// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012-2015 - ARM Ltd * Author: Marc Zyngier <marc.zyngier@arm.com> */ #ifndef __ARM64_KVM_HYP_SYSREG_SR_H__ #define __ARM64_KVM_HYP_SYSREG_SR_H__ #include <linux/compiler.h> #include <linux/kvm_host.h> #include <asm/kprobes.h> #include <asm/kvm_asm.h> #include <asm/kvm_emulate.h> #include <asm/kvm_hyp.h> #include <asm/kvm_mmu.h> static inline void __sysreg_save_common_state(struct kvm_cpu_context *ctxt) { ctxt_sys_reg(ctxt, MDSCR_EL1) = read_sysreg(mdscr_el1); } static inline void __sysreg_save_user_state(struct kvm_cpu_context *ctxt) { ctxt_sys_reg(ctxt, TPIDR_EL0) = read_sysreg(tpidr_el0); ctxt_sys_reg(ctxt, TPIDRRO_EL0) = read_sysreg(tpidrro_el0); } static inline bool ctxt_has_mte(struct kvm_cpu_context *ctxt) { struct kvm_vcpu *vcpu = ctxt->__hyp_running_vcpu; if (!vcpu) vcpu = container_of(ctxt, struct kvm_vcpu, arch.ctxt); return kvm_has_mte(kern_hyp_va(vcpu->kvm)); } static inline void __sysreg_save_el1_state(struct kvm_cpu_context *ctxt) { ctxt_sys_reg(ctxt, SCTLR_EL1) = read_sysreg_el1(SYS_SCTLR); ctxt_sys_reg(ctxt, CPACR_EL1) = read_sysreg_el1(SYS_CPACR); ctxt_sys_reg(ctxt, TTBR0_EL1) = read_sysreg_el1(SYS_TTBR0); ctxt_sys_reg(ctxt, TTBR1_EL1) = read_sysreg_el1(SYS_TTBR1); ctxt_sys_reg(ctxt, TCR_EL1) = read_sysreg_el1(SYS_TCR); if (cpus_have_final_cap(ARM64_HAS_TCR2)) ctxt_sys_reg(ctxt, TCR2_EL1) = read_sysreg_el1(SYS_TCR2); ctxt_sys_reg(ctxt, ESR_EL1) = read_sysreg_el1(SYS_ESR); ctxt_sys_reg(ctxt, AFSR0_EL1) = read_sysreg_el1(SYS_AFSR0); ctxt_sys_reg(ctxt, AFSR1_EL1) = read_sysreg_el1(SYS_AFSR1); ctxt_sys_reg(ctxt, FAR_EL1) = read_sysreg_el1(SYS_FAR); ctxt_sys_reg(ctxt, MAIR_EL1) = read_sysreg_el1(SYS_MAIR); ctxt_sys_reg(ctxt, VBAR_EL1) = read_sysreg_el1(SYS_VBAR); ctxt_sys_reg(ctxt, CONTEXTIDR_EL1) = read_sysreg_el1(SYS_CONTEXTIDR); ctxt_sys_reg(ctxt, AMAIR_EL1) = read_sysreg_el1(SYS_AMAIR); ctxt_sys_reg(ctxt, CNTKCTL_EL1) = read_sysreg_el1(SYS_CNTKCTL); if (cpus_have_final_cap(ARM64_HAS_S1PIE)) { ctxt_sys_reg(ctxt, PIR_EL1) = read_sysreg_el1(SYS_PIR); ctxt_sys_reg(ctxt, PIRE0_EL1) = read_sysreg_el1(SYS_PIRE0); } ctxt_sys_reg(ctxt, PAR_EL1) = read_sysreg_par(); ctxt_sys_reg(ctxt, TPIDR_EL1) = read_sysreg(tpidr_el1); if (ctxt_has_mte(ctxt)) { ctxt_sys_reg(ctxt, TFSR_EL1) = read_sysreg_el1(SYS_TFSR); ctxt_sys_reg(ctxt, TFSRE0_EL1) = read_sysreg_s(SYS_TFSRE0_EL1); } ctxt_sys_reg(ctxt, SP_EL1) = read_sysreg(sp_el1); ctxt_sys_reg(ctxt, ELR_EL1) = read_sysreg_el1(SYS_ELR); ctxt_sys_reg(ctxt, SPSR_EL1) = read_sysreg_el1(SYS_SPSR); } static inline void __sysreg_save_el2_return_state(struct kvm_cpu_context *ctxt) { ctxt->regs.pc = read_sysreg_el2(SYS_ELR); /* * Guest PSTATE gets saved at guest fixup time in all * cases. We still need to handle the nVHE host side