define iowrite32be(v,p) ({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); }) #ifndef ioport_map #define ioport_map ioport_map extern void __iomem *ioport_map(unsigned long port, unsigned int nr); #endif #ifndef ioport_unmap #define ioport_unmap ioport_unmap extern void ioport_unmap(void __iomem *addr); #endif struct pci_dev; #define pci_iounmap pci_iounmap extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr); /* * Convert a physical pointer to a virtual kernel pointer for /dev/mem * access */ #define xlate_dev_mem_ptr(p) __va(p) #include <asm-generic/io.h> #ifdef CONFIG_MMU #define ARCH_HAS_VALID_PHYS_ADDR_RANGE extern int valid_phys_addr_range(phys_addr_t addr, size_t size); extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size); extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size, unsigned long flags); #define arch_memremap_can_ram_remap arch_memremap_can_ram_remap #endif /* * Register ISA memory and port locations for glibc iopl/inb/outb * emulation. */ extern void register_isa_ports(unsigned int mmio, unsigned int io, unsigned int io_shift); #endif /* __KERNEL__ */ #endif /* __ASM_ARM_IO_H */