here. */ if (!has_vhe() && ctxt->__hyp_running_vcpu) ctxt->regs.pstate = read_sysreg_el2(SYS_SPSR); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) ctxt_sys_reg(ctxt, DISR_EL1) = read_sysreg_s(SYS_VDISR_EL2); } static inline void __sysreg_restore_common_state(struct kvm_cpu_context *ctxt) { write_sysreg(ctxt_sys_reg(ctxt, MDSCR_EL1), mdscr_el1); } static inline void __sysreg_restore_user_state(struct kvm_cpu_context *ctxt) { write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL0), tpidr_el0); write_sysreg(ctxt_sys_reg(ctxt, TPIDRRO_EL0), tpidrro_el0); } static inline void __sysreg_restore_el1_state(struct kvm_cpu_context *ctxt) { write_sysreg(ctxt_sys_reg(ctxt, MPIDR_EL1), vmpidr_el2); if (has_vhe() || !cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT)) { write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); } else if (!ctxt->__hyp_running_vcpu) { /* * Must only be done for guest registers, hence the context * test. We're coming from the host, so SCTLR.M is already * set. Pairs with nVHE's __activate_traps(). */ write_sysreg_el1((ctxt_sys_reg(ctxt, TCR_EL1) | TCR_EPD1_MASK | TCR_EPD0_MASK), SYS_TCR); isb(); } write_sysreg_el1(ctxt_sys_reg(ctxt, CPACR_EL1), SYS_CPACR); write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR0_EL1), SYS_TTBR0); write_sysreg_el1(ctxt_sys_reg(ctxt, TTBR1_EL1), SYS_TTBR1); if (cpus_have_final_cap(ARM64_HAS_TCR2)) write_sysreg_el1(ctxt_sys_reg(ctxt, TCR2_EL1), SYS_TCR2); write_sysreg_el1(ctxt_sys_reg(ctxt, ESR_EL1), SYS_ESR); write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR0_EL1), SYS_AFSR0); write_sysreg_el1(ctxt_sys_reg(ctxt, AFSR1_EL1), SYS_AFSR1); write_sysreg_el1(ctxt_sys_reg(ctxt, FAR_EL1), SYS_FAR); write_sysreg_el1(ctxt_sys_reg(ctxt, MAIR_EL1), SYS_MAIR); write_sysreg_el1(ctxt_sys_reg(ctxt, VBAR_EL1), SYS_VBAR); write_sysreg_el1(ctxt_sys_reg(ctxt, CONTEXTIDR_EL1), SYS_CONTEXTIDR); write_sysreg_el1(ctxt_sys_reg(ctxt, AMAIR_EL1), SYS_AMAIR); write_sysreg_el1(ctxt_sys_reg(ctxt, CNTKCTL_EL1), SYS_CNTKCTL); if (cpus_have_final_cap(ARM64_HAS_S1PIE)) { write_sysreg_el1(ctxt_sys_reg(ctxt, PIR_EL1), SYS_PIR); write_sysreg_el1(ctxt_sys_reg(ctxt, PIRE0_EL1), SYS_PIRE0); } write_sysreg(ctxt_sys_reg(ctxt, PAR_EL1), par_el1); write_sysreg(ctxt_sys_reg(ctxt, TPIDR_EL1), tpidr_el1); if (ctxt_has_mte(ctxt)) { write_sysreg_el1(ctxt_sys_reg(ctxt, TFSR_EL1), SYS_TFSR); write_sysreg_s(ctxt_sys_reg(ctxt, TFSRE0_EL1), SYS_TFSRE0_EL1); } if (!has_vhe() && cpus_have_final_cap(ARM64_WORKAROUND_SPECULATIVE_AT) && ctxt->__hyp_running_vcpu) { /* * Must only be done for host registers, hence the context * test. Pairs with nVHE's __deactivate_traps(). */ isb(); /* * At this stage, and thanks to the above isb(), S2 is * deconfigured and disabled. We can now restore the host's * S1 configuration: SCTLR, and only then TCR. */ write_sysreg_el1(ctxt_sys_reg(ctxt, SCTLR_EL1), SYS_SCTLR); isb(); write_sysreg_el1(ctxt_sys_reg(ctxt, TCR_EL1), SYS_TCR); } write_sysreg(ctxt_sys_reg(ctxt, SP_EL1), sp_el1); write_sysreg_el1(ctxt_sys_reg(ctxt, ELR_EL1), SYS_ELR); write_sysreg_el1(ctxt_sys_reg(ctxt, SPSR_EL1), SYS_SPSR); } /* Read the VCPU state's PSTATE, but translate (v)EL2 to EL1. */ static inline u64 to_hw_pstate(const struct kvm_cpu_context *ctxt) { u64 mode = ctxt->regs.pstate & (PSR_MODE_MASK | PSR_MODE32_BIT); switch (mode) { case PSR_MODE_EL2t: mode = PSR_MODE_EL1t; break; case PSR_MODE_EL2h: mode = PSR_MODE_EL1h; break; } return (ctxt->regs.pstate & ~(PSR_MODE_MASK | PSR_MODE32_BIT)) | mode; } static inline void __sysreg_restore_el2_return_state(struct kvm_cpu_context *ctxt) { u64 pstate = to_hw_pstate(ctxt); u64 mode = pstate & PSR_AA32_MODE_MASK; /* * Safety check to ensure we're setting the CPU up to enter the guest * in a less privileged mode. * * If we are attempting a return to EL2 or higher in AArch64 state, * program SPSR_EL2 with M=EL2h and the IL bit set which ensures that * we'll take an illegal exception state exception immediately after * the ERET to the guest. Attempts to return to AArch32 Hyp will * result in an illegal exception return because EL2's execution state * is determined by SCR_EL3.RW. */ if (!(mode & PSR_MODE32_BIT) && mode >= PSR_MODE_EL2t) pstate = PSR_MODE_EL2h | PSR_IL_BIT; write_sysreg_el2(ctxt->regs.pc, SYS_ELR); write_sysreg_el2(pstate, SYS_SPSR); if (cpus_have_final_cap(ARM64_HAS_RAS_EXTN)) write_sysreg_s(ctxt_sys_reg(ctxt, DISR_EL1), SYS_VDISR_EL2); } static inline void __sysreg32_save_state(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; vcpu->arch.ctxt.spsr_abt = read_sysreg(spsr_abt); vcpu->arch.ctxt.spsr_und = read_sysreg(spsr_und); vcpu->arch.ctxt.spsr_irq = read_sysreg(spsr_irq); vcpu->arch.ctxt.spsr_fiq = read_sysreg(spsr_fiq); __vcpu_sys_reg(vcpu, DACR32_EL2) = read_sysreg(dacr32_el2); __vcpu_sys_reg(vcpu, IFSR32_EL2) = read_sysreg(ifsr32_el2); if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY)) __vcpu_sys_reg(vcpu, DBGVCR32_EL2) = read_sysreg(dbgvcr32_el2); } static inline void __sysreg32_restore_state(struct kvm_vcpu *vcpu) { if (!vcpu_el1_is_32bit(vcpu)) return; write_sysreg(vcpu->arch.ctxt.spsr_abt, spsr_abt); write_sysreg(vcpu->arch.ctxt.spsr_und, spsr_und); write_sysreg(vcpu->arch.ctxt.spsr_irq, spsr_irq); write_sysreg(vcpu->arch.ctxt.spsr_fiq, spsr_fiq); write_sysreg(__vcpu_sys_reg(vcpu, DACR32_EL2), dacr32_el2); write_sysreg(__vcpu_sys_reg(vcpu, IFSR32_EL2), ifsr32_el2); if (has_vhe() || vcpu_get_flag(vcpu, DEBUG_DIRTY)) write_sysreg(__vcpu_sys_reg(vcpu, DBGVCR32_EL2), dbgvcr32_el2); } #endif /* __ARM64_KVM_HYP_SYSREG_SR_H__ */